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We consider competing pair density wave (PDW) and d-wave superconducting states in a magnetic
field. We show that PDW order appears in the cores of d-wave vortices, driving checkerboard charge
density wave (CDW) order in the vortex cores, that is consistent with experimental observations.
Furthermore, we find an additional CDW order that appears on a ring outside the vortex cores. This
CDW order varies with a period that is twice that of the checkerboard CDW and it only appears
where both PDW and d-wave order co-exist. The observation of this additional CDW order would
provide strong evidence for PDW order in the pseudogap phase of the cuprates. We further argue
that the CDW seen by nuclear magnetic resonance at high fields is due to a PDW state that emerges
when a magnetic field is applied.

PACS numbers: 74.20.De, 74.20.Rp, 71.45.Lr

Pair density wave (PDW) superconducting order has
emerged as a realistic candidate for order in the charge
ordered region of the pseudogap phase of the cuprates
near one eighth filling. It naturally accounts for both
superconducting (SC) correlations and for static quasi-
long-range charge density wave (CDW) order observed
near this hole doping and at temperatures below approx-
imately 150 K [1–7] and it can explain observed signa-
tures of broken time-reversal symmetry [8–13]. More-
over, PDW can lead to the quantum oscillations seen in
the cuprates [14] and can also explain anomalous quasi-
particle properties observed by angle resolved photoemis-
sion (ARPES) measurements [7]. In addition, numer-
ical simulations of theories of a doped Mott insulator
reveal PDW order to be a competitive ground state to
d-wave superconductivity [15]. It is therefore important
to find experiments that can identify PDW order in the
cuprates. Motivated by the observation of checkerboard
CDW order inside d-wave vortex cores by scanning tun-
nelling microscopy (STM) [16, 17] and by nuclear mag-
netic resonance (NMR) [18, 19], we examine the com-
petition between d-wave and PDW superconductivity in
applied magnetic fields. Previous theoretical studies of
competing orders in a magnetic field have emphasized
competing spin density wave (SDW) [20, 21], CDW order
[20–22], and staggered flux phases [23, 24] with d-wave
superconductivity. Competing PDW and d-wave order
has not been extensively studied (note that supercon-
ducting phase disordered PDW competing with d-wave
order has been examined [25]). Here, we find that inside
the vortex cores of d-wave superconductivity, PDW order
drives the observed checkerboard CDW order and, in con-
junction with d-wave superconductivity, it also drives an
additional CDW order that appears in a ring-like region
outside the vortex cores. This additional CDW order
has twice the period of the observed checkerboard CDW
order and serves as a smoking gun for PDW order.

In the following, we develop a phenomenological the-
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Figure 1. (Color online) – Sketch of the field/temperature
phase diagram of the model with competing order. For low
applied fields, the d-wave (∆d) is present, and it completely
suppresses the PDW (∆PDW). This is the green (lower) region
of the phase diagram. When increasing the external field, the
d-wave order is substantially suppressed, eventually triggering
a phase transition where the PDW overcomes the competition
with the d-wave and develops a non-zero averaged density.
For sufficiently low temperatures, the second critical field of
the PDW order exceeds that of the d-wave order. As a result,
further increase of the external field completely suppresses the
d-wave order, leaving only ∆PDW, which survives up to H =
HPDW

c2 , as shown in the blue (upper) region of the diagram.
The PDW order qualitatively accounts for emergence of CDW
at high fields, provided the superconducting order of the PDW
is suppressed by phase fluctuations.

ory for competing PDW and d-wave superconductivity,
sketched in Fig. 1. We assume that in zero field, only
d-wave superconductivity appears at the expense of the
PDW order. The PDW order can only appear when the
d-wave order is weakened by the external field. This is
followed by an analysis of the core structure of a single
d-wave vortex, where we show that PDW order appears
inside these cores, without any phase winding, generat-
ing the CDW order discussed above. Finally, we examine
the behavior of this competing system as field is further
increased and identify a transition at which PDW order
develops phase coherence and forms a vortex phase. At
the mean-field level, PDW order simultaneously breaks
gauge invariance and translational symmetry. Fluctua-
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tions can lead to two separate transitions: one for which
gauge symmetry is broken and one for which translational
symmetry is broken [26]. We argue that at high fields,
the superconducting order is removed by phase fluctua-
tions, leaving behind the CDW order seen through NMR
experiments.

