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Vivek Mishra1

1Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.

Majority of unconventional superconductors has close proximity to a magnetic phase. In many
cases the magnetic phase coexists with superconductivity in some fraction of the phase diagram. The
response of these two competing phases to disorder can be used as a tool to gain better understand-
ing of these complex systems. Here I consider the effect of disorder on a multiband superconductor
appropriate for the ferro-pnictide superconductors. I consider both interband and intraband scat-
tering for a two band model consisting of a hole pocket and an electron pocket. The scattering from
point-like impurities is treated within the self-consistent Born approximation. I calculate the effect
of disorder on the transition temperature to the superconducting state. The influence of impurity
scattering on the low energy excitation spectrum in the superconducting state is also studied for
different kinds of gap structures.

PACS numbers: 74.20.-z,74.70.Xa,74.62.En,74.25.Jb

I. INTRODUCTION

The coexistence of magnetism and superconductivity is
a long known problem in contemporary physics. Recent
discovery of the iron based superconductors (FeScs) has
renewed the interest in this old problem. There are some
generic features among the various families of FeScs. In
general, they have multiple electron and holelike Fermi
surfaces. Parent compounds of many families show long
range spin-density wave (SDW) order, which weakens as
superconductivity emerges.

The symmetry of the order parameter in these sys-
tems is still an unsettled issue. One of the leading can-
didate for the symmetry of the superconducting gap in
the FeScs is the s± state, where the electron and the
hole Fermi surfaces have the order parameters with op-
posite signs.1–6 This kind of state appears in the spin-
fluctuation based pairing theory. On the other hand, a
different mechanism where pairing is mediated by orbital
fluctuations leads to the s++ state, which doesn’t have
relative sign change of the order parameters between the
electron and the hole pockets.7 Spin fluctuation medi-
ated pairing can also lead to accidental nodes or strong
anisotropy in the order parameters.8 Most of the theoret-
ical works have focused on superconductivity. Recently,
spin-fluctuations based calculations have been performed
in the SDW state, which predict singlet and triplet su-
perconducting states with possibility of order parameter
nodes.9,10 Given the fact that the SDW phase coexist in
many FeScs, its role in pairing can not be ignored. A
profound understanding of interplay between the SDW
phase and the superconducting phase is essential to ex-
tricate the enigma of microscopic pairing mechanism and
structure of the superconducting order parameter. It is
important to comprehend what kind of superconducting
states can coexist with the SDW order with a transition
temperature of few Kelvins as observed in many FeScs.
Another key question is how the structure of the super-
conducting gaps evolves as the SDW phase weakens.

Response of a superconductor to different kinds of

impurities depends highly on the structure of the gap.
An isotropic s-wave superconductor is immune to non-
magnetic impurity scattering, while magnetic impurities
strongly suppress superconductivity.11,12 In multiband
superconductors with isotropic gaps on the individual
Fermi surfaces, only the impurities which can mix order
parameters with opposite signs suppress superconductiv-
ity. However, nonmagnetic impurity scattering lowers the
critical temperature (Tc) weakly, if the order parameters
have anisotropy even without any sign change. The ef-
fects of impurities on superconductivity have been stud-
ied heavily, but these effects haven’t been explored to
that degree in the presence of a coexisting order. Fer-
nandes et al. have shown that in the coexisting phase
of an isotropic s± state with the SDW order Tc can be
enhanced by adding impurities.13 They showed that rel-
atively stronger suppression of the SDW phase enhances
superconductivity, which effectively overcomes the pair-
breaking effect of disorder in some cases. It should be
noted here that the SDW order gets suppressed by both
interband and intraband impurity scattering.14 On the
contrary, not all kinds of impurities suppress supercon-
ductivity.

