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We analyze the interplay between charge-density-wave (CDW) and pair-density-wave (PDW)
orders within the spin-fermion model for the cuprates. We specifically consider CDW order with
transferred momenta (±Q, 0)/(0, ±Q), as seen in experiments on the cuprates, and PDW order
with total momenta (0, ±Q)/(±Q, 0). Both orders have been proposed to explain the pseudogap
phase in the cuprates. We show that both emerge in the spin-fermion model near the onset of
antiferromagnetism. Each order parameter is constructed out of pairs of fermions in “hot” regions
on the Fermi surface, breaks U(1) translational symmetry, and changes sign when the momenta
of the fermions change by (π, π). We further show that the two orders are nearly degenerate due
to an approximate SU(2) particle-hole symmetry of the model. This near degeneracy is similar
in origin to that relating conventional d-wave superconducting order and bond charge order with
momentum (Q, ±Q). The SU(2) symmetry becomes exact if one neglects the curvature of the Fermi
surface in hot regions, in which case U(1) CDW and PDW order parameters become components
of an SO(4)-symmetric PDW/CDW “super-vector”. We develop a Ginzburg-Landau theory for four
PDW/CDW order parameters and find two possible ground states: a “stripe” state in which both
CDW and PDW orders develop with either (±Q, 0) or (0, ±Q), and a “checkerboard” state, where
each order can develop with (±Q, 0) and (0, ±Q). We show that the SO(4) symmetry between CDW
and PDW can be broken by two separate effects. One is the inclusion of Fermi surface curvature,
which selects a PDW order immediately below the instability temperature. Another is the overlap
between different hot regions, which favors CDW order at low temperatures. For the stripe state,
we show that the competition between the two effects gives rise to a first-order transition from
PDW to CDW inside the ordered state. We also argue that beyond mean-field theory, the onset
temperature for CDW order is additionally enhanced due to feedback from a preemptive breaking of
Z2 time-reversal symmetry. We discuss the ground state properties of a pure PDW state and a pure
CDW state, and show in particular that the PDW checkerboard state yields a vortex-anti-vortex
lattice. For the checkerboard state, we considered a situation when both CDW and PDW orders
are present at low T and show that at small but finite Fermi surface curvature the presence of both
condensates induces a long sought chiral s + idxy superconductivity.

I. INTRODUCTION

Understanding the nature of the pseudogap in the cuprates is a necessary step in solving the puzzle of high-Tc

superconductivity. At present, most researchers agree that the pseudogap is more than just a precursor to supercon-
ductivity1 or a result of a strong fermionic incoherence due to the interaction with some near-featureless overdamped
boson (e.g, a paramagnon2). There is, however, no consensus on the primary origin of the pseudogap behavior. Some
researchers cite experimental indications for static charge order3–6,8,9 in at least part of the pseudogap region as
evidence that pseudogap behavior is associated with the development of a new electronic order. This order can be
either an incommensurate charge-density-wave order (CDW)11,12 defined as ρQ

k
∝ 〈c†

α(k + Q/2)cβ(k − Q/2)〉δαβ or

an incommensurate pair-density-wave order (PDW)13–15, ϕk
Q ∝ 〈cα(k − Q/2)cβ(−k − Q/2)〉(iσy

αβ). The latter is a

superconducting (SC) order with a finite Cooper pair momentum Q, much like FFLO16,17 state but at zero magnetic
field. Each of these orders competes with conventional d-wave superconductivity and the competition pushes the
d-wave Tc down in underdoped cuprates. Others argue that CDW or PDW orders are secondary effects in the pseudo-
gap phase, and the primary reason for the pseudogap behavior is a localization of an electron due to close proximity
of the insulating Mott state at half-filling18–23,26. The competing order and Mott scenarios for the pseudogap are not
necessarily orthogonal as there is little doubt that precursors to Mott physics do develop near half-filling and can, in
principle, enhance CDW and/or PDW correlations26. However, if a competing order develops at a higher doping, it
may give also rise to pseudogap behavior while the system still remains a metal. In this case, the quasiparticle residue
is reduced only at low frequencies and not over the whole bandwidth, as is the case for precursors to Mott physics. To
analyze this scenario it becomes necessary to study the behavior of an electronic system in a parameter range where
competing orders develop but electrons remain delocalized (itinerant)2,28.
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The CDW scenario has been proposed for the cuprates a while ago29–32, but has recently gained momentum11,28,33–50

due to strong experimental evidence for charge order in the underdoped cuprates. On the theory side, Metlitski and
Sachdev28 (MS) considered a model of fermions interacting by exchanging (π, π) spin fluctuations (a spin-fermion
model) and have shown that magnetically mediated interaction between hot fermions, known to give rise to d-wave
superconductivity, also gives rise to CDW order with a d-wave form factor. A d-wave CDW order is often called bond
order (BO) as in real space it affects bond charge density 〈c†

rcr+a〉 but does not affect on-site density 〈c†
rcr〉. MS

showed that, not only charge order emerges in the spin-fermion model, but the critical temperature for this order is
identical to that for superconductivity if one neglects the curvature of the Fermi surface in hot regions. Subsequent
research along these lines led to a proposal11 that the pseudogap may be due to the fact that, over a wide range of T ,
the system cannot decide between near-degenerate bond charge order and SC order. This proposal is appealing but,
at least at a face value, is inconsistent with the experiments because the bond charge order has momentum along one
of Brillouin zone diagonals (Q, ±Q), while the charge order detected in the experiments is along x or y directions in
momentum space, i.e., it has momentum (Q, 0) or (0, Q).

CDW order with momentum (Q, 0)/(0, Q) also emerges from the spin-fluctuation scenario12. The form-factor for
this order has both d-wave and s-wave components and, in real space, gives rise to variations of both on-site and bond
charge density. At the mean-field level the instability temperature for (Q, 0)/(0, Q) order is smaller than that for
(Q, Q) order. There exist two proposals how one can obtain CDW order with momentum (Q, 0)/(0, Q) as a leading
instability. One proposal is to assume that some precursors to Mott physics49 (or Heisenberg antiferromagnetism46–48)
develop before charge fluctuations get soft. In this situation, charge order develops from an already reconstructed
fermionic dispersion, and calculations show46–49 that already within the mean-field (Hartree-Fock) approximation
(Q, 0)/(0, Q), order develops at a higher T than than (Q, Q) order. Another proposal is to go beyond the mean-
field approximation and consider fluctuation effects. Along these lines, it has been shown12,45 that CDW order with
momenta along x or y direction additionally breaks C4 lattice rotational symmetry down to C2 (it is either along
x or along y) and also breaks time-reversal and mirror symmetries. Both symmetry breakings are consistent with
experiment: the breaking of C4 symmetry has been detected in STM resistivity, STM, and thermo-electric coefficient
measurements7,8,10, and the breaking of time-reversal and mirror symmetries gives rise to a non-zero Kerr effect, as
observed by the Kapitulnik group51,52. The authors of Refs. 12 and 45 demonstrated that the discrete Z2 symmetries
get broken at a higher T than a temperature at which an incommensurate CDW order emerges, and this effect pushes
the actual onset temperature of CDW order up. No such enhancement occurs for (Q, Q) order, which does not break
any discrete symmetry. In this paper we assume that, for one reason or another, CDW order with (Q, 0)/(0, Q) wins
over (Q, Q) order and only consider CDW order with (Q, 0)/(0, Q) which below we just call CDW.

In a separate line of development, the authors of Ref. 13 argued that the data on La2−xBaxCuO4 show evidence
for PDW order, along with SDW and CDW orders, and claimed that anomalous SC fluctuations, possibly associated
with short-range PDW, exist also in YBa2Cu3O6+y

24,25. PDW order has been also shown to emerge in a doped
Mott insulator26,27. P. A. Lee argued14 that ARPES data on the change of the fermionic dispersion in the pseudogap
phase can be best described if one assumes that the system develops PDW order rather than CDW order. One of us
further demonstrated15 that PDW order can, by itself, give rise to breaking of C4 and time-reversal symmetries. This
suggests that PDW order is another viable candidate for a competing order parameter.

In this paper we show that, in a magnetic scenario, both PDW and CDW orders develop from magnetically mediated
interaction between hot fermions. We show that when the curvature of the Fermi surface in hot regions is neglected,
PDW and CDW orders are related by SU(2) symmetry, just like d-wave superconductivity and bond charge order,
and the critical temperatures for PDW and CDW orders are identical. The degeneracy between PDW and CDW
orders in the hot spot model has been previously noticed Ref. 53 and our results on the degeneracy between PDW
and CDW orders agree with theirs. Ref. 53 then focused on the interplay between CDW/PDW order and SC/BO
within the hot spot model and explored that the fact that mean-field transition temperature for SC/BO is higher
than that for CDW/PDW. We focus on CDW/PDW subset and analyse the type of CDW/PDW order (e,g., stripe
or checkerboard) and the selection of the order in both stripe and checkerboard phases by going beyond the hot spot
model and beyond mean-field approximation. We address the interplay between CDW/PDW and d-wave SC order in
a separate paper 54.

The paper is organized as follows. In Sec. II we obtain and compare critical temperatures for CDW and PDW
instabilities within the spin-fermion model with a linear dispersion near the hot spots. We first verify that TCDW

and TPDW are identical through explicit calculation, and then demonstrate that this is a direct consequence of SU(2)
symmetry of the underlying fermionic model. In this Section we also discuss the structure of CDW and PDW order
parameters ρQ

k
and ϕk

Q as functions of momentum k. In particular, we show that both orders must change sign under

the change of k by (π, π). In Sec. III we derive the GL effective action for the coupled CDW and PDW order parameters
made out of fermions concentrated near hot spots (which are Fermi-surface points for which kF and kF + (π, π) are
both on the Fermi surface). In Sec. IV we analyze the structure of the ground state configuration and show that two
different states – a stripe state and a checkerboard state – are possible, depending on system parameters. In Sec.
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FIG. 1. Panel (a): The Fermi surface, Brillouin zone and magnetic Brillouin zone (dashed line). Hot spots are defined as
interSections of the FS with magnetic Brillouin zone. The hot spot pairs 1-2 and 3-4 denotes the CDW/PDW pairings we
consider. They are coupled through the antiferromagnetic exchange interaction peaked at momentum (π, π), as shown by the
dashed arrows. Panel (b) and (c): Diagrammatic representation of CDW [Panel (b)] and PDW [Panel (c)] instabilities between
hot spots (1,2) and (3,4).

V we discuss the system behavior when Fermi surface curvature is not neglected and order parameters are allowed
to couple to fermions away from hot spots. We first show in Sec. V A that a finite curvature breaks the degeneracy
between CDW and PDW orders and that, at a mean-field level, TPDW becomes larger than TCDW. We discuss the
properties of a pure PDW state in Sec. V A 1. In particular, we show that the checkerboard PDW ground state can be
viewed in real space as a vortex anti-vortex lattice. We then show in Sec. V B that we get an opposite effect, that is
TCDW becomes larger than TPDW, when we allow CDW and PDW order parameters couple to fermions away from hot
spots. This gives rise to extra terms in the GL action which favor the CDW state. We briefly discuss the properties
of a pure CDW state in Sec. V B 1. In Sec. V C we combine the two effects and show that the system undergoes a
first-order transition from PDW to CDW inside the ordered phase. In Sec. V D we extend the considerations beyond
mean-field and show that the onset temperature for CDW order TCDW is additionally enhanced due to feedback effect
from a preemptive breaking of Z2 time-reversal symmetry, and can potentially become larger than TPDW even if at
a mean-field level TPDW was larger. In Sec. VI we discuss the development of a secondary homogeneous SC order,
first in general terms in Sec. VI A and then specifically for our model in Sec. VI B. We show that in checkerboard
states in which both CDW an PDW orders are present, this secondary order parameter at small but finite Fermi
surface (FS) curvature has s + idxy symmetry. We extend the analysis of secondary homogeneous SC order beyond
the leading order in the curvature and find that, in general, dx2−y2 and A2g SC orders are also induced. The amplitude
of dx2−y2 order is additionally enhanced because the interaction in this channel is attractive on its own. We present
our conclusions in Sec. VII and briefly discuss the relation of our results to the physics of the pseudogap phase in the
cuprates.

II. PDW AND CDW INSTABILITIES IN THE SPIN-FERMION MODEL WITH LINEAR DISPERSION

In this Section, we compare PDW and CDW instabilities in the spin-fermion model. This model has been in-
tensively investigated in studies of non-Fermi-liquid physics2, d-wave superconductivity28,55–57, charge-density-wave
order11,12,28, and symmetry breaking in the pseudogap region12. The model describes low-energy fermions with the
Fermi surface shown in Fig. 1(a) and with an effective four-fermion interaction mediated by soft spin collective exci-
tations peaked at momentum transfer (π, π). We focus on “hot” regions on the Fermi surface, for which shifting the
momentum by (π, π) keeps a fermion near the Fermi surface. We show these hot spots in Fig. 1(a) and label them
as 1-8. Near a given hot spot i we expand the fermionic dispersion as ǫi,k̃ = vF,i(k̃i,⊥ + κk̃2

i,‖/kF ), where vF,i is the
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Fermi velocity at a given hot spot, k̃i,⊥ and k̃i,‖ are the deviations from the hot spot perpendicular to and along the
Fermi surface, and dimensionless κ specifies the curvature of the Fermi surface at the hot spot. In this and the next
two Sections we linearize the fermionic dispersion, i.e., neglect κ. We will discuss the effect of κ in Section V. We
define the Fermi velocity at hot spot 1 as vF,1 = (vx, vy) (the velocities at other hot spots follow from symmetry), and
define the momentum difference between hot spots 1 and 2 (5 and 6) as Qy = (0, Q), and the momentum difference
between hot spots 3 and 7 as Qx = (Q, 0).