Ginzburg Landau theory of competing d-wave and
PDW superconductivity. To investigate the physics re-
sulting from the H-T phase diagram shown in Fig. 1,
we consider a model with competing d-wave and PDW
superconductivity. The PDW order parameter is repre-
sented by a four component complex vector ∆PDW, de-
fined as ∆†PDW = (∆∗Qx

,∆∗−Qx
,∆∗Qy

,∆∗−Qy
) and the d-

wave by one complex (scalar) field ∆d. For an external
applied field H, which we will take to be along the z-axis:
H = Hez, the Ginzburg-Landau free energy density is

F =
B2

2
−B ·H + Fd-wave + FPDW + FInt , (1)

where B = ∇×A is the magnetic field and A its vector
potential. FPDW describes the pair density wave ∆PDW,
and FInt its coupling to the d-wave order that obeys

Fd-wave =
1

2
|D∆d|2 + αd|∆d|2 +

βd
2
|∆d|4 , (2)

with D = ∇ + ieA. Symmetry arguments dictate the
free energy of the PDW has the following structure [5]:
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1

2

∑
q̂,j

kq̂,j |Dj∆q̂|2 +
∑
q̂

(
α+

β

2
|∆q̂|2

)
|∆q̂|2

+ γ1
(
|∆Qx

|2|∆−Qx
|2 + |∆Qy

|2|∆−Qy
|2
)

+ γ2
(
|∆Qx

|2 + |∆−Qx
|2
) (
|∆Qy

|2 + |∆−Qy
|2
)

+
γ3
2

(
∆∗Qx

∆∗−Qx
∆Qy

∆−Qy
+ c.c.

)
. (3)

Here, we neglect variations along z-axis, thus j = x, y
is the spatial index, while q̂ is a wave-vector index:
q̂ = Qx,−Qx,Qy,−Qy. In the following another con-
venient index, q = Qx,Qy will also be used. The coeffi-
cients kq̂,j of the kinetic term satisfy the following rela-
tion k±Qx,x = k±Qy,y ≡ 1 − k and k±Qx,y = k±Qy,x ≡
1 + k, and k measures the anisotropy of the system [27].
Here Qx represents the wavevector Qx = (Q, 0), Qy
represents Qy = (0,Q), and ∆Qx represents the gap
associated with the pairing between the fermion states
|k + Qx, ↑〉 and |k, ↓〉, where k is the momentum and ↑,
↓ denote the spin-states. Our choice of the wavevectors
and model for the PDW order is motivated by the recent
proposal of Amperean pairing by P.A. Lee [7], for which
it has been shown that PDW order can account both the
anomalous quasi-particle properties observed by ARPES
and the CDW order (at momenta 2Qx and 2Qy) ob-
served in the pseudogap phase of Bi2Sr2−xLaxCuO6+δ

(Bi2201). Depending on the parameters γi, the free en-
ergy of the PDW sector (3) allows five possible distinct

ground states [5]. We choose parameters such that, in
the non-competing case, the PDW ground state has the
form ∆†PDW = ∆∗0(1, 1, i, i). This PDW ground state is
the same as that proposed in Ref. 7 and is also found to
be a ground state in the spin-fermion model [28, 29].

Both ∆d and ∆PDW interact with the magnetic field
(through the kinetic terms) and are therefore indirectly
coupled. They also directly interact through FInt:

FInt = γ4|∆d|2
(
|∆Qx

|2 + |∆−Qx
|2 + |∆Qy

|2 + |∆−Qy
|2
)

+
γ5
2

([
∆∗Qx

∆∗−Qx
+ ∆∗Qy

∆∗−Qy

]
∆2
d + c.c.