Apart from changing the critical temperature, impu-
rities also modify the low temperature properties of the
superconductors. In a fully gapped superconductor, an
impurity band inside the gap can give rise to power law
behavior in the thermodynamic and the transport mea-
surements. Impurity scattering can alter the low temper-
ature behavior of the physical quantities like penetration
depth, thermal conductivity etc., in the nodal supercon-
ductors. Wang et al. have proposed an experiment to
distinguish between s± and s++ state exploiting the ef-
fect of disorder.15 Irradiation techniques to systemati-
cally introduce disorder can be used to understand the
structure of gap together with other measurements like
the penetration depth or the thermal conductivity. Re-
cently, Mizukami et al.16 used this approach for P doped
BaFe2As2 compound, and found evidence for accidental
nodes based on simultaneous use of electron irradiation
technique and penetration depth measurement.
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In this paper, I study the effect of disorder on the coex-
isting phase of the superconductivity and the SDW state,
including anisotropy in the superconducting gaps. Ear-
lier work in this area has mostly focused on effect of disor-
der on Tc for an isotropic s± state.13,14 I consider the role
of anisotropy in the order parameter structure, which is
very likely to happen in these systems due to the involve-
ment of many different orbitals in the formation of mul-
tiple bands. There is also evidence of strong anisotropy
and possibilities of accidental nodes in BaFe2As2 based
FeScs. This is one of the most studied family of the FeScs,
which is an antiferromagnetic metal in the parent state
and the superconducting state appears upon doping of
the electrons or the holes. Even isovalent doping of P
for As leads to the superconductivity. In all these cases
the underdoped side of the phase diagram shows the co-
existence of the SDW phase with the superconducting
order. From the experimental perspective, systematic ir-
radiation studies have been performed on both the hole-
doped and the electron-doped systems. Van der Beek
et al. have found suppression of transition temperature
in the electron doped and P doped BaFe2As2 systems,
subjected to the electron irradiation.17 They attributed
this to possibility of three dimensional nodes. Taen et
al. studied the effect of electron irradiation on K doped
BaFe2As2, and found relatively strong suppression of the
transition temperature in the underdoped samples com-
pare to the optimally or overdoped samples.18 Similar re-
sults were reported by Cho et al. on K doped BaFe2As2
systems.19 They also measured the temperature depen-
dence of the penetration depth in the irradiated samples.
In contrast to the optimally doped and overdoped sam-
ples they found evidence for significant anisotropy in the
order parameter in the underdoped phase. Therefore, it
is important to understand the role of anisotropy in the
order parameter to interpret the experimental data. In
this work, I study the effect of disorder on an anisotropic
superconducting order parameter. I calculate the effect
of disorder on the transition temperature and the density
of states (DOS), which is directly related to many low
temperature properties of the superconducting state.
This paper is organized as follows: in the next Sec.

II, I describe the model used in this work. In Sec. III, I
present the results on the effect of disorder on Tc and Sec.
IV is dedicated to the discussion of the density of state
in the presence of impurity scattering, then I conclude in
Sec. V.

II. MODEL

I consider a minimal two band model with cylindri-
cal Fermi surfaces for one the holelike pocket and one for
the electronlike pocket. Raghu et al. have shown that the
two band model with an electronlike and a holelike Fermi
surface sheets is sufficient to describe the low energy
physics of FeScs.20 I work in the unfolded zone. In the
context of the SDW instability, Eremin and Chubukov
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FIG. 1. (Color online) Schematic plot of the Fermi surfaces.
Thin lines shows the Fermi surfaces in the paramagnetic state,
where solid line represents the hole like Fermi surface and the
dotted line shows the shifted electron Fermi surface. Thick
lines represent the pockets corresponding to one of the recon-
structed band in the SDW state.

have shown that only one of the electron pocket and one
of the hole pocket participates in the SDW formation.21

It has been shown in many earlier works that this simple
model allows to capture qualitative features observed in
the experiments.22–24 For the hole and the electron Fermi
surfaces the electronic dispersions read,

ξh(k) = µh −
k2

2mh
, (1)

ξe(k) =
(kx −Qx)