The action of the spin-fermion model can be written as

S =
∑

i,α

∫

dk̃c†
iα(k̃)(−iωm + ǫi,k̃)ciα(k̃) +

1

2

∫

dqχ−1
0 (q)~φ(q) · ~φ(−q)

+ g
∑

i=1,2,5,6;
αβ

∫

dk̃dk̃′
[

c†
iα(k̃)ci+2,β(k̃′) + c†

i+2,α(k̃)ci,β(k̃′)
]

~σαβ · ~φ(k̃ − k̃′) (1)

where ciα is fermion field with i labeling hot spots and α, β labeling spin. Hot spots i and i + 2 are separated by

(π, π). The vector field ~φ is the spin collective excitation. We have used shorthands k̃ = (ωm, k̃), q = (Ωm, q),
and ωm(Ωm) are fermionic (bosonic) Matsubara frequencies. The bosonic momentum q is measured as the deviation
from the antiferromagnetic momentum (π, π), and the fermionic momentum k̃ is measured as the deviation from the
corresponding hot spot. The static spin susceptibility in (1) has Ornstein-Zernike form χ0(q) = χ0/(q2 + ξ−2).

The spin-fermion interaction gives rise to bosonic and fermionic self-energies. The bosonic self-energy is the Landau
damping Π(Ω) = γ|Ω|, where γ = 4ḡ/(π|v2

y − v2
x|) and ḡ = g2χ0 (Ref. 2). The fermionic self energy is most singular at

hot spots. When ξ−1 = 0, Σ(ωm, khs) = Σ(ωm) has a non-Fermi-liquid form, Σ(ωm) = iA sgn(ωm)
√

ω0|ωm|, where
ω0 = 9ḡ/(16π) × [(v2

y − v2
x)/v2

F ] and A = 1 in the large N approximation (N is the number of fermionic flavors) and
A ≈ 2/3 in a self-consistent rainbow approximation for the physical case of N = 1 (see Eq. (9) in Ref. 12).

Following earlier work2,11,28, we assume that the coupling ḡ is small compared to the Fermi energy EF = vF kF /2 and
study instabilities which occur at energies well below EF and at ξ−1 ≥ 0, i.e., before the system becomes magnetically
ordered. Known instabilities include d-wave superconductivity28,55,56 and charge orders of momentum (Q, Q) (bond
charge orders, Refs. 11 and 28) and (Q, 0)/(0, Q) (CDW order, Refs. 12 and 49). We show that there exists another
instability towards a SC order that breaks translational symmetry – a PDW order13–15,58.

In the next subsection we show that PDW and CDW orders are degenerate by explicitly studying linear self-
consistency equations for the PDW and CDW condensates. Then we show that such a degeneracy is in fact a direct
consequence of SU(2) particle-hole symmetry.

A. Ladder equations for CDW and PDW condensates

We define CDW and PDW condensates as

iσαβϕk
Q ∝ 〈cα(k − Q/2)cβ(−k − Q/2)〉, and δαβρQ

k
∝ 〈c†

α(k + Q/2)cβ(k − Q/2)〉, (2)

where Q = ±Qy = (0, ±Q) or ±Qx = (±Q, 0). It is trivial to verify that both ϕk
Q and ρQ

k carry momentum Q.

We note in this regard that PDW condensate ϕk
Q and CDW condensate ρQ′

k′ formed between the same fermions have

different momenta. Indeed, matching fermionic momenta for ϕk
Q and ρQ′

k′ , we find Q = −2k′ and Q′ = 2k. If the

two fermions are in the vicinity of hot spots 1 and 2, k = (0, Q/2) and k′ = (Q/2, 0). Then Q = (Q, 0) = Qx and
Q′ = (0, Q) = Qy. Therefore, the PDW and CDW condensates formed by same pair of hot fermions actually carry
orthogonal momenta.

The CDW and PDW order parameters couple to bilinear fermionic operators as

Sint = iσαβϕk
Qc†

α(k − Q/2)c†
β(−k − Q/2) + δαβρQ

k c†
α(k − Q/2)cβ(k + Q/2) + h.c. (3)

These couplings are renormalized by four-fermion interactions. To analyze PDW and CDW orders, one needs to solve
self-consistent equations for ρ and ϕ. For definiteness, we focus on hot spots (1, 2) and (3, 4) in Fig. 1(a). In the
vicinity of hot spots Eq. (3) becomes

Sint = iσy
αβϕAc†

1α(k̃)c†
2β(−k̃) + iσy

αβϕ−Ac†
3α(k̃)c†

4β(−k̃) + δαβρAc†
2α(k̃)c1β(k̃) + δαβρ−Ac†

4α(k̃)c3β(k̃) + h.c. (4)

where, we remind, k̃ is the deviation from a corresponding hot spot [not to be confused with k in Eq. (3)], and we

have defined at hot spots δαβρA ∝ 〈c†
1αc2β〉, δαβρ−A ∝ 〈c†

3αc4β〉, iσy
αβϕA ∝ 〈c1αc2β〉, and iσy

αβϕ−A ∝ 〈c3αc4β〉 [see

Fig. 1(a)].
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We present the ladder equations for ϕ and ρ diagrammatically in Fig. 1(b,c). The spin fluctuation propagator
relates ϕA, ρA with ϕ−A, ρ−A, and vise versa. As our goal in this Section is to obtain the instability, we consider
these equations to first order in the condensates ρ and ϕ, and neglect feedback from the condensates to the fermionic
propagators.

The self-consistent ladder equations for PDW and CDW orders are

ϕA(ω′
m, k̃′) = − 3ḡT

∑

m

∫

dk̃2

4π2
χ(ω′

m − ωm, k̃ − k̃′)G3(ωm, k̃)G4(−ωm, −k̃)ϕ−A(ωm, k̃)

ϕ−A(ω′
m, k̃′) = − 3ḡT

∑

m

∫

dk̃2

4π2
χ(ω′

m − ωm, k̃ − k̃′)G1(ωm, k̃)G2(−ωm, −k̃)ϕA(ωm, k̃), (5)

and

ρA(ω′
m, k̃′) =3ḡT

∑

m

∫

dk̃2

4π2
χ(ω′

m − ωm, k̃ − k̃′)G3(ωm, k̃)G4(ωm, k̃)ρ−A(ωm, k̃),

ρ−A(ω′
m, k̃′) =3ḡT

∑

m

∫

dk̃2

4π2
χ(ω′

m − ωm, k̃ − k̃′)G1(ωm, k̃)G2(ωm, k̃)ρA(ωm, k̃) (6)

where Gi(ωm, k̃) = −1/[iωm + Σi(ωm) − ǫi,k̃] is the fermionic Green’s function and we defined

χ(q) =
1

q2 + ξ−2 + Π(Ωm)
=

1

q2 + ξ−2 + γ|Ωm| . (7)

The prefactors −3 and 3 come from summing over spin indices for the PDW channel and for the CDW channel (for
PDW iσy

αβ~σαγ · ~σβδ = −3iσy
γδ, while for CDW δαβ~σαγ · ~σδβ = 3δγδ). For the linearized fermionic dispersion, ǫi,k̃ is

odd in momentum deviation k̃ from hot spot, and we have Gi(ωm, k̃) = −Gi(−ωm, −k̃). Substituting this into Eq.
(5) and comparing with Eq. (6) we find that the minus sign from changing the signs of ω and k̃ in one of the Green’s
function in (5) compensates the difference in the overall factors due to spin summation and, as a result, Eqs. (5) and
(6) become exactly the same. Eq. (6) has been studied in detail (see Sec. III in Ref. 12) and was shown to give rise
to a CDW instability at a nonzero temperature TCDW. By the same reasoning, Eq. (5) should yield an instability
towards PDW order at the same temperature TPDW = TCDW.

That TPDW = TCDW is non-zero can be understood from the following scaling arguments. At the magnetic critical
point the bosonic propagator scales as χ ∝ χ0/(q2+γ|ω|) and the fermionic propagator scales as G ∝ 1/(i

√
ωmω0−vF q)

(neglecting numerical prefactors). Rescaling ω by ω0 ∝ ḡ and q by ḡ/vF we find after simple algebra that all
dimensional factors in the r.h.s. of Eqs. (5) and (6) cancel out and ḡ

∫

χGG scales as
∫

d2xdy1/[(i
√

y −x)2(x2 + |y|)] ∼
∫

dzdy/(z + y)2. This integral diverges logarithmically. Taking lower limit of the frequency integration as T and the
upper as ḡ (at higher frequencies self-energy is irrelevant) we find that the r.h.s. of Eqs. (5) and (6) scales as log(ḡ/T )
(for the details on evaluation of the integrals see Appendix B of Ref. 12). We then obtain for either CDW or PDW
order

ϕA = −S1 log
ḡ

T
ϕ−A, ϕ−A = −S2 log

ḡ

T
ϕA,

ρA = −S1 log
ḡ

T
ρ−A, ρ−A = −S2 log

ḡ

T
ρA. (8)

where S1 > 0 and S2 > 0 are numerical prefactors which depend on the ratio of vx/vy (for vx = 0, S1 = 0.084 and
S2 = 0.650). Because of logarithms, the set (8) has a non-trivial solution at

TPDW = TCDW ∼ ḡe−1/
√

S1S2 . (9)

We also see from (8) that ϕA and ϕ−A and ρA and ρ−A should have opposite signs due to the repulsive nature of the
spin-fermion interaction:

ϕ−A = − λϕA

ρ−A = − λρA. (10)

where λ =
√

S2/S1. Evaluating S1 and S2 one finds that S2 ≥ S1, hence λ > 1 (see Sec. III of Ref. 12). We recall that
the hot regions with ϕA, ρA and with ϕ−A, ρ−A differ in momentum by (π, π). Eq. (10) then implies that both CDW
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and PDW orders have a form factor which changes sign under the shift by (π, π). At the same time, the magnitudes
of ϕA and ϕ−A and of ρA and ρ−A are not equal, unless S2 = S1. The implication is that the form factor for CDW
and PDW has both a d-wave component and an s-wave component, and the restriction set by Eq. (10) is that d-wave
component is larger8,12,35. A pure d-wave form-factor is recovered in the limit S1 = S2. For simplicity, below we will
be referring to CDW and PDW form-factors as “d-wave” just to emphasize that the order parameters at A and −A
must have opposite sign.

The doping dependence of TCDW = TPDW ≡ T (x) can be studied within our model by varying the correlation
length ξ and the chemical potential µ. By varying the chemical potential µ, one varies the position of hot spots, the
CDW wave vector (i.e. the distance between hot spots), and the ratio vx/vy. Because S1 and S2 are functions of

vx/vy, TCDW = TPDW ∼ ḡe−1/
√

S1S2 is generally affected. However, we found that vx/vy depends on µ only weakly
and hence the variation of Tc is quite small (see Appendix A for details). The variation with ξ is far stronger as at
finite ξ the logarithm is cut-off at small T and becomes log[ḡ/(T + ξ−2/γ)]. As a result, TPDW and TCDW decrease
with increasing ξ−1 and vanish at some critical ξ−1

cr ∼ ḡ/vF . We use this fact when we construct the phase diagram.

B. PDW and CDW as intertwined orders from SU(2) particle-hole symmetry

MS pointed out that there exists a hidden SU(2) particle-hole symmetry in the spin-fermion model with linear
fermionic dispersion28. Below we reproduce their result using slightly different notations and then use this symmetry
to reveal the degeneracy between CDW and PDW orders.

First we introduce eight “pseudo-spinors”, each at a given hot spot,

Ψ1(k̃) =

(

c1↑(k̃)

c†
1↓(−k̃)

)

, Ψ2(k̃) =

(

c†
2↓(−k̃)

c2↑(k̃)

)

Ψ3(k̃) =

(

c3↑(k̃)

c†
3↓(−k̃)

)

, Ψ4(k̃) =

(

c†
4↓(−k̃)

c4↑(k̃)

)

Ψ5(k̃) =

(

c†
5↓(−k̃)

c5↑(k̃)

)

, Ψ6(k̃) =

(

c6↑(k̃)

c†
6↓(−k̃)

)

Ψ7(k̃) =

(

c†
7↓(−k̃)

c7↑(k̃)

)

, Ψ8(k̃) =

(

c8↑(k̃)

c†
8↓(−k̃)

)

, (11)

where k̃ ≡ (ω, k̃) and k̃ is momentum deviation from the corresponding hot spot. In this notation, the fermionic part
of the action can be rewritten as

S0 =
∑

ij,µν

∫

dk̃Ψ†
iµ(k̃)(−iω + ǫi,k̃)δijδµνΨjν(k̃), (12)

where ij label hot spots, µν are pseudo-spin indices, and we remind that ǫi,k̃ is the linearized fermionic dispersion.

