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We calculated numerically the localization length index ν and up to two sub-leading finite size
indices in the Chalker-Coddington (CC) network model of the plateau-plateau transitions in the
quantum Hall effect. We also carried out fits with logarithmic corrections. The confidence intervals
of the four fits for the exponent ν are narrow and overlap. The fit based on one relevant field and
one marginal field is slightly more advantageous in comparison to the fits based on a relevant and
irrelevant fields. The calculations were carried out by two different programs that produced close
results, each one within the error bars of the other.

PACS numbers: 71.30.+h;71.23.An; 72.15.Rn

I. INTRODUCTION

The computation of critical indices of the plateau-
plateau transitions in the quantum Hall effect (QHE)
(see for a review1) is still an open problem in modern
condensed matter physics. According to the pioneering
works on localization2 the dimension two is a marginal
dimension, above which delocalization can appear. Ex-
actly at d=2 Levine, Libby and Pruisken3–5 noticed, that
the presence of a topological term in the nonlinear sigma
model (NLSM) formulation of the problem may result in
the appearance of delocalized states in strong magnetic
fields.

The next achievement was reached by Chalker and
Coddington6. The authors formulated and studied nu-
merically a network model (CC model) in a random
potential yielding localization-delocalization transitions.
The numerical value 2.5± 0.5 of the Lyapunov exponent
(LE) in the CC model was in good agreement with the ex-
perimentally measured localization length index ν = 2.4
in the quantum Hall effect7.

Various aspects of the CC-model were investigated
in a chain of interesting papers: In8 the model was
linked to replicated spin-chains, while in9–11 its connec-
tion to supersymmetric spin-chains was revealed. In12

an integrable extension of the CC-model was presented.
Some links with conformal field theories (CFT) of Wess-
Zumino-Witten-Novikov (WZWN) type were presented
in13,14 and15 where the authors tried to find an appro-
priate CFT with operator content, which can fit a local-
ization length index around 2.3.

In Refs.16,17 the authors investigated the multifractal
behaviour of the CC model. Both papers reported quar-
tic deviations from the exact quadratic dependence of
the multi-fractal indices on the parameter q, which was
predicted in Refs.14,15. This fact points out that the va-
lidity of the simple, supersymmetric WZWN approach
to plateau-plateau transitions in the quantum Hall ef-
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Figure 1. Schematic illustration of the CC network. M1 and
M2 denote the column transfer matrices as defined in (1) and
(2). Multiplication with a column transfer matrix describes
the transition of a particle through the corresponding column
of the lattice.

fect is questionable and here we are still far from the
application of conformal field theory. Moreover, recently
more precise numerical calculations of the localization
length index of the CC-model16,18–20 show values close
to 2.61 ± 0.014, which is well far from the most recent
experimental value 2.38± 0.0621,22.

Up to now all numerical analyses of finite size scal-
ing in the CC-model16,18–20 show that the second, irrele-
vant operator in the model has a scaling dimension very
close to the marginal one making the finite size analy-
sis very difficult. Moreover, in 19 it was claimed that the
next to leading order finite size resp. width M corrections
have 1/ log(M)-form. In the current publication we pro-
vide the theoretical ground and a generalization for such
corrections on the basis of a fixed point perturbed by a
relevant field and a marginal one. We also explore the
possibility of the existence of multiplicative logarithmic
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corrections arising in the situation of two irrelevant op-
erators having degenerate conformal dimensions.

In order to understand how to modify the CC-model in
order to obtain a correlation length index close to the ex-
perimental value we first need to understand the contin-
uum limit (CFT) of the model properly. This is the main
motivation of our current investigation. The understand-
ing of the leading and the sub-leading operator content
and their dimensions will essentially help to identify the
model’s continuum limit and its possible generalization.