)
. (4)

The first term in (4) is a bi-quadratic coupling between
the d-wave and the pair density wave ∼ γ4|∆d|2|∆PDW|2.
Coexistence of both order parameters is penalized for
positive values γ4, and when strong enough, only one of
the condensates supports a non-zero ground state density.
Our choice of parameters is such that when H = 0, ∆d

has lower condensation energy and ∆PDW is completely
suppressed, because of the interaction terms (4). More-
over, as CDW order emerges at high field, we require
∆PDW to have a higher second critical field (HPDW

c2 ) than
∆d (Hd-wave

c2 ). These conditions lead to Fig. 1. We note
that in principle, the existence of the competing PDW
order can allow for the PDW driven CDW order to ap-
pear in zero field in the vicinity of inhomogeneities or
due to fluctuations in some materials. Indeed CDW order
has been observed in YBa2Cu3O6.67 in zero field through
high energy X-ray diffraction [30] (this CDW order is en-
hanced by magnetic fields).

PDW driven CDW order. We take CDW order to be
denoted by ρ(r) =

∑
q̂ eiq̂·rρq̂ (note that ρ−q = ρ∗q). The

coupling between ρ2q (with q = Qx,Qy) and PDW order
is given by [5–7]:∑
q=Qx,Qy

α2|ρ2q|2 + ε2
(
ρ2q∆−q∆

∗
q + ρ−2q∆q∆

∗
−q
)
. (5)

Assuming that the CDW order is induced by the PDW
order, we find that

ρ±2q = ρ∗∓2q = − ε2
α2

∆±q∆
∗
∓q . (6)

The CDW order given by ρ2q corresponds to that ob-
served in the pseudogap phase in zero field and to the
checkerboard order observed inside the d-wave vortex
cores. An important feature of this work is that the in-
terplay between d-wave and PDW orders gives rise to an
additional contribution to the CDW order. In particular,
this coupling is given by [5–7]∑

q=Qx,Qy

α1|ρq|2 + ε1

(
ρq[∆−q∆

∗
d + ∆∗q∆d]

+ ρ−q[∆q∆
∗
d + ∆∗−q∆d]

)
. (7)
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Figure 2. (Color online) – The core structure of a single d-
wave vortex. The parameters are (α, β) = (−5, 10) and γ2 =
γ1/2 = 10γ5 = 3, while the parameters for the d-wave order
are (αd, βd) = (−2.5, 0.61). The parameters of the interaction
(4) that directly couples the PDW and the d-wave order are
γ4 = 2, γ5 = 0.5 and the gauge coupling constant is e = 0.4.
The d-wave order has non-zero ground state density and has
a vortex, while the components of the PDW are zero in the
ground state. At the core of ∆d vortex, because there is less
density, it is beneficial for the components ∆d of the PDW to
condense, as shown in the right panel of the first line (here
we show only ∆Qx

as the other components behave similarly).
The second line displays the induced CDW: ρ2q (6) and ρq (8)
(note ρ2Qy is similar to ρ2Qx).

Differentiation with respect to ρ∗q and ρq yields the re-
lations (this also assumes the CDW order is purely in-
duced):

ρ±q = ρ∗∓q = − ε1
α1

(
∆±q∆

∗
d + ∆d∆

∗
∓q
)
. (8)

The contributions ρQ and ρ2Q to the CDW are recon-
structed according to

ρnQ =
∑

q=Qx,Qy

ρnqe
inq·r + ρ−nqe

−inq·r , (9)

that shows the n-th order contribution to the CDW. The
CDW order ρQ has twice the periodicity of ρ2Q and is
not an induced order of the pure ∆PDW: it only appears
when both ∆d and ∆PDW coexist. Consequently, ρQ is
a signature of the appearance of ∆PDW in a d-wave su-
perconductor. Note that the existence of ρQ requires
superconducting phase coherence for both the PDW and
d-wave orders (strictly speaking, coherence in the phase
difference between these two orders will suffice). We note
that an observation of ρQ has been reported [31], below
we make predictions about the structure of ρQ around a
vortex in ∆d.