The pseudo-spin SU(2) symmetry is explicit in S0. To see the SU(2) symmetry for the full action, we rewrite the
fermionic fields c’s in Eq. (1) in terms of Ψ’s and obtain,

S =
∑

ij,µν

∫

dk̃Ψ†
iµ(k̃)(−iω + ǫi,k̃)δijδµνΨjν(k̃) +

1

2

∫

dqχ−1
0 (q)~φ(q) · ~φ(−q)

+ g
∑

i=1,2,5,6
µν

∫

dk̃dk̃′
[

Ψ†
iµ(k̃)δµνΨi+2,ν(k̃′) + Ψ†

i+2,µ(k̃)δµνΨi,ν(k̃′)
]

φz(k̃ − k̃′)

+ g
∑

i=1,2,5,6
µν

∫

dk̃dk̃′
[

Ψ†
iµ(k̃)(−iσy

µν)Ψ+
i+2,ν(−k̃′) + Ψ†

i+2,µ(k̃)(−iσy
µν)Ψ+

i,ν(−k̃′)
]

φx(k̃ − k̃′)

+ g
∑

i=1,2,5,6
µν

∫

dk̃dk̃′
[

Ψ†
iµ(k̃)(σy

µν)Ψ+
i+2,ν(−k̃′) + Ψ†

i+2,µ(k̃)(σy
µν)Ψ+

i,ν(−k̃′)
]

φy(k̃ − k̃′), (13)

where k̃, k̃′ are deviations from corresponding hot spots and the Ψ+ in last two lines denotes taking the Hermitian
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conjugate in the Fock space without transposing in pseudo-spin space, e.g.,

Ψ+
1 (k) =

(

c†
1↑(k̃)

c1↓(−k̃)

)

. (14)

Eq. (13) is now explicitly invariant under four independent SU(2) pseudo-spin rotations.

Ψi → UiΨi, Ψi+2 → UiΨi+2, (15)

where i = 1, 2, 5, 6 and Ui’s are generic SU(2) matrices. To see the invariance it is helpful to use the relations

Ψ+
i → U∗

i Ψ+, and U†
i σyU∗

i = σy .
We can now rewrite Eq. (4) as

SA
int = Ψ†

1µ(k̃)∆µν
A Ψ2ν(k̃) + h.c., (16)

and define a PDW/CDW condensate ∆A that couples bilinearly to the pseudo-spinor fields Ψ1 and Ψ2:

∆µν
A =

(

ϕA ρ∗
A

−ρA ϕ∗
A

)

=
√

|ρA|2 + |ϕA|2
(

ϕ∗
A/
√

|ρA|2 + |ϕA|2 ρ∗
A/
√

|ρA|2 + |ϕA|2
−ρA/

√

|ρA|2 + |ϕA|2 ϕA/
√

|ρA|2 + |ϕA|2
)

≡
√

|ρA|2 + |ϕA|2 UA, (17)

where UA is an SU(2) “phase”. When UA is diagonal, then the system has PDW order and when it is anti-diagonal,
the system has CDW order. Under an SU(2) pseudo-spin rotation, the CDW and PDW mix with each other. A
self consistent equation for a CDW/PDW condensate with a generic SU(2) “phase” can be straightforwardly derived
directly from Eq. (13), in terms of pseudo-spinor Ψ’s. As expected, it coincides with Eqs. (5) and (6), which, we
remind, are identical. We will keep the symmetry between CDW and PDW explicit in the next Section and describe
both order parameters using a combined PDW/CDW order parameter ∆.

III. EFFECTIVE ACTION FOR THE PDW/CDW ORDER PARAMETER

In this Section we derive the effective action for PDW and CDW order parameters in an SU(2)-covariant form.
We apply a Hubbard-Stratonovich transformation to the spin-fermion model to decouple the effective four-fermion
interactions ∼ Ψ†ΨΨ†Ψ into bilinear couplings between a new bosonic field and fermions ∼ Ψ†∆Ψ. We then integrate
out the fermion field Ψ’s to obtain the effective Ginzburg-Landau (GL) action in terms of ∆’s which in this Section
we treat as fluctuating fields rather than condensates. At low temperatures, the minimization of the GL action yields
nonzero condensate values for ∆’s and the system develops a PDW/CDW order. The condensate values obtained this
way are equivalent to the ones which one would obtain by solving non-linear ladder equations for ϕ and ρ (same as
in the previous Section but extended to finite ϕ and ρ.)

We label “bonds” connecting hot spots 1-8 by A, B, C, D and corresponding bonds with momenta shifted by (π, π)
by −A, −B, −C, −D (see Fig. 2). Through a Hubbard-Stratonovich transformation we introduce four PDW/CDW

order parameters ∆A,B,C,D which couple bilinearly to fermions as SA
int = Ψ†

1µ(k̃)∆µν
A Ψ2ν(k̃), SB

int = Ψ†
6µ(k̃)∆µν

B Ψ5ν(k̃),

SC
int = −Ψ†

3µ(k̃)∆µν
C Ψ7ν(k̃), and SD

int = −Ψ†
8µ(k̃)∆µν

D Ψ4ν(k̃). Similar to Eq. (17), each PDW/CDW order parameter
has PDW and CDW components:

∆µν
A =

(

ϕA ρ∗
A

−ρA ϕ∗
A

)

, ∆µν
B =

(

ϕB ρB

−ρ∗
B ϕ∗

B

)

, ∆µν
C =

(

ϕC ρ∗
C

−ρC ϕ∗
C

)

, ∆µν
D =

(

ϕD ρD

−ρ∗
D ϕ∗

D

)

, (18)

where, for example ρA ∼ c†
1c2, ϕA ∼ c1c2, ρB ∼ c†

5c6, and ϕB ∼ c5c6. It is easy to verify that under time reversal,
〈ρA,C〉 → 〈ρB,D〉 and 〈ϕA,C〉 → 〈ϕ∗

B,D〉, therefore, under time reversal, 〈∆A,C〉 → 〈∆∗
B,D〉.

We remind that the bonds denoted by the same letter (e.g. A and −A) have order parameters of opposite sign,
and differ in magnitude by a factor of λ. Using this relation and lattice symmetries we can write the effective action
for fermions and PDW/CDW order parameters in a covariant form as

S =Ψ†
iµ(−iω + ǫi)δijδµνΨjν + α0 Tr(∆†

A∆A + ∆†
B∆B + ∆†

C∆C + ∆†
D∆D)

+ Ψ†
1µ∆µν

A Ψ2ν + Ψ†
6µ∆µν

B Ψ5ν + λΨ†
1µ∆µν

C Ψ5ν + λΨ†
6µ∆µν

D Ψ2ν

− λΨ†
3µ∆µν

A Ψ4ν − λΨ†
8µ∆µν

B Ψ7ν − Ψ†
3µ∆µν

C Ψ7ν − Ψ†
8µ∆µν

D Ψ4ν + h.c. (19)
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FIG. 2. the Brillouin zone, the magnetic Brillouin zone (dashed line), and the Fermi surface of a cuprate. The hot spots 1-8
are defined as the interSection of hot spots and the Brillouin zone. We label “bonds” connecting hot spots by A, B, C, D and
−A, −B, −C, −D. Bonds connecting hot spots 1256 and 3478 are denoted by opposite signs, due to the d-form factor.

FIG. 3. Diagrammatic representation for fourth order terms of the CDW/PDW order parameter.

where for compactness we have omitted the symbols of momentum and frequency integrations, which are assumed in
(19). Eq. (19) can be derived directly from the spin-fermion model by first integrating out φ fields to get effective
four-fermion interaction and then applying a Hubbard-Stratonovich transformation to decouple the interaction (see
Sec. IV B and Appendix D of Ref. 12).

Since Ψµ’s transform as SU(2), then ∆µν ’s, each of which couples to Ψ’s through Ψ†
µ∆µνΨν , must transform as

SU(2) × SU(2), which is homomorphic to SO(4) (see e.g. Ref. 59). We will see this SO(4) symmetry explicitly below.
Because Eq. (19) is bilinear in fermionic operators, one can explicitly integrate out fermions and obtain the effective

action in terms of ∆’s. For small ∆, one can expand the effective action perturbatively in powers of ∆. First, at order
∆2, fermionic bubbles formed between hot spots i and i + 2 (i = 1, 2, 5, 6) renormalize the coefficient α0 in (19) to
α(T ) = α0 − A(T ), where A(T ) increases upon lowering temperature. At T = TCDW = TPDW, α becomes zero and
the system develops an instability towards CDW/PDW order.

The contribution to the effective action at order ∆4 comes from square diagrams shown in Fig. 3. The Green’s
function for Ψ can be straightforwardly obtained from Eq. (12):

〈T ΨiµΨ†
jν〉 = δµνδijGi(k̃) = − δµνδij

iω − ǫi(k̃)
. (20)

Then the diagram in Fig. 3(a) is expressed as

SA
a =

1

2
Tr(∆A∆†

A∆A∆†
A)

∫

dk̃G2
1(k̃)G2

2(k̃)

=(|ρA|2 + |ϕA|2)2

∫

dk̃G2
1(k̃)G2

2(k̃). (21)
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With ρA and ϕA each being a complex field, we see explicitly the SO(4) symmetry between CDW and PDW compo-
nents. Summing contributions of this type from ∆A, ∆B, ∆C and ∆D, we obtain

Sa = − (I1 + λ4I2) Tr(∆A∆†
A∆A∆†

A + ∆B∆†
B∆B∆†

B + ∆C∆†
C∆C∆†

C + ∆D∆†
D∆D∆†

D)

= − 2(I1 + λ4I2)
[

(|ρA|2 + |ϕA|2)2 + (|ρB|2 + |ϕB |2)2 + (|ρC |2 + |ϕC |2)2 + (|ρD|2 + |ϕD|2)2
]

(22)

where I1 = − 1
2

∫

dk̃G2
1(k̃)G2

2(k̃) < 0 and I2 = − 1
2

∫

dk̃G2
3(k̃)G2

4(k̃) < 0 (Ref. 12). By construction, the integrals I1

and I2 are confined to the vicinity of hot spots, therefore at this stage there is no coupling between order parameters
at different hot spots, e.g., ∆A and ∆B.

Evaluating the diagram in Fig. 3(b), we obtain

SAC
b =λ2 Tr(∆A∆†

A∆C∆†
C)

∫

dkG2
1(k)G2(k)G5(k)

=2λ2(|ρA|2 + |ϕA|2)(|ρC |2 + |ϕC |2)

∫

dkG2
1(k)G2(k)G5(k), (23)

where again the SO(4) symmetry is explicit. Summing contributions from same type of diagrams involving (∆A, ∆D),
(∆B , ∆C), and (∆B , ∆D) we obtain

Sb = − 2λ2I3 Tr
[

(∆A∆†
A + ∆B∆†

B)(∆C∆†
C + ∆D∆†

D)
]

= − λ2I3(|ρA|2 + |ϕA|2 + |ρB|2 + |ϕB|2)(|ρC |2 + |ϕC |2 + |ρD|2 + |ϕD|2), (24)

where I3 = −
∫

dkG2
1(k̃)G2(k̃)G5(k̃) < 0 (Ref. 12).

Finally, the diagram in Fig. 3(c) together with its conjugate yields

Sc = − 2λ2I4 Tr
[

∆†
A∆B∆†

C∆D

]

+ h.c.

= − 2λ2I4

√

(|ρA|2 + |ϕA|2)(|ρB |2 + |ϕB |2)(|ρC |2 + |ϕC |2)(|ρD|2 + |ϕD|2)
[

Tr
(

U †
AUCU †

BUD

)

+ h.c.
]

, (25)

where I4 = −
∫

dk̃G1(k̃)G2(k̃)G5(k̃)G6(k̃) < 0 (Ref. 12), and in the last line we defined SU(2) phases for ∆B,C,D the
same way as in Eq. (17), namely,

∆A,B,C,D ≡
√

|ρA,B,C,D|2 + |ϕA,B,C,D|2 UA,B,C,D. (26)

Summing up all terms up to O(∆4), we obtain the Ginzburg-Landau action

Seff =α Tr(∆†
A∆A + ∆†

B∆B + ∆†
C∆C + ∆†

D∆D) + Sa + Sb + Sc

=α Tr(∆†
A∆A + ∆†

B∆B + ∆†
C∆C + ∆†

D∆D)

− (I1 + λ4I2) Tr(∆A∆†
A∆A∆†

A + ∆B∆†
B∆B∆†

B + ∆C∆†
C∆C∆†

C + ∆D∆†
D∆D∆†

D)

− 2λ2I3 Tr
[

(∆A∆†
A + ∆B∆†

B)(∆C∆†
C + ∆D∆†

D)
]

− 2λ2I4 Tr
[

∆†
A∆B∆†

C∆D

]

+ h.c.