The goal of the current paper is threefold: First we re-
calculate the localization length index in order to test the
results obtained in16,18–20. To this end we developed two
independent codes to numerically investigate the finite
size scaling of the CC-model. Second we explore the pos-
sibility of a second irrelevant field in the scaling analysis.
Third we address the question of logarithmic corrections
to the scaling function.

The paper is organized as follows: In the second chap-
ter we explain the model and describe the principle of
our numerical calculations based on LU instead of QR
decompositions of matrices. The third chapter presents
the details of the data analysis and a study of renormal-
ization group flows resulting in logarithmic corrections.
In the fourth chapter we present our results and in the
fifth our conclusions.

II. MODEL DESCRIPTION

For the calculation of critical indices we used the
transfer-matrix method developed in23,24. To cal-
culate the smallest Lyapunov exponent (LE) of the
CC-model it is necessary to calculate a product

TL =
∏L
j=1M1U1jM2U2j of layers of transfer matrices

M1U1jM2U2j corresponding to two columns M1 and M2

of vertical sequences of 2x2 scattering nodes,

M1 =

B1 0 0

0 B1

0

0 0 B1



 (1)

and

M2 =

B2
22 0 0 B2

21

0 B2 0

0 B2 0

B2
12 0 0 B2

11




(2)

with

B1 =

(
1/t r/t
r/t 1/t

)
and B2 =

(
1/r t/r
t/r 1/r

)
(3)

where periodic boundary conditions are imposed on M2.
The U -matrices have a simple diagonal form: [U1,2]nm =
exp (iαn) δnm. Here t and r are the transmission and
reflection amplitudes at each node of the regular lattice
shown in Fig. 1 which are suitably parameterized by

t =
1√

1 + e2x
and r =

1√
1 + e−2x

. (4)

The model parameter x corresponds to the Fermi energy
measured from the Landau band center scaled by the
Landau band width (so the critical point is x = 0). The
phases αn are stochastic variables in the range [0, 2π),
reflecting the randomness of the smooth electrostatic po-
tential landscape.

We calculated the product of a chain of transfer matri-
ces which contain random parameters. According to the
Oceledec theorem25 the 1/L power of the product with a
set of random phases used in the transfer matrices has a
well-defined set of eigenvalues in the large L limit. The
logarithms of the moduli of these eigenvalues are called
Lyapunov exponents.

γ = lim
L→∞

log[TLT
†
L]

2L
, (5)

The smallest positive one of these exponents yields the
critical behaviour of the correlation length of the model,
i.e. ξ ∼ x−ν where ν is the localization length index.

It is clear, that numerically the infinite limit cannot be
calculated. For large systems, the central limit theorem26

tells us that the Lyapunov exponents have a Gaussian
distribution with variance σγ ∼

√
M/L where L and M

are the width and the height of the geometry, i.e. TL is
given by a product of 2L many factors of the type M1

and M2 which are 2M × 2M matrices.
This means, that by considering a chain of length L we

calculate the LE with error ∼
√
M/L. Moreover, if we

consider an ensemble of N chains, the variance becomes
∼
√
M/(LN). Therefore our strategy will be to consider

large ensembles of long chains.
We used ensembles of products with length L ranging

from 1 000 000 to 5 000 000. The details about our data
base can be found in table I.

Calculating these matrix products the naive way is not
possible as many entries of the product very soon exceed
the size of all available data types. One can overcome this
problem by use of the method presented in23,24, namely,
the product can be performed with repeated QR decom-
positions with unitary Q and upper right triangular ma-
trix R. The rightmost T is QR decomposed. The unitary
Q is then multiplied with the next T and the product is
decomposed again. Repeating this procedure many times
we are in principle left with some Q multiplied with a
product of upper right triangular matrices. It appears,
that the product of the diagonal entries of the upper tri-
angular matrices are approaching the eigenvalues of the
total transfer matrix TL. Of these numbers we are only
interested in those which are close to 1. For details see
for instance27.
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M L ensemble size standard deviation program