2

2mx
+

(ky −Qy)
2

2my
− µe, (2)

where (Qx,Qy) is the SDW ordering vector, mh is the
hole mass, mx/y is the electron mass along the x̂/ŷ direc-
tion, and µh/e is the energy offset for the hole/electron
band. It is useful to write these dispersions as,

ξh = −ξ, (3)

ξe = ξ + 2δ, (4)

here δ is the energy scale, which is a quantitative mea-
sure of deviation from perfect nesting. Perfect nesting is
achieved by setting δ = 0. In general, δ is a function of
angle on the Fermi surface and goes to zero on the hot-
spots. This nesting function δ can be tuned by doping or
pressure. For the dispersions considered here,

δ(φ) = δ0 + δ1 cos 2φ, (5)

where φ is the angle along the electronlike Fermi sur-
face. The nesting is controlled by two parameters δ0
and δ1. They are the keys to control the nature of
the ground state and the phase diagram.22,23 In this
work, the values of δ0 and δ1 are chosen to achieve the
coexistence of the SDW phase and superconductivity.
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The model Hamiltonian in the two band Nambu basis

Ψ† =
(

c†k1↑
, c−k1↓

, c†k2↑
, c−k2↓

)

reads,22,24

H = Ψ†







ξ1 ∆1 M 0
∆1 −ξ1 0 M
M 0 ξ2 ∆2

0 M ∆2 −ξ2






Ψ, (6)

where c†kiα
(ckiα) is the creation (annihilation) operator

for the fermions on band i = 1, 2 with spin α =↑, ↓. The
hole and the electron bands are denoted by subscript in-
dices 1 and 2 respectively. The mean field self-consistency
conditions are,

∆i =
∑

j,k,α,β

V sc
ij (−iσy)αβ

〈

c−kjαckjβ

〉

, (7)

M =
∑

k,α,β

V sdw (σz)αβ

〈

c†k1α
ck2β

〉

,

where i, j are the band indices and α, β are the spin in-
dices. σx, σy and σz are the Pauli matrices in the spin
space. In the SDW state, long range SDW order leads to
reconstruction of the Fermi surface. The new Fermi sur-
faces are defined by the eigenvalues of the Hamiltonian,
which read

E± =
ξh + ξe ±

√

(ξe − ξh)
2
+ 4M2

2
. (8)

Fig. 1 shows the reconstructed band. For large value of
the SDW order parameter only the pockets correspond-
ing to E− cross the Fermi energy. At the transition to
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FIG. 2. (Color online) Transition temperature as a function
of order parameter anisotropy parameter r and the relative
strength of the interband coupling ρ. Regions with nodal su-
perconductivity in the absence of the SDW state are indicated
in the phase diagram (r ≥ 1 and r ≤ −1). Transition tem-
perature is set to unity for the entire parameter space in the
absence of the SDW order.

the superconducting state, only the first order terms in

the superconducting order parameters are retained. This
reduces Tc determination problem to an eigenvalue prob-
lem for a n × n matrix, where n is the number of order
parameters. The coefficients of this pairing matrix de-
pend on the details of interactions, underlying electronic
structure and various scattering processes. In the pres-
ence of the SDW order, the coefficients of pairing ma-
trix are calculated using the SDW state Green’s function,
which carries the information about the reconstruction of
the Fermi surfaces. The interaction for the SDW order
Vsdw is assumed to be momentum independent. Pairing
interactions for the superconductivity are,

V sc
ij = V 0

ijYi(φi)Yj(φj). (9)

Here φi is the angle along the ith band. These interac-
tions lead to an isotropic order parameter on the hole
pocket and an anisotropic order parameter on the elec-
tron pocket in the absence of the SDW order parameter,
which reads

∆h = −∆1Yh, (10)

∆e = ∆2Ye, (11)

where

Yh = 1, (12)

Ye = (1 + r cos 2φ). (13)