=2α(|ρA|2 + |ϕA|2 + |ρB|2 + |ϕB|2 + |ρC |2 + |ϕC |2 + |ρD|2 + |ϕD|2)

− 2(I1 + λ4I2)
[

(|ρA|2 + |ϕA|2)2 + (|ρB|2 + |ϕB |2)2 + (|ρC |2 + |ϕC |2)2 + (|ρD|2 + |ϕD|2)2
]

− 4λ2I3(|ρA|2 + |ϕA|2 + |ρB|2 + |ϕB |2)(|ρC |2 + |ϕC |2 + |ρD|2 + |ϕD|2)

− 2λ2I4

√

(|ρA|2 + |ϕA|2)(|ρB |2 + |ϕB |2)(|ρC |2 + |ϕC |2)(|ρD|2 + |ϕD|2)
[

Tr
(

U †
AUCU †

BUD

)

+ h.c.
]

(27)

Because the spin-fermion model has four independent SU(2) symmetries [see Eq. (15)], the full effective action (27)
should have an SU(2) × SU(2) × SU(2) × SU(2) ∼ SO(4) × SO(4) symmetry. We present the mathematical proof of
SO(4) × SO(4) symmetry in Appendix B.
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IV. THE STRUCTURE OF THE GROUND STATE CONFIGURATION

In this Section we minimize Eq. (27) with respect to four order parameters ∆A,B,C,D and obtain the condensate
values of ϕ and ρ. We first rewrite Eq. (27) as

Seff =2α(|ρA|2 + |ϕA|2 + |ρB|2 + |ϕB|2 + |ρC |2 + |ϕC |2 + |ρD|2 + |ϕD|2)

+
1

2
β
[

(|ρA|2 + |ϕA|2)2 + (|ρB |2 + |ϕB|2)2 + (|ρC |2 + |ϕC |2)2 + (|ρD|2 + |ϕD|2)2
]

+
1

4
β̃m(|ρA|2 + |ϕA|2 + |ρB|2 + |ϕB |2)(|ρC |2 + |ϕC |2 + |ρD|2 + |ϕD|2)

+
1

2
β̄mγ

√

(|ρA|2 + |ϕA|2)(|ρB |2 + |ϕB|2)(|ρC |2 + |ϕC |2)(|ρD|2 + |ϕD|2). (28)

where β = −4(I1 + λ4I2) > 0, β̃m = −16λ2I3 > 0, and β̄m = −8λ2I4 > 0, and γ = Tr
(

U †
AUCU †

BUD

)

. The matrix

product U †
AUCU †

BUD is still an SU(2) matrix, and γ satisfies −2 ≤ γ ≤ 2. Minimization with respect to the last line
in (28) then yields γ = −2. When written in terms of ϕ and ρ, using

Ui =
1

√

|ρi|2 + |ϕi|2

(

ϕi ρ∗
i

−ρi ϕ∗
i

)

, (29)

the condition γ = −2 becomes

(ϕ∗
AϕC + ρ∗

AρC) (ϕ∗
BϕD + ρBρ∗

D) − (ϕ∗
Aρ∗

C − ρ∗
Aϕ∗

C) (ϕBρ∗
D − ρ∗

BϕD) + h.c.
√

(|ϕA|2 + |ρA|2)(|ϕC |2 + |ρC |2)(|ϕB |2 + |ρB|2)(|ϕD|2 + |ρD|2)
= −2. (30)

Using the fact that Eq. (28) is symmetric with respect to A → B and C → D and that there is no repulsion between
A and B, and between C and D, we immediately obtain that |ρA|2 + |ϕA|2 = |ρB|2 + |ϕB |2 and |ρC |2 + |ϕC |2 =
|ρD|2 + |ϕD|2, and hence,

Seff =4α(|ρA|2 + |ϕA|2 + |ρC |2 + |ϕC |2)

+ β
[

(|ρA|2 + |ϕA|2)2 + (|ρC |2 + |ϕC |2)2
]

+ (β̃m − β̄m)(|ρA|2 + |ϕA|2)(|ρC |2 + |ϕC |2). (31)

The evaluation of the integrals Ii (Refs. 12 and 49) yields β ≪ β̄m, β̃m. The ground state configuration then depends
on the interplay between β̃m and β̄m. The two are comparable in magnitude at the onset temperature of CDW/PDW
order. In this Section we keep β̄m, β̃m ≫ β and treat β̃m and β̄m as the two input parameters. In the parameter space
of β̄m and β̃m we find two types of ground states.

If β̃m > β̄m, Eq. (28) is minimized if either |ρA|2 + |ϕA|2 or |ρC |2 + |ϕC |2 is set to zero. This breaks lattice rotational
symmetry C4 down to C2 (see Fig. 2). We label this state as state I. Borrowing jargon from a pure CDW state, we
call this state a “stripe” state. However, we remind that momenta carried by CDW and PDW order parameters on
the same bond (i.e., between same hot spots) are orthogonal – if CDW has Qx, then PDW has Qy. In this state, since
one of |ρA|2 + |ϕA|2 or |ρC |2 + |ϕC |2 is zero, then the last line of Eq. (27) is zero, and the condition γ = −2 is relaxed.

If β̄m > β̃m, Eq. (28) is minimized if |ρA|2 + |ϕA|2 = |ρC |2 + |ϕC |2. Since we have set |ρA|2 + |ϕA|2 = |ρB|2 + |ϕB |2
and |ρC |2 + |ϕC |2 = |ρD|2 + |ϕD|2, then for this state, |ρA|2 + |ϕA|2 = |ρB|2 + |ϕB |2 = |ρC |2 + |ϕC |2 = |ρD|2 + |ϕD|2.
This gives rise to a “checkerboard” order. We label this state as state II.

We remind that Eq. (31) only fixes the amplitudes of the PDW/CDW condensates. For state I, there is no constraint
on the SU(2) “phases” of ∆A and ∆B, since the term proportional to γ vanishes (see Eq. (28)), and for state II, the

only constraint on the SU(2) “phases” is γ = Tr(U †
AUCU †

BUD) = −2. Therefore each state has an infinite number of
members.

Recalling that under time reversal ∆A → ∆∗
B and hence UA → U∗

B, any member of the degenerate states with
∆A 6= ∆∗

B naturally breaks time reversal symmetry. However, we note that at this stage, the breaking of time-reversal
symmetry is part of the breaking of a continuous SO(4) × SO(4) symmetry (by selecting specific UA and UB), rather
than the breaking of an additional discrete Z2 symmetry.

The coefficients β̃m and β̄m have been evaluated within the spin-fermion model12. Both depend of T/Λ, where Λ
is the energy cutoff for the spin-fermion model (of order EF ). We are interested in T ∼ TCDW, which are of order of
spin-fermion coupling g. For such T , two couplings behave as β̄m ∼ Λ/g and β̃m ∼ log Λ/g. In the strict theoretical
low-energy limit, g << Λ, hence β̃m < β̄m and the system develops a checkerboard CDW/PDW order (state II).
However, in the cuprates g ∼ EF ∼ Λ, hence both state I and state II can develop. Below we treat β̄m and β̃m as two
parameters of comparable magnitude and analyze both state I and state II.
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V. BREAKING THE SO(4) SYMMETRY OF THE EFFECTIVE ACTION

As we pointed out in the Introduction, the particle-hole SU(2) symmetry is only approximate. It relies on two
crucial assumptions, 1) that order parameters couple only to hot fermions, and 2) that in each hot region one can
linearize the fermionic dispersion. Once we go beyond either of these assumptions, the SU(2) symmetry will be broken,
hence the emergent SO(4) ∼ SU(2)×SU(2) symmetry of the PDW/CDW order will be broken also. In this Section we
study separately the effects of going beyond linear fermionic dispersion and of going beyond hot spot approximation.
We find that the curvature of the Fermi surface reduces TCDW more than TPDW, favoring the PDW order. On the
other hand, once we go beyond hot spot approximation, we find additional terms which couple the phases of CDW
order parameters ρA and ρB. These extra terms select CDW order which breaks a discrete Z2 time-reversal symmetry
(i.e., ρA = a + ib, ρB = a − ib, b 6= 0). This Z2 symmetry gets broken at a higher T than what would be the onset
temperature of CDW order and this symmetry breaking pushes TCDW to higher value compared to mean-field result.
This effect tends to favor CDW order over PDW order. Which of the two effects wins depends on microscopic details
of the dispersion and interactions away from hot spots.

The analysis in this section is applicable to both stripe and checkerboard states. In the next section we consider
how one can additionally lower the energy of the checkerboard state due to the fact that combined CDW/PDW order
develops a secondary SC order.

A. Going beyond linear dispersion

In this Section we study the effect of the Fermi surface curvature κ on PDW and CDW transition temperatures. To
simplify calculations, we assume κ ≪ 1 and consider the limiting case when Fermi velocities of fermions at e.g. points
1 and 2 (set A) are antiparallel while those at points 3 and 4 (set −A) are parallel. A generic case when Fermi velocities
at 1,2 and 3,4 are neither parallel and antiparallel has been studied in Ref. 12 and the results are qualitatively similar
to the limiting case we consider here. We solve the linearized ladder equations for CDW and PDW condensates, Eqs.
(5) and (6), in the presence of a small but finite κ. For fermionic dispersion in Gi(ωm, k̃) = −1/[iωm + Σi(ωm) − ǫi,k̃],

we use ǫ1,k̃ = vF (k̃y + κk̃2
x/kF ), ǫ2,k̃ = vF (−k̃y + κk̃2

x/kF ), and ǫ3,k̃ = ǫ4,k̃ = −vF (k̃x + κk̃2
y/kF ). Plugging these into

Eqs. (5) and (6) and obtain integral equations for ϕ±A and ρ±A as functions of frequency and momentum.
We make one more simplification by treating CDW and PDW order parameters as constants between hot spots (1,

2) and (3, 4), and we set external frequencies to zero and external momenta to their values at hot spots (i.e., avoid
solving integral equation in momentum and frequency). Again, previous study found56 that this does not affect the
onset temperatures by more than a number. Using this simplification we obtain for the PDW order

ϕA =
−3ḡTPDW

4π2

∑

m

∫

dk̃x dk̃y
[

iΣ̃(ωm) − vy(k̃x + κk̃2
y/kF )

] [

−iΣ̃(ωm) + vy(k̃x − κk̃2
y/kF )

]

ϕ−A

k̃2
x + k̃2

y + γ|ωm|
(32)

ϕ−A =
−3ḡTPDW

4π2

∑

m

∫

dk̃x dk̃y
[

iΣ̃(ωm) − vy(k̃y − κk̃2
x/kF )

] [

−iΣ̃(ωm) − vy(k̃y − κk̃2
x/kF )

]

ϕA

k̃2
x + k̃2

y + γ|ωm|
(33)

and for CDW order

ρA =
3ḡTCDW

4π2

∑

m

∫

dk̃x dk̃y
[

iΣ̃(ωm) − vy(k̃x + κk̃2
y/kF )

] [

iΣ̃(ωm) − vy(k̃x + κk̃2
y/kF )

]

ρ−A

k̃2
x + k̃2

y + γ|ωm|
(34)

ρ−A =
3ḡTCDW

4π2

∑

m

∫

dk̃x dk̃y
[

iΣ̃(ωm) − vy(k̃y − κk̃2
x/kF )

] [

iΣ̃(ωm) + vy(k̃y + κk̃2
x/kF )

]

ρA

k̃2
x + k̃2

y + γ|ωm|
. (35)

Assuming that κ ≪ 1, one can expand the integration kernel in κ and then integrate over k̃x. By doing so we find,

ϕA = − S1 log
ω0

TPDW
ϕ−A + R1κ2ϕ−A,

ϕ−A = − S2 log
ω0

TPDW
ϕA − R2κ2ϕA;

ρA = − S1 log
ω0

TCDW
ρ−A + 3R1κ2ρ−A,

ρ−A = − S2 log
ω0

TCDW
ρ−A + R3κ2ρA, (36)
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FIG. 4. The position dependence of the PDW representation of State II: the contour lines give the magnitude of the gap
function while the (x, y) components of the vectors denote the normalized real and imaginary parts of the gap function. Note
the vortices and anti-vortices surrounding the zeroes of the gap function, giving a vortex-anti-vortex lattice.

where S1 = 0.084, S2 = 0.650, and R1, R2, R3 are all positive. The calculation is trivial, which we show in Appendix
C. To leading order in κ, we then have

S1S2 log2 ω0

TPDW
= 1 + (−S1R2 + S2R1)κ2

S1S2 log2 ω0

TCDW
= 1 + (S1R3 + 3S2R1)κ2. (37)

For positive R1, R2 and R3, one can immediately verify that −S1R2 + S2R1 < S1R3 + 3S2R1. Therefore, TPDW >
TCDW.

1. Properties of a pure PDW ground state

Restricting the order parameter manifold to PDW states, together with the considerations of Sec. IV with respect
to the parameters β̃m and β̄m, yields two possible ground states. The pure PDW representation of State I is a Larkin-
Ovchinnikov (LO) state17, also known as a stripe SC state, that has been studied by many authors17,24,25,65,66. In
this state, the gap function is real and oscillates sinusoidally.

The pure PDW representation of State II is less known25. In this state, From Eq. (30) we find that the PDW
order parameter satisfy ϕ∗

Aϕ∗
BϕCϕD = −|ϕAϕBϕCϕD|, namely, (ϕB , ϕA, ϕC , ϕD) ≡ (ϕQy, ϕ−Qy , ϕQx, ϕ−Qx) =

ϕ0(eiφ1 , eiφ2 , ieiφ3 , iei[φ2+φ2−φ3]) where the three φi are not fixed by the Free energy and represent the U(1) × U(1) ×
U(1) degeneracy of the ground state (we fix φi = 0 in the following). As shown in Fig. 4, this PDW ground state
is a vortex anti-vortex lattice phase which can be represented by the gap function ∆(x) = ∆0[cos(Qx) + i cos(Qy)].
This gap function has position space zeroes at Qx = π(n + 1/2, m + 1/2) with integer n, m. Near these zeroes, the
gap function becomes ∆(x) ≈ ∆0Q(−1)n[x + (−1)(n+m)iy], explicitly showing the phase winding of the vortices and
anti-vortices. This state breaks time-reversal symmetry continuously through the formation of the vortex anti-vortex
lattice. This should be contrasted with the discrete breaking of time-reversal symmetry that appears in the CDW
sector, once the theory extended beyond the hot spot approximation (see below). The U(1) × U(1) × U(1) degeneracy
has a clear physical origin: one U(1) is associated with the usual SC phase and the other two U(1)’s are associated
with the acoustic phonons of the checkerboard lattice. This ground state admits fractional vortices with one half
the usual SC flux quantum25. Following Ref. 65, a treatment of thermal fluctuations associated with these vortices
shows that the mean-field PDW order can in principle split into two transitions corresponding to the separation of the
transition temperatures of the SC and the checkerboard order. Consequently, the high temperature phase transition
can be into one of three possible states: the original mean-field PDW state, an orbital density wave state (with
no SC phase coherence but with checkerboard order), or a spatially uniform charge-4e dx2−y2 superconductor (this
state is analogous to the spatially uniform charge-4e s-wave superconductor found in Ref. 65, the dx2−y2 symmetry
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follows from the relationship ϕQxϕ−Qx = −ϕQyϕ−Qy). We note that a PDW state with the same symmetry has been
proposed by P.A. Lee to account for the quasi-particle properties observed by ARPES measurements14.