20 1 000 000 900 0.0042 Fortran

20 5 000 000 308 0.0019 C++

40 1 000 000 1000 0.0059 Fortran

40 5 000 000 350 0.0027 C++

60 1 000 000 1010 0.0072 Fortran

60 5 000 000 280 0.0033 C++

80 1 000 000 1010 0.0084 Fortran

80 5 000 000 380 0.0038 C++

100 1 000 000 1020 0.0095 Fortran

100 5 000 000 350 0.0043 C++

120 1 000 000 850 0.0105 Fortran

120 5 000 000 300 0.0046 C++

140 1 000 000 1260 0.011 Fortran

140 5 000 000 310 0.0045 C++

160 1 000 000 285 0.012 Fortran

160 5 000 000 220 0.0055 C++

180 1 000 000 240 0.013 Fortran

180 5 000 000 208 0.0059 C++

Table I. This table shows the statistics of the data. For each
M we have calculated the Lyapunov exponent with the 13
x-values that divide the interval [0, 0.08] into 12 equal parts.
The column ’standard deviation’ gives the typical error aver-
aged over all values of x.

In our numerical calculations we found that it is also
possible to apply the LU decomposition using a lower
triangular matrix L with unit diagonal, a permutation
matrix P and an upper triangular matrix U such that
A=PL U. Details about the decomposition can be found
in28. We can now use the LU decomposition analogously
to the QR decomposition with PL taking over the role
of Q and U the role of R. The calculations with LU de-
composition appeared to be faster than those with QR
decomposition by a factor of the order of 2. According
to the manual of the Intel MKL, which we are using, the
number of real number multiplications for the QR and
LU decompositions of an (m,n) type complex matrix is
8/3 · n2(3m − n) and 4/3 · n2(3m − n) (m ≥ n), respec-
tively. The results of these calculations are equivalent
as the final LU form of TL can be brought into QR form
by a single QR decomposition of the lower triangular ma-
trix with practically vanishing contributions to the upper
triangular matrix.

Alternatively, we also generated large ensembles of
Lyapunov exponents for a given pair of x and M using
both the QR and the LU decomposition. For these en-
sembles we generated histograms. Both histograms are
very well described by normal distributions as confirmed
by Gaussian fits. The distance of the centres of the Gaus-
sian peaks is by a couple of magnitudes smaller than their
widths which in turn agree with the same precision.

III. THE FITTING PROCEDURE

A. One irrelevant field

From the scaling behaviour of the Lyapunov exponent
γ near the critical point we expect for finite size systems

γ ·M = Γ(M1/νu0, f(M)u1), (6)

where f(M) is decreasing with M . Here M is the number
of nodes in each column of the lattice, u0 = u0(x) is a
relevant field and u1 = u1(x) the leading irrelevant field.
It is common to choose f(M) = My, y < 0. Further it
is known, that the relevant field vanishes at the critical
point.

On the left hand side of (6) we use the numerical re-
sults of (5) for various combinations of the parametriza-
tion parameter x and the lattice height M . The right
hand side is expanded in a series in x and M and the
expansion coefficients are obtained from a fit. Some co-
efficients in this expansion need not to be taken into ac-
count following the symmetry arguments of18: If x is
replaced by −x we see from (4) that t turns into r and
vice versa. Due to the periodic boundary conditions the
lattice is unchanged. Therefore the left hand side of (6)
is invariant under a sign flip of x. Hence the right hand
side must be even in x. That makes u0(x) and u1(x) even
or odd. For the Chalker Coddington network the critical
point is at x = 0. This lets us choose u0(x) odd and
u1(x) even. The fit now should use as few coefficients as
possible while reproducing the data as well as possible.