There is a relative sign change between the average val-
ues of the order parameters on the two bands. These
interactions are purely phenomenological to get desired
order parameter anisotropy in the pure superconducting
state. In general, an isotropic interaction can become
strongly momentum dependent on the reconstructed
Fermi surfaces.25,26 For momentum independent gaps
and interactions, it is easier to understand the relation
between the fermions in the paramagnetic state and in
the ordered SDW state. A simple s± state transform
into nodeless gaps on new Fermi surfaces, on the other
hand s++ state gives rise to nodes in the SDW state.25,27

Later, in the Sec. IV, I discuss the DOS in the coexisting
phase, which contains the informations about nodes or
sign change of the order parameter on the reconstructed
Fermi surfaces. In the next section, I discuss the impor-
tance of anisotropy in the the context of Tc.

A. Effect of anisotropy on Tc

Anisotropy of the superconducting order parameter on
the electron pocket is controlled by the parameter r (see
Eq. (13)). Recent theoretical studies have found many
different kinds of order parameters including gap nodes
in the coexisting phase.9,10 These studies are based spin-
fluctuation mediated pairing in the SDW phase and they
predict pairing instabilities in both the spin channels i.e.
singlet and triplet. Here I consider only singlet pair-
ing. Different possible gap structures are modeled using
phenomenological interactions. In the presence of the
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SDW order the structure of the gap relative to hot-spots
becomes critical. To get a qualitative understanding of
it, I consider a simple two parameter interaction poten-
tials with equal attractive intraband pairing interactions
V 0
ij = −λ0 and a repulsive interband interaction

V 0
eh = V 0

he = ρλ0, (14)

where ρ controls the strength of the interband coupling
compare to the intraband coupling λ0. All the energy
scales are measured in the unit of Tc0, which is the super-
conducting transition temperature in the absence of the
SDW order. The SDW transition temperature (Ts0) with
perfect nesting is 5Tc0 for the SDW interaction (Vsdw)
chosen here. In order to study the effect of the disor-
der on Tc, I keep the Fermi surface unchanged (i.e. δ),
that fixes the SDW transition temperature. Since su-
perconductivity doesn’t exist with perfect nesting, so I
take δ0=1.068Ts0 and δ1=1.257Ts0, which allows coex-
istence of superconductivity with the SDW phase. Due
to deviation from the perfect nesting the SDW transition
temperature (Ts) also reduces to 2.5Tc0 from its perfect
nesting value Ts0. Fig. 2 shows the critical tempera-
ture as a function of anisotropy parameter r and relative
strength of interband interaction ρ. For the phase dia-
gram shown in the Fig. 2, the value of the intraband
interaction is chosen such that the critical temperature
is the same in the entire phase diagram in the absence
of SDW order. For weaker interband interaction Tc is
sensitive to its strength, but its value saturates with in-
creasing interband coupling. The suppression of Tc is
highest when the gap nodes or the gap minima are away
from the hot-spots, which happens for r<0. On the other
hand, suppression is quite weak when the nodes or min-
ima are near the hot-spots (r>0). By gap minima or
nodes, I mean the minimum or node of the gap in the
absence of the SDW order. In the presence of the SDW,
even a nodal gap structure may become nodeless on the
reconstructed Fermi surface, and vice versa. This be-
havior is expected because along the hot-spots the SDW
correlations are very strong. If the gap nodes/minima
are away from the hot-spots, then the maximum of the
superconducting order parameter is located near the hot-
spots, which faces stern competition from the SDW order
parameter. In contrast to the case when the maximum of
the gap is away from the hot-spots and the nodes/minima
are near it. In this situation superconductivity is weak-
est on the regions of the Fermi surface, where the SDW
correlations are maximized, hence two phases coexist eas-
ily. This is qualitatively true irrespective of the strength
of the interband coupling. Next I consider the basic for-
malism for the treatment of the disorder due to randomly
distributed point-like impurities.