B. Going beyond the hot spot approximation

In this subsection we neglect the difference in mean-field transition temperatures for CDW and PDW orders and
consider instead what happens if we lift the restriction that ρi and ϕi couple only to specific hot spots in the Brillouin
zone. For definiteness, we constrain our discussions to a stripe state I, namely, consider a state with order parameters
along bonds A, B and −A, −B (see Fig. 2). For the stripe state, both ∆A and ∆B appear with the same magnitude,
while their relative SU(2) “phases” are arbitrary in the hot spot approximation. We assume that spin-mediated
interaction has a finite “width” in momentum space and allows some coupling between the order parameters ρA and
ϕA and fermions in the B region and vice versa, and see how this breaks the symmetry between CDW and PDW
components.

In the hot-spot approximation, the effective action for the stripe phase I is

Seff =2α(|ρA|2 + |ϕA|2 + |ρB|2 + |ϕB |2) +
1

2
β
[

(|ρA|2 + |ϕA|2)2 + (|ρB|2 + |ϕB |2)2
]

. (38)

The order parameter manifold is SO(4)×SO(4)×Z
rot
2 , where Z

rot
2 corresponds to the choice of bond direction (A, B or

C, D) which is already made in Eq. (38), and the two SO(4)’s are for bonds A and B respectively. A pure CDW state
or a pure PDW state are members of the SO(4) × SO(4) × Z

rot
2 manifold and for each of them the order parameter

manifold is U(1) × U(1) × Z
rot
2 where the two U(1)’s are the phases of ρ(ϕ)A and ρ(ϕ)B respectively.

We now go back to fermion-boson interaction term in the regions A and B and extend it to

Sint =

∫

dk ρAfA(k)c†(k − Q/2)c(k + Q/2) + ρBfB(k)c†(k − Q/2)c(k + Q/2)

+

∫

dk ϕAgA(k)c†(k + Q′/2)c†(−k + Q′/2) + ϕBgB(k)c†(k − Q′/2)c†(−k + Q′/2) + h.c. (39)

The form factors fA(B)(k) and gA(B)(k) are peaked around center-of-mass momentum of hot spots 1(5) and 2(6) and
center-of-mass momentum of hot spots 3(7) and 4(8), but are no longer assumed to be δ−functions of momenta. In
Eq. (39), Q = Qy and Q′ = −Qx are the momenta of the CDW and PDW orders. Integrating out fermions, we find
that in this situation there appear non-zero couplings between ρA, ρB, and ϕA, ϕB. The structure of the coupling
terms is, however, different for CDW and PDW order parameters.

For CDW order parameter, integration over fermions yields a coupling term in the form

∆Sa = ∆βa[(ρAρ∗
B)2 + (ρBρ∗

A)2], (40)

where

∆βa = −
∫

f2
A(k)f2

B(k)G2(k − Q/2)G2(k + Q/2). (41)

We show the diagrammatic representation of ∆βa in Fig. 5. In the hot spot approximation, when fA and fB are
δ-functions peaked at different momenta, the integral in (41) vanishes. Away from this limiting case, there is some
overlap between fA and fB and the integral in (41) is nonzero and Eq. (40) breaks the degeneracy of the U(1) × U(1)
manifold of CDW members of the stripe state I.

The prefactor ∆βa has been evaluated in Sec. V C of Ref. 12 for a particular model form of fA,B and was found to
be positive. Expressing ρA,B as ρA,B = |ρA,B|eiφA,B , we obtain from Eq. (40)

∆Sa = 2∆βa|ρA|2|ρB |2 cos[2(φA − φB)]. (42)

For ∆βa > 0 the phase difference φA − φB is selected by (42) to be ±π/2. This lowers the U(1) × U(1) symmetry in
the CDW sector to U(1)×Z2, where Z2 corresponds to two choices for the relative phase. Because under time-reversal
ρA → ρB and, hence, φA − φB → φB − φA, the discrete Z2 symmetry is directly associated with the time-reversal and
we represent it as Z

trs
2 below. Substituting φA − φB = ±π/2 into (42) we obtain

∆Sa = −2∆βa|ρA|2|ρB|2, (43)
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FIG. 5. Diagrammatic representations of the coefficients ∆βa, ∆βb. We have associated form factors fA,B and gA,B to each
vertex. The momenta are Q = Qy = (0, Q) and Q′ = −Qx = (−Q, 0).

On the other hand, for PDW order, the coupling terms which would depend on the phases of ϕA and ϕB are
forbidden: as ϕA and ϕB carry opposite momenta, the term (ϕAϕ∗

B)2 cannot be present in the action as it would
violate the momentum conservation. It has been shown25 that the only term which couples PDW components ϕA

and ϕB is

∆Sb = ∆βb|ϕA|2|ϕB |2, (44)

where

∆βb =

∫

g2
A(k)g2

B(k − Q′/2)G2(k + Q′/2)G(−k + Q′/2)G(−k − 3Q′/2). (45)

We show the diagrammatic representation of ∆βb in Fig. 5.
The presence of the additional terms given by Eqs. (43) and (44) breaks the SO(4) symmetry of the effective action.

To see this, we re-express ρ’s and ϕ’s as

ρA =‖∆A‖ cos θAeiφA , and ϕA = ‖∆A‖ sin θAeiϕA ,

ρB =‖∆B‖ cos θBeiφB , and ϕB = ‖∆B‖ sin θBeiϕB , (46)

where ‖∆A‖ ≡
√

|ρA|2 + |ϕA|2, and re-write the effective action as

Seff =2α(‖∆A‖2 + ‖∆B‖2) +
β

2

[

‖∆A‖4 + ‖∆B‖4
]

−
(

2∆βa cos2 θA cos2 θB − ∆βb sin2 θA sin2 θB

)

‖∆A‖2‖∆B‖2. (47)

Eq. (47) explicitly depends on θA,B and hence the SO(4) symmetry is broken. The outcome depends on the interplay
between ∆βa and ∆βb. Comparing the diagrams in Fig. 5 we see that in the diagram for ∆βa, all four fermions can
be placed near the FS as there are only two momenta involved: k + Q/2 and k − Q/2, while in the the diagram for
∆βb one cannot do this as there are there different internal momenta there: k + Q′/2, −k + Q′/2, and −k − 3Q′/2
(Q = Qy and Q′ = −Qx), and if two are placed on the FS then the third has to be away from it. As a result ∆βa is
much larger than ∆βb.

Using this, we immediately find from Eq. (47) that the effective action is minimized when θA = θB = 0. This
means that the extra terms in the action break O(4) symmetry between CDW and PDW in favor of CDW order (the
symmetry is lowered from SO(4) × SO(4) ×Z

rot
2 to U(1) ×Z

trs
2 ×Z

rot
2 , where U(1) is the common phase of ρA and ρB

and Z
trs
2 corresponds to two choices for the relative phase between ρA and ρB).

1. Properties of a pure CDW ground state

The properties of the pure CDW state have been studied before12,45,67 so we will be brief. The order parameter
manifold for the stripe CDW phase with |ρA| = |ρB| = ρ and |ρC | = |ρD| = 0 is U(1) × Z

trs
2 × Z

rot
2 . The U(1)

component is a common phase between ρA and ρB and its selection in the ordered CDW state reflects the breaking
of a translational symmetry by an incommensurate CDW order. The order parameters which do not depend on the
common phase but reflect the breaking of Z2 symmetries are composite order parameters |ρA|2 − |ρC |2 = ±ρ2 for Zrot

2

and ρAρ∗
B = ±iρ2. The condition ρAρ∗

B = ±iρ2 together with |ρA| = |ρB| = ρ implies that

ρA = ρe±iπ/4eiφ, ρB = ρe∓iπ/4eiφ. (48)
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Such an order has both charge modulation, given by ρA + ρB, and current modulation, given by ρA − ρB. In the case
we consider the charge modulation is along y direction. Current modulation is also along y, but the current itself flows
along x. This order breaks time-reversal symmetry and also breaks mirror symmetries around x and y directions (all
three eigenfunctions change sign under Z

trs
2 which transforms ρA → ρB).

In a more general treatment than the one we presented above, a coupling of ρ fields to fermions away from
corresponding hot spots also leads to the modification of the quadratic terms in the effective action – the quadratic
form decouples between ρQy ≡ ρA +ρB and JQy ≡ ρA −ρB (i.e., Seff = αρ(ρQy )2 +αJ(JQy )2 and αρ becomes negative
at a higher T than αJ ). In this situation, ρQy orders first and JQy acquires a non-zero condensation value at a lower
T (with the phase difference ±π/2 compared to ρQy ). The Z

trs
2 symmetry gets broken only below a lower transition

temperature. At low T , both ρQy and JQy have non-zero, but non-equal expectation values, i.e.,

ρA =
1

2

(

ρQy + JQy
)

=
1

2

(

|ρQy | ± i|JQy |
)

eiφ,

ρB =
1

2

(

ρQy − JQy
)

=
1

2

(

|ρQy | ∓ i|JQy |
)

eiφ. (49)

C. Combining the effects of curvature and of coupling to fermions away from hot spots

We now return to our consideration of the effective action. Combining the effects of the curvature and of coupling
of the order parameters ρ and ϕ to fermions away from hot spots, we obtain an effective action in the form

Seff =2αρ(|ρA|2 + |ρB|2) + 2αϕ(|ϕA|2 + |ϕB |2) +
1

2
β
[

(|ρA|2 + |ϕA|2)2 + (|ρB|2 + |ϕB |2)2
]

− 2∆βa|ρA|2|ρB |2 + ∆βb|ϕA|2|ϕB|2 (50)

where αρ(T ) ∼ (T − TCDW) and αϕ(T ) ∼ (T − TPDW) and TPDW > TCDW. The last two terms in (50) are from Eqs.
(42) and (44), and we have set φA − φB = ±π/2.

To simplify the presentation, we set ∆βb = 0 since it is much smaller than ∆βa. We also assume that the coupling
to fermions away from hot spots is weak and set 2∆βa < β. Then the action is positive-definite.

Eq. (50) is symmetric with respect to A → B and there is no repulsion term between A and B, hence we have for
the ground state,

|ρA| = |ρB| ≡ ρ

|ϕA| = |ϕB| ≡ ϕ, (51)

Using this, we rewrite the effective action as

Seff =4αρρ2 + 4αϕϕ2 + β(ρ2 + ϕ2)2 − 2∆βaρ4. (52)

The extremal values of Eq. (52) are at

ρ = 0, or 4αρ + 2β(ρ2 + ϕ2) − 4∆βaρ2 = 0

ϕ = 0, or 4αϕ + 2β(ρ2 + ϕ2) = 0. (53)

Simple calculations show that solutions of Eq. (53) are with either ρ = 0 or ϕ = 0, hence the CDW order and PDW
order do not coexist.

At TCDW < T < TPDW, a pure PDW state develops, with ϕ =
√

−2αϕ/β. At lower temperatures T < TCDW <

TPDW, a pure CDW state also becomes possible. For this CDW state we obtain ρ =
√

−2αρ/(β − 2∆βa).
To decide whether CDW or PDW state is more favorable at a low T we compare the values of the effective action

for pure PDW and CDW states:

SPDW =
−4α2

ϕ

β
(54)

SCDW =
−4α2

ρ

β − 2∆βa
. (55)

If the difference between αϕ and αρ is small, CDW order definitely wins (we recall that ∆βa > 0). In this situation,
the system undergoes a first-order transition from PDW to CDW state at some T < TCDW. If the difference between
αϕ and αρ is larger, the PDW order may survive down to T = 0.
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D. Going beyond mean-field approximation

For the action given by Eq. (50), the three symmetries associated with CDW order: U(1), Ztrs
2 and Z

rot
2 , get broken

at the same temperature TCDW. This, however, is true only within the mean-field approximation. Once we go beyond
mean-field theory and include fluctuation effects, discrete symmetries (in our case Z

trs
2 and Z

rot
2 ) get broken at higher

temperatures than the temperature TCDW at which the continuous U(1) symmetry gets broken12,45,60–64. The two
Z2 symmetries do not generally get broken at the same temeperature; which one is higher depends on the relative
strength of the corresponding symmetry breaking terms in the action (for a detailed discussion, see Sec. VI of Ref.
12). In the intermediate temperature range 〈ρA,B,C,D〉 = 0 but 〈|ρA,B|2 − |ρC,D|2〉 6= 0 and/or i〈ρAρ∗

B − ρ∗
AρB〉 6= 0.

Previous studies, originally done for Fe-pnictides63 and then extended to the spin-fermion model, which we study
here12,45, have found that the feedback from discrete symmetry breaking pushes the onset temperature TCDW for the
primary CDW order to a higher value.

This effect also exists for PDW order as the corresponding order parameter manifold U(1) × U(1) × Z
rot
2 also

contains a Z2 component which beyond mean-field orders at a higher T than mean-field TPDW and pushes the onset
temperature for U(1) × U(1) breaking to a higher T . We expect such an enhancement of onset temperature to be
weaker than that for CDW order, because for the latter there are two discrete Z2 degrees of freedom in the order
parameter manifold, and each ordering of Z2 degree of freedom increases the susceptibility of the primary field and
hence increases the onset temperature for the breaking of the corresponding U(1) degree of freedom. If this effect
overshoots the difference between αρ and αϕ in Eq. (50) then the system only develops a stripe CDW order and no
stripe PDW order. The actual calculation of the transition temperatures for CDW and PDW orders in the presence
of preemptive Z2 orders requires going well beyond mean-field and is beyond the scope of current work.