The general idea of expanding the right side of (6) is
to expand Γ in the fields u0 and u1 yielding

Γ(u0(x)M1/ν , u1(x)My) = Γ00 + Γ01u1M
y

+ Γ20u
2
0M

2/ν + Γ02u
2
1M

2y

+ Γ21u
2
0u1M

2/νMy + Γ03u
3
1M

3y

+ Γ40u
4
0M

4/ν + Γ22u
2
0M

2/νu21M
2y + Γ04u

4
1M

4y + . . .

(7)

and then using expansions of u0 and u1 in x as it has
been done in18,19

u0(x) = x+

∞∑
k=1

a2k+1x
2k+1 and u1(x) = 1+

∞∑
k=1

b2kx
2k.

(8)
In (7) all coefficients in the expansion of Γ that would
contradict the scaling function being even in x have been
dropped. Because of ambiguity in the overall scaling of
the fields, the leading coefficient in (8) can be chosen to
be 1.

Of course the described expansion is unique. It in-
volves, however, an infinite number of coefficients even
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when only keeping a finite order in x

Γ = Γ00 +

∞∑
k=1

Γ0kM
ky

+ x2

[ ∞∑
k=1

kb2Γ0kM
ky +M2/ν

∞∑
k=0

Γ2kM
ky

]

+ x4

[ ∞∑
k=1

{
b4k + b22k(k − 1)/2

}
Γ0kM

ky

+M2/ν
∞∑
k=1

b2kΓ2kM
ky

+M4/ν
∞∑
k=0

Γ4kM
ky +M2/ν

∑
k=0

a3kΓ2kM
ky

]
+O(x6)

(9)

When taking into account a finite number of expansion
coefficients Γlk and an, bm, different fitting procedures
can be devised. We choose a finite order of the expansion
of Γ in the fields u0, u1 (7) and a finite order of the
expansion of the fields in terms of x (8).

B. Two irrelevant fields

We also considered the case of two irrelevant fields.
This, in analogy to (6), gives

γM = Γ(M1/νu0,M
y1 u1,M

y2 u2), y1, y2 < 0 (10)

With the same reasoning as in the case of one irrelevant
field we find that Γ is even in x. Along the lines of the
above case we obtain that u0 is odd and u1 and u2 are
even in x. Of course Γ is even in x, too. This helps to
identify expansion coefficients that are zero like in the
case of one irrelevant field. If we expand Γ in the fields
u0, u1 and u2 we obtain the following fitting formula:

Γ(u0(x)M1/ν , u1(x)My1 , u2(x)My2) =

Γ000

+ Γ010u1M
y1 + Γ001u2M

y2

+ Γ200u
2
0M

2/ν + Γ020u
2
1M

2y1 + Γ002u
2
2M

2y2

+ Γ011u1M
y1u2M

y2

+ Γ030u
3
1M

3y1 + Γ003u
3
2M

3y2

+ Γ210u
2
0M

2/νu1M
y1 + Γ201u

2
0M

2/νu2M
y2

+ Γ021u
2
1M

2y1u2M
y2 + Γ012u1M

y1u22M
2y2

+ . . .

(11)

with the odd relevant field

u0(x) = x+

∞∑
k=1

a2k+1x
2k+1 (12)

and the even irrelevant fields

ui(x) = 1 +

∞∑
k=1

bi,2kx
2k, i = 1, 2 (13)

C. Logarithmic corrections

In this section we explore, somewhat heuristically, the
consequences of irrelevant fields with special values of
the exponent y, either approaching the marginal value 0
or getting close to the value of the exponent of another
irrelevant field.

Generally, fit procedures are based on renormalization
group (RG) arguments relating the physical properties
of a system with couplings u0, u1, ... and geometrical size
M to another such system with couplings ũ0, ũ1, ... and
size M̃ . Explicit RG relations are usually derived by in-
tegrating out degrees of freedom (coarse graining). Let
us first summarize the main ideas for the case of a sin-
gle coupling u. For a relevant (irrelevant) operator with
linear β function and RG eigenvalue y > 0 (< 0) the re-
lation between the coupling u for size M and ũ for size
M̃ is described by the flow equation du/d(logM) = −yu
with solution u(M)My = u(M̃)M̃y.