Vortex properties and checkerboard pattern. In order
to investigate the interplay of ∆PDW and ∆d, within the
framework sketched in Fig. 1, we numerically minimize
the free energy (1) both for single vortices and for a finite
sample in external field. The theory is discretized within
a finite element formulation [32] and minimized using a
non-linear conjugate gradient algorithm (for detailed dis-
cussion on the numerical methods, see for example [33]).
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Figure 3. (Color online) – The charge density wave order (A)
and the contributions of ρQ (B) and ρ2Q (C), as defined in (9).
The parameters are the same as in Fig. 2 except that γ5 = 1.0.
The circle of radius ξd, the coherence length of the d-wave,
indicates the size of the vortex core. ρQ and ρ2Q are shown
for unit value of the ratios ε1/α1 and ε2/α2, while ρ, the total
charge density is shown for ε1/α1 = 1 and ε2/α2 = 0.1. As
a result, ρ shows checkerboard in vortex core. Furthermore,
since ρQ varies with twice the wavelength as ρ2Q, away from
the core, every other peak in ρ is magnified.

Typical single vortex solutions, see Fig. 2, clearly show
that the components of the PDW order acquire small, yet
non-zero density at the center of the d-wave vortex core.
As a result, the CDW order is also non-zero at the vortex
core. Faraway from the vortex, the ∆PDW decays to zero,
and the induced CDW is suppressed as well. Fig. 3 shows
the magnitude of the total CDW order as well as the
contributions form different orders in Q. Here, we used
the values Q = π/d and d = 4a0, where a0 is the Cu-
Cu distance in cuprates and, in qualitative accordance
with experimental data [34], we take the d-wave coher-
ence length to be ξd = 13a0. ρ2Q forms a checkerboard
pattern that extends significantly outside the vortex core,
and this is consistent with the observations.

In addition to this checkerboard order, we also find
that ρQ, which varies at twice the wave-length of ρ2Q,
is non-zero and also has a non-trivial structure. More
precisely, at the singularity in the d-wave, ρQ = 0, and
when ∆d becomes non-zero, ρQ also becomes non-zero.
Since ∆PDW exhibits no phase winding, ρQ inherits the
phase winding of ∆d. A phase winding in ρQ implies
a dislocation in the corresponding real space order [35].
Consequently, the CDW order associated with ρQ has a
dislocation at the vortex core. Since ρQ is suppressed
in vortex cores, the checkerboard pattern that appears
there, is essentially due to ρ2Q. The contribution of ρQ to
the CDW becomes important at distances larger than ξd.
Moreover, as it varies with a doubled wave-length, every
other charge peak is magnified in a region outside the
core. Note that away from the vortex, ρQ is suppressed
at a much slower rate than ρ2Q. Furthermore, if ρQ is
observable at all, then it should vanish at Hd-wave

c2 while
ρ2Q, will persist to much higher fields.

Field induced PDW and CDW orders. To investigate
the evolution of the PDW and d-wave orders in external
field H, for parameters corresponding to Fig. 1, we min-
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Figure 4. (Color online) – Simulation over a finite sample
with increasing values of the external field (values are shown
on the left) for the same parameters as in Fig. 3. The first
column shows the magnetic flux, the second column shows
|∆d|2 and the last column shows |∆Qx

|2 (other components
of the PDW behave similarly to ∆Qx

). The graph at the
bottom shows order parameters averaged over the sample, as
functions of the applied field. There, we show the densities
of the d-wave and PDW order, as well as the induced CDW
contributions ρQx and ρ2Qx . Above a certain external field
(here HS/Φ0 = 32), because of the suppression of the d-
wave order, the PDW develops a non-zero expectation. The
appearance of the PDW in external field is also accompanied
by induced CDW order.