In principle, it is possible that out of the two continuous U(1) symmetries for PDW, which can be viewed as one
translational and one gauge symmetry, one U(1) symmetry is broken prior to the other. One such proposal is a
charge-4e superconductor65, which is a bound state of two PDW order parameters with opposite momenta, which
corresponds to 〈ϕAϕB〉 in our case (for analogous proposal for magnetic systems see Ref. 60). In such a state U(1)
gauge symmetry is broken while U(1) translational symmetry is preserved. This may also lift the onset temperature for
the primary PDW order parameter (i.e., the temperature below which both U(1) symmetries are broken). However,
whether this happens in the spin-fermion model is beyond the scope of this work.

VI. SECONDARY ORDERS INDUCED BY CDW AND PDW IN A CHECKERBOARD STATE

We now return to mean-field theory and consider state II with checkerboard order in which CDW/PDW orders
develop along both horizontal and vertical bonds. We assume that the conditions are such that at low T both
CDW and PDW components of the order parameter are present. It is known that the presence of multiple order
parameters can induce “secondary” orders through third order coupling terms. For example, PDW orders of momenta
(0, ±Q) alone are known to give rise to CDW orders of momenta (0, ±2Q)13–15. Here we examine a possibility that a
simultaneous presence of CDW/PDW orders induces a homogeneous charge-2e superconducting order14,24,25.

A. General Ginzburg-Landau Theory

Prior to examining the microscopic theory, we present a general symmetry based analysis. In State II CDW and
PDW order parameters carry momenta ±Qx = (±Q, 0) and ±Qy = (0, ±Q). Like in Eq. (3), we introduce CDW and
PDW order parameters as

iσαβϕk
Qx

∼ cα(k − Qx/2)cβ(−k − Qx/2), and δαβρQx

k ∼ c†
α(k + Qx/2)cβ(k − Qx/2),

iσαβϕk
Qy

∼ cα(k − Qy/2)cβ(−k − Qy/2), and δαβρ
Qy

k ∼ c†
α(k + Qy/2)cβ(k − Qy/2). (56)

Recall that the momenta carried by ϕk
Q and by ρQ

k are both Q, independent on whether the order is CDW or PDW.

Following the discussion at the end of subsection V B 1 we split the k-dependence of ρQ
k and generalize Eq. (49) by

including form factors f1,2 to

ρQx

k =
[

ρQxfx
1 (k) + JQxfx

2 (k)
]

/2

ρ
Qy

k =
[

ρQy fy
1 (k) + JQy fy

2 (k)
]

/2, (57)
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TABLE I. The transformation of order parameters ρQx,y , JQx,y , ϕQx,y , and ϕ−Qx,y under C4 lattice rotation (x → y, y → −x)

and time-reversal (TR). Particularly, we note that JQx transforms into −JQy under C4. The minus sign is because JQx

corresponds to a current which flows in y direction, and this current should flow in −x direction after a C4 lattice rotation.

Original OP ρQx JQx ϕQx ϕ−Qx

Under C4 ρQy −JQy ϕQy ϕ−Qy

Under TR ρQx −JQx (ϕ−Qx)∗ (ϕQx )∗

Original OP ρQy JQy ϕQy ϕ−Qy

Under C4 ρ−Qx ≡ (ρQx)∗ J−Qx ≡ (JQx)∗ ϕ−Qx ϕQx

Under TR ρQy −JQy (ϕ−Qy )∗ (ϕQy )∗

where for ρQx

k , k is along the y direction in the hot spot model (and close to it in a generic model), and for ρ
Qy

k ,
k is along the x direction. The form-factor fx

1 (k) is even under mirror reflection ky → −ky, and fx
2 (k) is odd, and

fy
1 (k) and fy

2 (k) are even/odd under kx → −kx. We remind that in real space ρQx(y) corresponds to a charge density
modulation with ordering momenta Qx(y), and JQx(y) corresponds to a bond current density modulation flowing in
the y(x) direction with ordering momenta Qx,y.

One can easily verify that the order parameters ρQx and JQx belong to different irreducible representations of
the little group GQx

= {E, C2x, σy, σz} which consists of the set of rotation elements that keep Qx unchanged: ρQx

belongs to the A1 representation as it does not change under applications of all elements of GQx
, while JQx belongs

to the B1 representation – it is odd under σy and C2x and even under σz .
The PDW order parameter ϕk

Qx
is, by definition, even under σy : ky → −ky because it is spin-singlet. We then

define

ϕk
Qx

≡ ϕQx
gx

1 (k), (58)

where k in gx
1 (k) is predominantly along y and gx

1 (k) is even under ky → −ky. One can easily verify that the order
parameter ϕQx

belongs to the A1 representation of the group GQx
.

We also note that ρ−Q
k = (ρQ

k )∗, while ϕk
Q and ϕk

−Q are generally different order parameters. We therefore use

ρQx,y , JQx,y , ϕQx,y
, and ϕ−Qx,y

as independent order parameters. The properties of these order parameters under a
C4 lattice rotation (x → y, y → −x) and time-reversal are summarized in Table I.

Because ϕQ, ρQ, and JQ all carry momentum Q, it is possible to construct the translational invariant products of the
form ρQϕ−Q, (ρQ)∗ϕQ, and JQϕ−Q, (JQ)∗ϕQ. These products have the same symmetry properties as homogeneous
charge-2e SC order. The fact that ρQ and JQ belong to different representations of GQ implies that the homogeneous
SC order parameters that are proportional to ρQ and JQ also belong to different representations.

Consider separately the couplings between ρQ and ϕQ and between JQ and ϕQ. The couplings between ρQ and
ϕQ allow for four different types of homogeneous SC orders: ρQx ϕ−Qx

, (ρQx)∗ϕQx
, ρQy ϕ−Qy

, and (ρQy )∗ϕQy
. In

our theory, only even parity SC homogeneous order appears (spin-singlet pairing), so we will not consider the two
odd-parity SC states. The two even parity SC orders can be combined into

ρQx ϕ−Qx
+ (ρQx )∗ϕQx

+ ρQy ϕ−Qy
+ (ρQy )∗ϕQy

, and ρQxϕ−Qx
+ (ρQx)∗ϕQx

− ρQy ϕ−Qy
− (ρQy )∗ϕQy

. (59)

The first combination has A1g (s) symmetry and the second one has B1g (dx2−y2) symmetry. Accordingly, we introduce
s-wave and dx2−y2-wave SC order parameters via

cα(k)cβ(−k) ∼ iσy
αβ [Φshs(k) + Φdx2

−y2 hdx2
−y2 (k)], (60)

where the form factors hs (hdx2
−y2 ) are even (odd) under a C4 lattice rotation, and write the Free energy to quadratic

order in Φs and Φdx2
−y2 as

SΦ =αs|Φs|2 + ǫs{Φ∗
s[ρQxϕ−Qx

+ (ρQx)∗ϕQx
+ ρQy ϕ−Qy

+ (ρQy )∗ϕQy
] + h.c.}

+ αdx2
−y2 |Φdx2

−y2 |2 + ǫd{Φ∗
dx2

−y2
[ρQx ϕ−Qx

+ (ρQx )∗ϕQx
− ρQy ϕ−Qy

− (ρQy )∗ϕQy
] + h.c.}. (61)

One can directly verify using Table I that Eq. (61) is invariant under lattice C4 rotation and time-reversal. The
effective “triple coupling” constants ǫs and ǫdx2

−y2 can be expressed as the convolutions of fermionic Green’s functions

with form factors hs(k), f1(k)g1(k) and hdx2
−y2 (k), f1(k), g1(k), respectively, and their values depend on the details

of the underlying microscopic model (see next Subsection).
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Minimizing Eq. (61) with respect to Φ∗
s and Φ∗

dx2
−y2

we obtain

Φs = − ǫs

αs
[ρQx ϕ−Qx

+ (ρQx )∗ϕQx
+ ρQy ϕ−Qy

+ (ρQy )∗ϕQy
]

Φdx2
−y2 = −

ǫdx2
−y2

αdx2
−y2

[ρQx ϕ−Qx
+ (ρQx)∗ϕQx

− ρQy ϕ−Qy
− (ρQy )∗ϕQy

]. (62)

Consider next the coupling between JQ and ϕQ. The same analysis as we did for the previous case shows that the
two relevant bilinear combinations of JQ and ϕ−Q are

JQxϕ−Qx
− (JQx)∗ϕQx

+ JQy ϕ−Qy
− (JQy )∗ϕQy

, and JQx ϕ−Qx
− (JQx)∗ϕQx

− JQy ϕ−Qy
+ (JQy )∗ϕQy

. (63)

The first combination has B2g (dxy) symmetry and the second one has A2g (dxy × dx2−y2) symmetry. Accordingly,
we introduce dxy and A2g SC order parameters via

cα(k)cβ(−k) ∼ iσy
αβ [Φdxy

hdxy
(k) + ΦA2g

hA2g
(k)]. (64)

where the form factors hdxy
(hA2g

) are odd (even) under a C4 lattice rotation and write the Free energy for these two
orders as

SΦ =αs|Φdxy
|2 + ǫdxy

{Φ∗
dxy

[JQx ϕ−Qx
− (JQx )∗ϕQx

+ JQy ϕ−Qy
− (JQy )∗ϕQy

] + h.c.}
+ αdA2g

|ΦA2g
|2 + ǫA2g

{Φ∗
A2g

[JQx ϕ−Qx
− (JQx)∗ϕQx

− JQy ϕ−Qy
+ (JQy )∗ϕQy

] + h.c.}. (65)

Again, it can be directly verified from Table I that Eq. (65) is invariant under lattice C4 rotation and time-reversal.
The effective coupling constants ǫdxy

and ǫA2g
can be expressed as the convolution of fermionic Green’s functions with

form factors hdxy
(k), f2(k)g1(k) and hA2g

(k), f2(k), g1(k), respectively.
Minimizing Eq. (65) with respect to Φ∗

dxy
and Φ∗

A2g
we obtain

Φdxy
= − ǫdxy

αdxy

[JQx ϕ−Qx
− (JQx )∗ϕQx

+ JQy ϕ−Qy
− (JQy )∗ϕQy

]

ΦA2g
= − ǫA2g

αA2g

[JQx ϕ−Qx
− (JQx )∗ϕQx

− JQy ϕ−Qy
+ (JQy )∗ϕQy

]. (66)

B. Computation of the triple couplings within spin-fermion model

From a pure symmetry point of view, a homogeneous charge 2e SC order parameters with s, dx2−y2 , dxy, and
A2g symmetries all emerge as secondary orders in a state in which CDW and PDW condensates are simultaneously
present. In this subsection we evaluate the coefficients within our spin-fermion model and show that they vanish if we
use linearized dispersion near hot spots but are non-zero when we keep the curvature of the FS κ non-zero. If we only
treat the curvature to leading order, i.e., neglect the curvature-induced difference between CDW and PDW orders,
we find that only s and dxy secondary SC orders develop. Beyond the leading order in κ, the other two secondary SC
orders (dx2−y2 and A2g) also likely emerge.

To be specific, we consider a member of state II for which CDW order develops along one bond direction, say (A, B),
and PDW order develops along the other bond direction (C, D). Such a “orthogonal” configuration maximized the
gain of energy due to the development of the secondary SC order and by this reason is a strong candidate for the
actual CDW/PDW configuration in the state II 54.

The PDW/CDW order with CDW along (A, B) and PDW along (C, D) is described as

∆µν
A =

(

0 ρ∗
A

−ρA 0

)

, ∆µν
B =

(

0 ρB

−ρ∗
B 0

)

, ∆µν
C =

(

ϕC 0

0 ϕ∗
C

)

, ∆µν
D =

(

ϕD 0

0 ϕ∗
D

)

. (67)

with

|ρA| = |ρB| = |ϕC | = |ϕD|. (68)

For such order, the constraint on the orientations of ∆µν
A,B,C,D, which, we remind, is Tr(U †

AUBU †
CUD) = −2 or Eq.

(30), becomes

ρ∗
Aρ∗

Bϕ∗
CϕD = |ρAρBϕCϕD|. (69)
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FIG. 6. Panel (a): A superconducting order parameter Φ1 between hot spots 1 and 6. We label CDW order ρ with a line with
an arrow, and PDW and homogeneous superconducting order with lines with double arrows. Panel (c): diagrams for coupling
of Φ1 with ρ and ϕ. Panel (b): diagrams for coupling of Φ1 with ρ and ϕ. Comparing with Panel (b), the minus sign between
CDW’s and between PDW’s cancel out.