In this situation it is convenient to fix an arbitrary
size M0 as the size of a reference system and to trans-
late the coupling u (= u(M)) at size M to the coupling

ũ (= u(M0)) at size M̃ = M0. By the very definition
of a mass gap γ (inverse correlation length) we have

γM = γ̃M̃ . The quantity γM on the other hand is a
function F of u and M : γM = F (u,M). But this is

independent under the RG flow γM = γ̃ M̃ = F (ũ, M̃).
Now we use ũ = u(M0) = u(M)My/My

0 and find γM =
F (u(M)My/My

0 ,M0). Next we introduce a short-hand
for F (z/My

0 ,M0) =: Γ(z) and obtain with u(M) = u the
familiar γM = Γ(uMy). In case of several fields this
reads γM = Γ(u0M

y0 , u1M
y1 , ...). The positive value y0

of the relevant field is related to the critical exponent ν
by y0 = 1/ν.

a) Let us now treat the case of a relevant field (y0 =
1/ν =: y) and a marginal field (y1 = 0) by closely follow-
ing29

The flow equation for u1 is described by a β-
function that has to be treated in second order. The
flow equation reads du1/d(logM) = bu21 with solution
1/u1(M) − 1/u1(M0) = −b log(M/M0). Following29,
we may assume and treat for the β-function of u0
the presence of a contribution u0u1 in addition to
the linear y u0. The flow equation du0/d(logM) =
−yu0 + bru1u0 is solved by u0(M)My/u1(M)br/b =
u0(M0)My

0 /u1(M0)br/b. Putting things together like
above we find the scaling of the mass gap

γM = Γ

(
u0M

y

(1 + bu1 log(M/M0))a
,

u1
1 + bu1 log(M/M0)

)
,

(14)
with a constant a := br/b which may be taken as a fit
parameter. The default value, however, for the data anal-
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ysis in this paper is a = 0. For finite bu1 and large M/M0

the scaling simplifies:

γM = Γ

(
u0M

y

(u1 log(M/M0))a
,

1

log(M/M0)

)
. (15)

b) Next we explore the consequences of one rel-
evant field u0 with exponent 1/ν and two irrele-
vant fields u1, u2 with exponents y1 ∼ y2. In
Γ = Γ(u0M

1/ν , u1M
y1 , u2M

y2) we find the last ar-
gument close to the middle one u2M

y2 = u2M
y1 +

∆y u2M
y1 logM with ∆y = y2 − y1. If the function

Γ depends regularly on its arguments, the limit ∆y → 0
yields a scaling function with two scaling fields for the
same exponent y. This is just a special case of the pre-
vious subsection with y1 = y2 and we do not need to
consider it further. If the dependence on the last two
arguments is singular in the difference, let us say of the
type Γ = Γ̃(u0M

1/ν , u1M
y1 , (u2M

y2−u1My1)/∆y) then
we have two cases:
i) u2−u1 is finite and hence (u2−u1)/∆y infinite. There-

fore in this case we find Γ = Γ̃(u0M
1/ν , u1M

y1 ,∞),
which is equivalent to the already treated single irrele-
vant field case.
ii) u2 − u1 is small and (u2 − u1)/∆y is finite, let us

call it ũ2. Then we find Γ = Γ̃(u0M
1/ν , u1M

y1 , ũ2M
y1 +

u1M
y1 logM).

The last case allows for a non-trivial occurence of mul-
tiplicative logarithmic corrections. Note that this is
a little different from an ad hoc ansatz like Γ =
Γ̂(u0M

1/ν , u1M
y1 , u2M

y1 logM).
Hence, our ansatz for the scaling function with loga-

rithmic corrections is

γM = Γ
(
u0M

1/ν , u1M
y, u2M

y + u1M
y logM

)
(16)

where u0 is odd and u1 and u2 are even in x. Note
that here we cannot normalize the leading coefficients of
both u1 and u2 to 1 because in the last argument they
appear in a sum. In the following we assume u1 being
normalized, but not u2.