imize the free energy (1), while imposing ∇×A = H at
the (insulating) boundary of the domain. We follow the
vertical line sketched in Fig. 1. That is, starting from
H = 0, the field is sequentially increased after the solu-
tion for the current value of H is found. Typical results
illustrating such a simulation are shown in Fig. 4. In low
fields, only ∆d has a non-zero ground state density and,
as a result of the competition with ∆d in the interact-
ing terms (4), ∆PDW is fully suppressed (or vanishingly
small).

Above the first critical field, vortices in ∆d, carrying a
small amount ∆PDW in their core, start entering the sys-
tem. The averaged PDW over the whole sample 〈|∆PDW|〉
is still vanishingly small. With increasing field, the den-
sity of vortices increase and they start to overlap [36] .
That is, |∆PDW| and |∆d| do not have ‘enough room’ to
recover their ground-state values. At this point the lumps

of ∆PDW, previously isolated in vortex cores, interconnect
and ∆PDW acquires a phase coherence globally. This be-
havior was also found to occur in a similar system with
competing orders [37]. At this phase transition, not only
〈|∆PDW|〉 becomes non-zero but the induced CDW, ρ±q
and ρ±2q also become non-zero on average (see Fig. 4).
We conjecture that this phase transition is related to that
seen though NMR [38].

When the PDW order is on average non-zero, energetic
considerations dictate that it should acquire phase wind-
ing as well. Indeed, when two condensates have non-zero
density, the energy of configurations that has winding in
only one condensate diverges (at least logarithmically)
with the system size. As a result vortices in ∆q̂ are cre-
ated when 〈|∆PDW|〉 6= 0 [37]. Note that, as it is still
beneficial to have non-zero ∆PDW inside the vortex cores
of ∆d, the singularities that are formed due to the wind-
ing in ∆q̂ do not overlap with those of ∆d (and they do
not overlap with each other due to the terms γi in (3),
that favor core splitting). Thus, the CDW order still ap-
pears within the vortex cores of ∆d. Since all the vortices
that are created do not overlap with each other, the mag-
netic induction is smeared out and is much more spatially
uniform than in usual vortex phases.

For fields above the second critical field of ∆d, only the
PDW order survives. As a result, the contribution ρQ to
the induced CDW also vanishes and the observed CDW
order above Hd-wave

c2 is solely that induced by the PDW
(that is ρ2Q). In this state, at the mean-field level, the
vortices in ∆q̂ do not overlap, as the terms with γi in (3)
favor vortex core splitting. In principle, the parameters
γi can also be chosen so that the ∆q̂ cores coincide for
some or all PDW components. This will not change the
qualitative physics associated with the competition be-
tween ∆d and ∆PDW. However, it will affect the resulting
high field regime. In either case, we expect superconduct-
ing phase fluctuations to play an important role in the
high field phase. In particular, it is known that for type
II superconductors, high magnetic fields significantly en-
hance the role of fluctuations [39, 40]. Phase fluctuations
will remove the superconducting long range order of the
PDW state, but the CDW order can still survive [26]. A
related mechanism was also considered in a different but
related model of superconductivity [41].

Conclusions. We have considered a model of compet-
ing pair density wave and d-wave superconductivity. The
superconducting state in the Meissner phase is purely d-
wave. With increasing external field, vortices in the d-
wave superconductor are formed and they carry PDW
and induced CDW order in their core. When these vor-
tices significantly interact, the lumps of PDW order ac-
quire global phase coherence and both PDW and d-wave
superconductivity coexist. In the regions where both
PDW and d-wave order exist, the induced CDW order
features a ρQ contribution that exists at twice the pe-
riodicity of the CDW order observed in the pseudogap
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phase at zero fields. The observation of ρQ can serve to
identify the existence of PDW order in the pseudogap
phase.
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