Following the consideration in the previous Subsection, we define the homogeneous SC order parameter in terms of
hot fermions as

iσy
αβΦ1c†

1α(k̃)c†
6β(−k̃) + iσy

αβΦ2c†
2α(k̃)c†

5β(−k̃) + iσy
αβΦ3c†

3α(k̃)c†
8β(−k̃) + iσy

αβΦ4c†
4α(k̃)c†

7β(−k̃). (70)

Particularly, in Fig. 6(a), we show Φ1 between hot spots 1 and 6 and its relations to CDW order ρ and PDW order ϕ
at hot spots, and we show its diagrammatic representation in Fig. 6(b). From Fig. 6(b) and Eqs. (19,67) we express
the triple coupling term involving Φ1, ρ, and ϕ as,

SΦ1ρϕ = −2λΦ1(Y126ρAϕ∗
D + Y156ρ∗

Bϕ∗
C) + h.c., (71)

where

Y126 =

∫

dk̃G1(k̃)G2(k̃)G6(−k̃),

Y156 =

∫

dk̃G1(k̃)G5(−k̃)G6(−k̃), (72)

and the coefficient (−2) comes from spin summation, k̃ = (ωm, k̃), and k̃ is the momemtum deviation from a hot
spot. The coefficients Y126 and Y156 are equal by symmetry because the two integrals in (72) are related by inversion:
1 → 6, 2 → 5 and k̃ → −k̃. To get a finite value Y126 = Y156, one, however, has to keep the curvature of the Fermi
surface49, otherwise Y126 = Y156 would be zero. In Eq. (71) we included the curvature into the Green’s functions in
(72) but otherwise assumed that both CDW and PDW order parameters change by the same −λ once we change the
momentum k by π.

One can write the same triple coupling for other pairs of hot spots. We obtain

SΦ2ρϕ = −2λΦ2(Y256ρBϕ∗
D + Y125ρ∗

Aϕ∗
C) + h.c.,

SΦ3ρϕ = −2λΦ3(Y348ρAϕ∗
D + Y378ρ∗

Bϕ∗
C) + h.c.,

SΦ4ρϕ = −2λΦ4(Y478ρBϕ∗
D + Y347ρ∗

Aϕ∗
C) + h.c., (73)
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FIG. 7. The signs of order parameter at hot spots 1-8 for s-wave SC (Panel (a)) and dxy-wave SC (Panel (b)).

where

Y125 =

∫

G1(k)G2(k)G5(−k), Y256 =

∫

G1(k)G5(−k)G6(−k),

Y348 =

∫

G3(k)G4(k)G8(−k), Y378 =

∫

G3(k)G7(−k)G8(−k),

Y347 =

∫

G3(k)G4(k)G7(−k), Y478 =

∫

G4(k)G7(−k)G8(−k). (74)

The corresponding diagrams for Φ3 are shown in Fig. 6(c).
We verified that all Y terms are equal, i.e., Y126 = Y156 = Y125 = Y256 = Y348 = Y378 = Y347 = Y478 ≡ Y .
As a result, the effective action becomes

SΦ =αφ[|Φ1|2 + |Φ2|2 + |Φ3|2 + |Φ4|2]

− 2λY [Φ1(ρAϕ∗
D + ρ∗

Bϕ∗
C) + Φ2(ρBϕ∗

D + ρ∗
Aϕ∗

C) + Φ3(ρAϕ∗
D + ρ∗

Bϕ∗
C) + Φ4(ρBϕ∗

D + ρ∗
Aϕ∗

C)] + h.c. (75)

We see that triple coupling terms involving Φ1 and Φ3 and the ones involving Φ2 and Φ4 are identical. Comparing
panels (b) and (c), we see that this equivalence is the direct consequence of the fact that both ρ and ϕ change by −λ
under the momentum transformation by (π, π) (i.e., under transformation from the FS region 1256 to the region 3478
in Fig. 6(a). In this situation, the prefactors for Φ1 and Φ3 and for Φ2 and Φ4 become equivalent when ρ and ϕ terms
are combined in the three-leg diagrams. Minimizing the action in Eq. (75), we immediately obtain that Φ1 = Φ3 and
Φ2 = Φ4. Recalling the positions of hot spots 1, 2, 3, and 4 this condition only allows for s and dxy symmetry as both
dx2−y2 and A2g SC order would require Φ1 = −Φ3 (see Fig. 7). In other words, to leading order in the curvature,
ǫdx2

−y2 and ǫA2g
in Eqs. (61) and (65) are zero.

Once we include into our consideration the fact that the curvature κ also breaks the symmetry between CDW
and PDW orders, the ratios between CDW and PDW order parameters under momentum transformation by (π, π),
e.g., ρ−A/ρA and ϕ−A/ϕA, do not have to be the same, and from Eq. (36), we have in general λρ = ρ−A/ρA and
λϕ = ϕ−A/ϕA with λϕ − λρ ∝ κ2. In this case, we verified that Φ1 and Φ3 are not identical and, as a result,
ǫdx2

−y2 and ǫA2g
are nonzero However, the magnitudes of ǫdx2

−y2 and ǫA2g
contain extra κ2 compared to ǫs and ǫdxy

,

respectively. On the other hand, αφ term in (75) likely favor dx2−y2 superconductivity, once we go beyond hot spot
approximation, so for not very small κ a secondary SC instability in dx2−y2 channel is a possibility.

Let’s continue the analysis to leading order in κ when s and dxy SC orders develop. The issue we now address is
what is the relative phase between these two secondary orders. We show that there is a π/2 phase difference between s
component and dxy component, i.e., the pairing symmetry is s+idxy. From Eqs. (68) and (69), we find ρAϕ∗

D = ρ∗
Bϕ∗

C ,
and ρBϕ∗

D = ρ∗
Aϕ∗

C . Defining Φs ≡ Φ1 + Φ2 + Φ3 + Φ4 = 2(Φ1 + Φ2) and Φdxy
≡ Φ1 − Φ2 + Φ3 − Φ4 = 2(Φ1 − Φ2),

we can rewrite Eq. (75) as

SΦ =αs|Φs|2 + αd|Φdxy
|2 − λY [Φs(ρA + ρB)ϕ∗

D + Φdxy
(ρA − ρB)ϕ∗

D)] + h.c.

≡αs|Φs|2 + αd|Φdxy
|2 − λY [ΦsρABϕ∗

D + iΦdxy
JABϕ∗

D)] + h.c. (76)
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where αs = αd = αφ/8, and in the last line we have defined ρAB and JAB through ρA ≡ (ρAB + iJAB)/2 and
ρB ≡ (ρAB − iJAB)/2. As |ρA| = |ρB|, ρAB and JAB must have the same phase, hence JAB = rρAB and r is real.
Using this relation, we re-write (76) as

SΦ =αs|Φs|2 + αd|Φdxy
|2 − λY (Φs + irΦdxy

)ρABϕ∗
D + h.c. (77)

From this action we clearly see that the induced SC order should have a (s+idxy)-wave symmetry. In the spin-fermion
model, αs = αd, and whether s or d component is dominant depends on the value of r. Going beyond spin-fermion
model, generally we have αs > αd since on-site (Hubbard) interaction which is independent on momenta in k-space
strongly surpresses s-wave but not d-wave. On the other hand, if time-reversal symmetry or mirror symmetry is
preserved, then ρA = ρB , since they transform to each other under these operations. In this case JAB = 0, hence the
induced SC can only be s-wave. This is no surprise since coexistence of s and idxy breaks time-reversal symmetry
and mirror symmetry.

We briefly consider the induced SC order if the checkerboard state is a generic one, with CDW and PDW components
along all bonds. In this case, the CDW/PDW order parameters are given by the general form Eq. (18). By the same
reasoning, the secondary homogeneous SC order is induced by CDW components along one bond direction (A, B or
C, D) and PDW components along the other bond direction (C, D or A, B). Following the same procedure as before,
we find

SΦ =αφ[|Φ1|2 + |Φ2|2 + |Φ3|2 + |Φ4|2]

− 2λY [Φ1(ρAϕ∗
D + ρ∗

Dϕ∗
A + ρ∗

Bϕ∗
C + ρCϕ∗

B) + Φ2(ρBϕ∗
D + ρDϕ∗

B + ρ∗
Aϕ∗

C + ρ∗
Cϕ∗

A)

+ Φ3(ρAϕ∗
D + ρ∗

Dϕ∗
A + ρ∗

Bϕ∗
C + ρCϕ∗

B) + Φ4(ρBϕ∗
D + ρDϕ∗

B + ρ∗
Aϕ∗

C + ρ∗
Cϕ∗

A)] + h.c. (78)

Once again we see that Φ1 = Φ3 and Φ2 = Φ4, hence the induced SC should be a mixture of s-wave and dxy-wave
only (dx2−y2-wave and A2g-wave do not occur as long as we assume that ρ−A/ρA = ϕ−A/ϕA, etc) However, in this
generic case the relative phase of s-component and dxy-component is not set to be ±π/2.

VII. CONCLUSION AND APPLICATION TO THE CUPRATES

In this paper we studied the interplay between PDW and CDW orders within the spin-fermion model. The model
was originally put forward to account for d-wave superconductivity near the onset of magnetism, but over the last
few years it has been realized that it describes not only a homogeneous d-wave superconductivity but also charge
orders, such as bond order with momentum (Q, Q) and CDW order with momentum (Q, 0)/(0, Q). In this work, we
have shown that the model also describes PDW – a pair-density-wave superconducting order with a non-zero total
momentum of the pair. We have demonstrated that the (approximate) SU(2) particle-hole symmetry of the spin-
fermion model, previously used to link a homogeneous d-wave superconductivity and charge bond order, also links a
CDW order and PDW order which in this regard become intertwined orders. Keeping the SU(2) symmetry explicit,
we found that PDW and CDW order parameters can be combined into a larger PDW/CDW order parameter ∆. The
PDW/CDW order parameter is bilinear in SU(2)-symmetric fermions and has SU(2) × SU(2) ∼ SO(4) symmetry.
We developed a covariant Ginzburg-Landau theory for four PDW/CDW order parameters ∆A,B,C,D, and studied the
ground state configurations. Depending on parameters, we have found two possible ground states: a “stripe” state,
where either ∆A,B or ∆C,D orders, and a “checkerboard” state, where all four order parameters ∆A,B,C,D develop.
We showed that the SO(4) symmetry between CDW and PDW can be broken by two separate effects already within
mean-field theory. One is the inclusion of Fermi surface curvature, which selects a PDW order immediately below
the instability temperature. Another is the overlap between different hot regions, which favors CDW order at low
temperatures. We showed that, for the stripe state, the competition between the two effects gives rise to first-order
transition from PDW to CDW inside the ordered state. We argued that beyond mean-field, the critical temperature
for CDW order is additionally increased compared to that for PDW order due to feedback from the breaking of an
extra Z2 time-reversal symmetry in the CDW state. If this additional increase overshoots the effect of Fermi surface
curvature, the system only develops a CDW order. For the checkerboard state, we considered a situation when both
CDW and PDW orders are present at low T and showed that the presence of both condensates induces a secondary
composite order with s + idxy symmetry. This order further lowers the energy of state II.

State II, in which both CDW and PDW are present, is our proposed candidate for the charge-ordered state in
underdoped cuprates. The gain of energy due to the secondary SC order is maximized for the ”orthogonal” state in
which CDW order develops between a pair of hot spots along, say, vertical direction and PDW order develops between
a pair of hot spots along horizontal direction (or vise versa). One can easily make sure that in such configuration
CDW and PDW order parameters actually carry the same momenta. Despite belonging to a checkerboard state in
our classification, it has all features of stripe CDW order. Namely, it breaks C4 lattice rotational symmetry and Z2
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time-reversal symmetry. At the same time, the presence of the PDW component allows one to explain quantitatively54

ARPES data in the pseudogap state68. Without a PDW component, one could explain ARPES data for the cuts near
Brillouin zone boundary12, but not closer to zone diagonal14.

Another issue relevant to the physics of the cuprates is the interplay between our PDW/CDW order and d-wave
superconductivity. In the present paper we have restricted the analysis to temperatures above Tc. The extension of
the present work to T < Tc shows54 that secondary SC order induced by CDW/PDW and d-wave SC order couple
below Tc in such a way that the measured SC gap becomes nodeless. We propose to do careful ARPES measurements
of the SC gap in the whole co-existence region with the charge order to verify this claim.
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Appendix A: Doping dependence of TCDW and TPDW via variation of the chemical potential

Within the spin-fermion model the doping x comes into play via two effects: through the variation of the magnetic
correlation length ξ and through the variation of the chemical potential µ. In the main text we assumed that the
latter effect is small and considered the variation of TCDW and TPDW with magnetic ξ. Here we present quantitative
study how TCDW and TPDW vary upon changing µ. To be brief, we consider SU(2)-symmetric hot spot model in
which TCDW = TPDW.

The variation of the chemical potential µ changes the location of hot spots and, accordingly, the ratio of Fermi

velocities vy/vx. The latter determines
√

S1S2 and TCDW ∼ ge−1/
√

S1S2 (see Eqs (8) and (9) and Eq. (17) in Ref. 12).

As experimental input, we use the dispersion in nearly optimally doped Pb-Bi2201 from Ref. 68: ǫ(kx, ky) =

−2t(cos kx+cos ky)−4t
′

(cos kx cos ky)−2t
′′

(cos 2kx+cos 2ky)−4t
′′′

(cos 2kx cos ky +cos kx cos 2ky)−µ, with t = 0.22eV,

t
′

= −0.034315eV, t
′′

= 0.035977eV, t
′′′

= −0.0071637eV. We keep µ as a variable to account for different dopings.
Depending on doping, the CDW wave-vector for this material ranges from Q = 0.3π (optimally doped) to Q = 0.45π
(underdoped, see Ref. 69). We vary the chemical potential µ to match the variation of Q(µ) in the range (0.3π, 0.45π).
For this range, we find that the parameter

√
S1S2 is essentially a constant (see Fig. 8). We therefore conclude that,

at least in the range relevant to cuprates, the effect of varying µ on the transition temperatures TCDW and TPDW is
very small and can be neglected.