D. Weights and Errors

The fits are performed in several steps. First a
weighted non linear least square fit based on a trust re-
gion algorithm with specified regions for each parameter
is applied. The resulting parameters are used in a further
weighted non linear least square fit based on a Levenberg-
Marquardt algorithm. Here no limits are imposed on the
fit parameters. The last step is repeated until the result-
ing parameters stop changing.

We use numerical results for the Lyapunov exponent
for various combinations of the parameters x (see (4))
and M (see (5)). For a given combination (x,M) we

have large ensembles of data from different program im-
plementations and different chain lengths L. We deter-
mined for each ensemble the variance by standard esti-
mators. The reciprocal of the variance is then used as
the weight in the fit for each data point of the considered
ensemble.

E. Evaluation of fits

The next step is the evaluation of the fit results. We
present several methods to do this. The most important
one is the χ2 test. χ2 is given by

χ2 =
∑
i

(yi − fi)2

σ2
(17)

where fi is the value predicted by the fit and yi the mea-
sured value. σ is given by the standard deviation as de-
scribed in III D. As our fit contains many data points
with the same (x,M) coordinates, χ2 = 0 is not possi-
ble, it will be even large due to the huge number of data
points. The way to deal with this behaviour is to con-
sider the ratio χ2/degrees of freedom. The expectation
value for this ratio is 1 for an ideal fit.

Deviations from 1 are evaluated with the cumulative
probability P (χ̃2 < χ2) which is the probability of ob-
serving – just for statistical reasons – a sample statistic
with a smaller χ2 value than in our fit. A small value
of P , i.e. a large value of the complement Q := 1− P is
taken as an indication of a good fit. However, values of
P lower than 1/2 indicate problems in the estimation of
the error bars of the individual data points.

Another criterion is based on the width of the confi-
dence intervals. This quantifies the quality of the pre-
diction for a single parameter. We use 95% confidence
intervals which means that for repeated independent gen-
eration of the same amount of data and application of
the same kind of data analysis the resulting confidence
intervals contain the true parameter values in 95% of the
cases.

The last criterion we present is the sum of residuals.
It is given by

res =
∑
i

resi, resi = yi − fi (18)

The sum of residuals should be small compared to the
degrees of freedom. The residuals plotted should be noise
around zero. If the residuals do not scatter around zero
it is to be expected that the fit function is not correct.

IV. RESULTS

In Fig.2 we present the leading Lyapunov exponent for
various numbers M of 2×2 blocks in the transfer matrices
versus x which measures the deviation of the hopping
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Figure 2. Plot of the smallest eigenvalue of the transfer matrix
times M for different block sizes M and in dependence on the
distance x from the critical point. The x-values divide the
interval [0, 0.08] into 12 equal parts.
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Figure 3. Distribution of Lyapunov exponents in the en-
semble of calculations with 1282 elements for chain length
L = 1 000 000, M = 140 and x = 0.

parameters r and t (4) from their critical value 1/
√

2.
The corresponding fitting parameters are presented in
the table below.

In Fig.3 we present an example of the distribution of
Lyapunov exponents with fixed height M , chain length
L and x. This distribution defines one data point and its
accuracy resp. weight for the fit. Here, we see a Gaus-
sian distribution in full accordance with the central limit
theorem26.

A. One irrelevant field

Our best fitting results have been obtained by expand-
ing Γ up to second order in u0, and first order in u1 (7)

and expanding u0 (12) up to the third and u1 (13) up to
the second order in x.

We found the following coefficients and goodness of fit
parameters :

Coefficients (confidence bounds 95%) :

Γ00 = 0.770 (0.760, 0.780)

Γ01 = 0.111 (0.104, 0.119)

Γ20 = 0.826 (0.809, 0.842)

a3 = 0.980 (0.762, 1.197)

b2 = − 1.251 (−2.612, 0.109)

ν = 2.566 (2.554, 2.578)

y = − 0.150 (−0.174,−0.125)

Goodness of fit parameters :

χ2 : 37717

degrees of freedom (dof) : 37670

χ2/dof : 1.0012

P : 0.569

sum of residuals : −90.038

Here χ2/dof is close to 1 and the cumulative probability
P = 0.569 is close to 1/2 marking a good fit result. The
sum of residuals is small compared to the degrees of free-
dom. In a plot the residuals are distributed around zero
by eye’s measure. All this indicates that the fit is reliable
and the data agree with the model equation.

B. Two irrelevant fields

An interesting result is given by the ansatz with two
irrelevant fields. By allowing a second irrelevant field ac-
counting for the finite M -dependence we explore the sta-
bility of the exponents obtained in the simpler fit above.
In fact, we will see that ν is almost unchanged, but the
leading irrelevant exponent is changed. In the fit treated
here the leading irrelevant exponent is much closer to 0
than above. The fit is done with recursive applications
of nonlinear least square fits as described for the case of
one irrelevant field.

Our best fits have been obtained for an expansion of
Γ, see (11), up to the second order in the fields and an
expansion of the fields in x up to first order for u0 and to
second order in u1 and u2. For higher order expansions
in x the coefficients agree well with the values presented
here within their error margins but the new confidence
intervals are larger, however the cumulative probability
P is a little smaller. This agreement indicates that we
have found a good choice for the cut off of the expansion.

We found the following coefficients for (11) and good-
ness of fit parameters:
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Coefficients (confidence bounds 95%) :

Γ000 = 0.4416 (0.0664, 0.8169)

Γ001 = 0.3695 (−0.1332, 0.8722)

Γ002 = 0.0575 (−0.2984, 0.4134)

Γ010 = 0.0093 (−0.2973, 0.316))

Γ011 = − 0.0493 (−0.388, 0.2895)

Γ020 = 1.843 (1.267, 2.418)

Γ200 = 0.8319 (0.7234, 0.8535)

b12 = 0.692 (0.8104, 2.77)

b22 = − 0.164 (−0.4407, 0.1127)

ν = 2.563 (2.548, 2.579)

y1 = − 0.0204 (−0.0447, 0.0039)

y2 = − 1.151 (−1.365,−0.9366)

Goodness of fit parameters :

χ2 : 37727

degrees of freedom (dof) : 37609

χ2/dof : 1.00314

P : 0.67

sum of residuals : −84.8434

Also in this case of two irrelevant fields χ2/dof is close to
1 and the cumulative probability P = 0.67 is close 1/2.
The sum of residuals is small compared to the degrees of
freedom like in the case of one irrelevant field.

The confidence bounds are reasonably small for ν and
for the dimension y1. Other confidence bounds are wider
than in the case of one irrelevant field because there are
more parameters and we would need a larger data base
to determine them with the same precision.

When comparing this fit with the single irrelevant field
fit we see that y1 does not agree with y as the confidence
intervals do not overlap. Less surprising, the exponent y2
of the second irrelevant field differs significantly in mag-
nitude from y1. These results lead to doubts whether
the first subleading correction is indeed due to an irrel-
evant operator and the next correction terms are due to
irrelevant operators with more negative exponents. In
the remainder of this publication we investigate if the
numerical findings may better be accounted for by (1)
two irrelevant fields with degenerate exponents leading
to multiplicative logarithmic corrections, or (2) the pres-
ence of a marginal operator.