0.32 0.34 0.36 0.38 0.40 0.42 0.44

Q HΜL

Π

0.05

0.10

0.15

0.20

S1 S2

FIG. 8. the dependence of parameter
√

S1S2 on chemical potential µ. We vary µ such that the CDW ordering momentum Q
varies in the range (0.3π, 0.45π), as measured by experiments.
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Appendix B: Proof of the SO(4) × SO(4) symmetry of the PDW/CDW Ginzburg-Landau action

In this Appendix we show explicitly that the PDW/CDW action Eq. (27) has an SO(4) × SO(4) symmetry.
It is helpful to re-express each of the four SU(2) phases UA,B,C,D via four real variables

Uµν
A =

(

A1 + iA2 A3 − iA4

−A3 − iA4 A1 − iA2

)

, Uµν
B =

(

B1 + iB2 B3 − iB4

−B3 − iB4 B1 − iB2

)

,

Uµν
C =

(

C1 + iC2 C3 − iC4

−C3 − iC4 C1 − iC2

)

, Uµν
D =

(

D1 + iD2 D3 − iD4

−D3 − iD4 D1 − iD2

)

. (B1)

It is easy to verify that
√

A2
1 + A2

2 + A2
3 + A2

4 = 1, and the same relation holds for B’s, C’s and D’s.
We can then re-express the last term of Eq. (27) as

Sc =2λ2I4

√

(|ρA|2 + |ϕA|2)(|ρB|2 + |ϕB |2)(|ρC |2 + |ϕC |2)(|ρD|2 + |ϕD|2)
[

Tr(U †
AUCU †

BUD) + h.c.
]

=8λ2I4

√

(|ρA|2 + |ϕA|2)(|ρB|2 + |ϕB |2)(|ρC |2 + |ϕC |2)(|ρD|2 + |ϕD|2)

× [(A1C1 + A2C2 + A3C3 + A4C4)(B1D1 + B2D2 + B3D3 + B4D4)

− (A1C2 − A2C1 + A3C4 − A4C3)(B1D2 − B2D1 − B3D4 + B4D3)

− (A1C3 − A2C4 − A3C1 + A4C2)(B1D3 + B2D4 − B3D1 − B4D2)

+(A1C4 + A2C3 − A3C2 − A4C1)(B1D4 − B2D3 + B3D2 − B4D1)] .

=8λ2I4

√

(|ρA|2 + |ϕA|2)(|ρB|2 + |ϕB |2)(|ρC |2 + |ϕC |2)(|ρD|2 + |ϕD|2)

×
(

A1 A2 A3 A4

)











C1 −C2 −C3 −C4

C2 C1 C4 −C3

C3 −C4 C1 C2

C4 C3 −C2 C1





















D1 −D2 −D3 D4

D2 D1 D4 D3

D3 −D4 D1 −D2

−D4 −D3 D2 D1





















B1

−B2

−B3

B4











. (B2)

Recalling that
√

C2
1 + C2

2 + C2
3 + C2

4 = 1 and
√

D2
1 + D2

2 + D2
3 + D2

4 = 1, one can easily verify that the matrix
product

SCD ≡











C1 −C2 −C3 −C4

C2 C1 C4 −C3

C3 −C4 C1 C2

C4 C3 −C2 C1





















D1 −D2 −D3 D4

D2 D1 D4 D3

D3 −D4 D1 −D2

−D4 −D3 D2 D1











(B3)

is an SO(4) matrix. In fact, it is known mathematically70 that every SO(4) matrix can be uniquely decomposed
into such a matrix product. The matrix composed of C’s in this decomposition represents a left-isoclinic rotation
in four-dimensional Euclidean space, and the matrix composed of D’s represents a right-isoclinic rotation (note the
difference in their matrix structures).

We define four-dimensional vectors VA = (A1, A2, A3, A4) and VB = (B1, −B2, −B3, B4) and re-write Eq. (B2) as

Sc =8λ2I4

√

(|ρA|2 + |ϕA|2)(|ρB |2 + |ϕB|2)(|ρC |2 + |ϕC |2)(|ρD|2 + |ϕD|2) × V i
ASij

CDV j
B (B4)

where sum over i, j from 1 to 4 is assumed.
Eq. (B4) is invariant under two SO(4) rotations, represented by SA and SB,

VA → V ′
A ≡ SAVA, VB → V ′

B ≡ SBVB , and SCD → S′
CD ≡ SASCDST

B. (B5)

The matrix S′
CD is also an SO(4) matrix, which means it can be uniquely decomposed as

S′
CD ≡ SASCDST

B =











C′
1 −C′

2 −C′
3 −C′

4

C′
2 C′

1 C′
4 −C′

3

C′
3 −C′

4 C′
1 C′

2

C′
4 C′

3 −C′
2 C′

1





















D′
1 −D′

2 −D′
3 D′

4

D′
2 D′

1 D′
4 D′

3

D′
3 −D′

4 D′
1 −D′

2

−D′
4 −D′

3 D′
2 D′

1











. (B6)

This in turn implies that SA and SB uniquely determine the transformations of C’s and D’s. We see that from Eqs.
(B5) and (B6) that the symmetry of Sc is SO(4)×SO(4). It is easy to show that all other terms in the effective action
of Eq. (27) are also invariant under these two SO(4) transformations. Therefore, the full continuous symmetry of the
effective action (27) is SO(4) × SO(4).
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Appendix C: The evaluation of Eqs. (32)-(35)

For Eqs. (32) and (33), we introduce z = k̃y/
√

γ|ωm| and use the zero-temperature form of Σ(ωm) ≈ (2/3) sgn
√

ω0ωm,
and rewrite Eqs. (32,33) as

ϕA = − 3TPDW

8

∑

m

ϕ−A

|ωm|

∫ ∞

0

dz√
z2 + 1

1
[√

z2 + 1 +
(

1 +
√

9|ωm|/4ω0

)

/4
]2

+
3κ2TPDW

8

∑

m

ϕ−A

|ωm|

∫ ∞

0

dz√
z2 + 1

γ|ωm|z4/k2
F

[√
z2 + 1 +

(

1 +
√

9|ωm|/4ω0

)

/4
]4 (C1)

ϕ−A = =
3TPDW

8

∑

m

ϕA

|ωm|

∫ ∞

0

dz√
z2 + 1

1
(

1 +
√

9|ωm|/4ω0

)2

/16 + z2

− 3κ2TPDW

8

∑

m

ϕA

|ωm|

∫ ∞

0

dz√
z2 + 1

4z2γ|ωm|(z2 + 1)2/k2
F

[

(

1 +
√

9|ωm|/4ω0

)2

/16 + z2

]3 . (C2)

We have only kept the leading order dependence on κ. For Eqs. (34) and (35), we have after identical calculations

ρA = − 3TCDW

8

∑

m

ρ−A

|ωm|

∫ ∞

0

dz√
z2 + 1

1
[√

z2 + 1 +
(

1 +
√

9|ωm|/4ω0

)

/4
]2

+
9κ2TCDW

8

∑

m

ρ−A

|ωm|

∫ ∞

0

dz√
z2 + 1

γ|ωm|z4/k2
F

[√
z2 + 1 +

(

1 +
√

9|ωm|/4ω0

)

/4
]4 (C3)

ρ−A = − 3TCDW

8

∑

m

ρA

|ωm|

∫ ∞

0

dz√
z2 + 1

1
(

1 +
√

9|ωm|/4ω0

)2

/16 + z2

+
3κ2TCDW

8

∑

m

ρA

|ωm|

∫ ∞

0

dz√
z2 + 1

(

1 +
√

9|ωm|/4ω0

)2

κ2γ|ωm|(z2 + 1)2/(4k2
F )

[

(

1 +
√

9|ωm|/4ω0

)2

/16 + z2

]3 . (C4)

Evaluating Eqs. (C1,C2,C3,C4) we obtain Eqs. (36) in the main text.

1 V. J. Emery and S. A. Kivelson, Nature (London) 374, 434 (1994).
2 Ar. Abanov, A. V. Chubukov, and J. Schmalian, Adv. Phys. 52, 119 (2003).
3 G. Ghiringhelli, M. Le Tacon, M. Minola, S. Blanco-Canosa, C. Mazzoli, N.B. Brookes, G.M. De Luca, A. Frano, D. G.

Hawthorn, F. He, T. Loew, M. Moretti Sala, D.C. Peets, M. Salluzzo, E. Schierle, R. Sutarto, G. A. Sawatzky, E. Weschke,
B. Keimer, and L. Braicovich, Science, 337, 821 (2012).

4 A. J. Achkar, R. Sutarto, X. Mao, F. He, A. Frano, S. Blanco-Canosa, M. Le Tacon, G. Ghiringhelli, L. Braicovich, M.
Minola, M. Moretti Sala, C. Mazzoli, Ruixing Liang, D. A. Bonn, W. N. Hardy, B. Keimer, G. A. Sawatzky, and D. G.
Hawthorn, Phys. Rev. Lett., 109, 167001 (2012).

5 R. Comin, A. Frano, M. M. Yee, Y. Yoshida, H. Eisaki, E. Schierle, E. Weschke, R. Sutarto, F. He, A. Soumyanarayanan,
Y. He, M. Le Tacon, I. S. Elfimov, J. E. Hoffman, G. A. Sawatzky, B. Keimer, and A. Damascelli, Science 343, 390-392
(2014)

6 E. H. da Silva Neto, P. Aynajian, A. Frano, R. Comin, E. Schierle, E. Weschke, A. Gyenis, J. Wen, J. Schneeloch, Z. Xu, S.
Ono, G. Gu, M. Le Tacon, A. Yazdani, Science 343, 393-396 (2014).

7 Y. Ando, K. Segawa, S. Komiya, and A. N. Lavrov Phys. Rev. Lett. 88, 137005 (2001).
8 K. Fujita, M. H. Hamidian, S. D. Edkins, C. K. Kim, Y. Kohsaka, M. Azuma, M. Takano, H. Takagi, H. Eisaki, S. Uchida,

A. Allais, M. J. Lawler, E.-A. Kim, S. Sachdev, and J. C. Séamus Davis, Proc. Nat. Acad. Sci, 111, E3026.
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2013, Forschungszentrum Jülich, Germany, ISBN 978-3-89336-884-6; arXiv:1310.1481.
23 T.-P. Choy and Ph. Phillips, Phys. Rev. Lett. 95, 196405 (2005).
24 E. Berg, E. Fradkin, S.A. Kivelson, and J.M. Tranquada, New Journal of Physics 11, 115004 (2009).
25 D.F. Agterberg and H. Tsunetsugu, Nat. Phys. 4, 639 (2008).
26 T. Senthil and P. A. Lee, Phys. Rev. Lett. 103, 076402 (2009).
27 P. Corboz, T.M. Rice, and M. Troyer, Phys. Rev. Lett. 113, 046402 (2014)
28 M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075128 (2010).
29 C. Castellani, C. Di Castro, and M. Grilli, Phys. Rev. Lett. 75, 4650 (1995); A. Perali, C. Castellani, C. Di Castro, and M.

Grilli, Phys. Rev. B 54, 16216 (1996).
30 See S. Onari and H. Kontani, Phys. Rev. Lett. 109, 137001 (2012) and references therein.
31 See C. Castellani et al., J. Phys. Chem. Sol. 59, 1694 (1998).
32 S. Andergassen, S. Caprara, C. Di Castro, and M. Grilli, Phys. Rev. Lett. 87, 056401 (2001).
33 T. Holder and W. Metzner, Phys. Rev. B 85, 165130 (2012); C. Husemann and W. Metzner, Phys. Rev. B 86, 085113

(2012).
34 M. Bejas, A. Greco, and H. Yamase, Phys. Rev. B 86, 224509 (2012).
35 S. Sachdev and R. L. Placa, Phys. Rev. Lett. 111, 027202 (2013).
36 Hae-Young Kee, C. M. Puetter, and D. Stroud, J. Phys.: Condens. Matter 25, 202201 (2013).
37 J. Sau and S. Sachdev, Phys. Rev. B 89, 075129 (2014).
38 J.C. Davis and D.H. Lee, Proc. Natl. Acad. Sci. 110, 17623 (2013).
39 D. Chowdhury and S. Sachdev, Phys. Rev. B 90, 134516 (2014).
40 H. Meier, C. Pepin, M. Einenkel and K.B. Efetov, Phys. Rev. B 89, 195115 (2014).
41 V. S. de Carvalho and H. Freire, Annals of Physics 348, 32 (2014)
42 A. Allais, J. Bauer and S. Sachdev, Phys. Rev. B 90, 155114 (2014).
43 A. Allais, J. Bauer and S. Sachdev, Ind. J. Phys. Indian Journal of Physics 88, 905 (2014).
44 A. Melikyan and M. R. Norman, Phys. Rev. B 89, 024507 (2014).
45 A. M Tsvelik and A. V. Chubukov, Phys. Rev. B 89, 184515 (2014).
46 S. Bulut, W. A. Atkinson, and A. P. Kampf, Phys. Rev. B 88, 155132 (2013).
47 W. A. Atkinson, A. P. Kampf, and S. Bulut, arXiv:1404.1335.
48 M. H. Fischer, Si Wu, M. Lawler, A. Paramekanti, and Eun-Ah Kim, New J. Phys. 16, 093057 (2014).
49 D. Chowdhury and S. Sachdev, arXiv:1409.5430.
50 A.Thomson and S. Sachdev, arXiv:1410.3483.
51 J. Xia, E. Schemm, G. Deutscher, S. A. Kivelson, D. A. Bonn, W. N. Hardy, R. Liang, W. Siemons, G. Koster, M. M. Fejer,

and A. Kapitulnik Phys. Rev. Lett. 100, 127002 (2008).
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