C. Logarithmic fits

1. Two degenerate irrelevant fields

In case of two degenerate dimensions and multi-
plicative logarithmic corrections, the best results are

obtained for an expansion of Γ up to second order in
the first argument and first order in the second. The
relevant field u0 is expanded up to first order in x, and
the irrelevant fields u1 and u2 are simply taken to zeroth
order. Our results are :

Coefficients (confidence bounds 95%)

Γ000 = 1.936 (−30.08, 33.95)

Γ001 = − 0.0408 (−0.548, 0.466)

Γ010 = − 0.9663 (−32.79, 30.86)

Γ200 = 0.8202 (0.8151, 0.8253)

b20 = 2.244 (−56.21, 60.7)

ν = 2.555 (2.551, 2.56)

y = − 0.025 (−0.299, 0.249)

Goodness of fit parameters :

χ2 : 37801

degrees of freedom (dof) : 37670

χ2/dof : 1.0035

P : 0.6845

sum of residuals : −96.117

As the goodness of fit parameters indicate, this fit is in
principle as reliable as the previous ones. The critical
exponent ν is in agreement with the other fits. However,
the exponent y has a much larger confidence bound than
y and y1 above. Hence we tend to conclude that the
current fit scheme is not appropriate.

2. One marginal field

In the case of the logarithmic fit based on the ideas
of29 the best results are obtained for an expansion of Γ
up to the second order in the in the first argument and
first order of the second argument. The relevant field
u0 is expanded up to the third order and u1 up to the
second order in x. The result is as follows :

Coefficients (confidence bounds 95%)

Γ00 = 0.7087 (0.6888, 0.7285)

Γ01 = 0.14 (0.1205, 0.1596)

Γ20 = 0.8253 (0.8083, 0.8423)

a3 = 0.978 (0.7622, 1.194)

b = 0.0856 (0.0701, 0.1011)

b2 = − 0.69 (−1.506, 0.1257)

ν = 2.566 (2.553, 2.578)
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Goodness of fit parameters :

χ2 : 37716

degrees of freedom (dof) : 37670

χ2/dof : 1.0012

P : 0.567

sum of residuals : −90.594

As the goodness of fit parameters show, this is one of our
best fits. It is moreover best with respect to stability:
The results for different orders of the expansions agree
better among each other than in case of the fit schemes
above. Hence this fit can be called the most stable one.

Of course, in order to make a strong statement about
the existence of logarithmic corrections and particularly
about the presence of a marginal field a much larger data
basis would be needed. This, however, is currently out
of reach.

All results shown in the tables above are based on the
data for length L = 5 · 106. For L = 1 · 106 similar fits
yield results that are absolutely compatible with those
shown above. The confidence intervals are larger and the
goodness of fit is a little worse for example the cumulative
probability P is larger by about 0.1.

V. CONCLUSION AND OUTLOOK

Our result for the localization length index is slightly
smaller than the values of the localization length index
presented in the recent works16,18–20. Still these results
agree very well with our result within the 1−σ confidence
bounds.

All of our fits are based on one relevant field and other
fields, irrelevant or marginal. The cases with one or two
irrelevant fields followed the standard way of data anal-
ysis. For the case of just a marginal additional field we
presented a derivation of the fit function resulting in log-

arithmic corrections. Another situation with multiplica-
tive logarithmic corrections was studied for the situation
of two irrelevant fields with degenerate dimensions.

The available data base does not allow yet to prove or
falsify any of the four scenarios. However, the best result
with a minimal number of fit parameters was achieved
in the case of one relevant and one marginal field. The
value of the critical exponent ν though is the same within
the error bars of all presented fits.

With respect to the confidence bounds our result for
ν is compatible with the results for this model as known
from the literature. Unfortunately it is in disagreement
with the experimental value, which is ν = 2.38 ± 0.06.
This does certainly not change by taking into account
more irrelevant fields or logarithmic corrections. Our
result thus shows in accordance with previous works
by the before mentioned authors16,18–20 the necessity
of an essential modification of the CC-model for the
description of the plateau-plateau transition in the QHE.
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