B. Model for disorder

To understand the effect of disorder I focus on three
representative cases, with r=0 and r= ±1.3. In the ab-

sence of SDW order, an isotropic s± state is realized for
r=0 and |r| = 1.3 give an anisotropic s± state with acci-
dental nodes . The nodes are located near the hot-spots
for r = 1.3, and away from them for r = −1.3. In this
work, only nonmagnetic point-like impurities are consid-
ered. A general impurity potential for a nonmagnetic a
point-like scatterer in the two band Nambu basis reads,

U =







u1 0 v 0
0 −u1 0 −v
v 0 u2 0
0 −v 0 −u2






, (15)

where ui is the intraband scattering potential for ith band
and v is the interband scattering potential. One should
note here that the notion of the interband and the intra-
band scattering introduced here refers to nature of impu-
rity scatterings in the paramagnetic state. In the SDW
phase, reconstruction of the Fermi surfaces takes place.
In the newly constructed Fermi surface pockets, both the
interband and intraband scattering are possible and their
amplitude will depend on the impurity potentials in the
paramagnetic state. The effect of reconstruction of Fermi
surfaces is inbuilt in this framework and taken into ac-
count in calculating the effect of impurities by using the
Green’s function which involves the SDW order. The
amount of impurity scattering is quantified in terms of
the total normal state (paramagnetic state) scattering
rate (Γ), which can be extracted from the shift of the
resistivity curves in experiments. This approach allows
one to compare the effect of impurities in systems with
and without coexisting SDW order. To keep the number
of free parameters minimum, I take the intraband scat-
tering potentials same for both the bands (u1 = u2 = u).
This assumption doesn’t change any of the qualitative
conclusions. The interband scattering v is varied and its
strength is controlled with a dimensionless parameter α.
The interband scattering potential reads,

v = αu. (16)

The effect of impurity scattering is included through the
self energy calculated within the self-consistent Born ap-
proximation. The self energy is,

Σ = nimp

∑

k

U ·G ·U, (17)

here nimp is the impurity concentration and G is the
impurity dressed Green’s function defined as,

G
−1 = G

−1
0 − Σ, (18)

G
−1
0 = iω1 −H, (19)

here 1 is the identity matrix in the two band Nambu
basis. I use the standard trick of replacing all the quan-
tities in the Green’s function by disorder renormalized
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FIG. 3. (Color online) Transition temperature as a function of total normal state impurity scattering rate (Γ) for different
kinds of order parameters. The relative strength of the interband scattering rate is denoted by α and its value is indicated in
each panel. The thick dashed black line is representing the SDW transition temperature and thin dashed lines are Tc for the
superconducting state without the SDW order. All energy scales are measured in the unit of Tc0, which is the superconducting
transition temperature in the absence of the SDW order and kept same for all three order parameters.

quantities,

ω̃1 = ω + i(Σ11 +Σ22)/2 (20)

ω̃2 = ω + i(Σ33 +Σ44)/2 (21)

M̃1 = M + (Σ13 +Σ24)/2 (22)

∆̃1 = ∆1 +Σ12 (23)

∆̃2 = ∆iso
2 +Σ34, (24)

here Σmn is the (m,n) element in the 4×4 self energy
matrix Σ and ∆iso

2 is the isotropic component of the order
parameter in the electron band. Eqs. (17)-(24) are solved
self-consistently using the iteration method.

III. SUPPRESSION OF CRITICAL

TEMPERATURE

To compare the suppression of Tc for different kinds of
gaps, the transition temperature is kept same in the ab-
sence of the SDW order for all the values of r considered
here. Fig. 3 shows the variation of Tc as a function of
total impurity scattering rate (Γ) in the normal state and
it is measured in the unit of Tc0. With only intraband
scattering Tc enhances with increasing disorder as shown
in the Fig. 3 (a). The enhancement rate is higher for the
states, which suffer stronger damage due to the SDW
state. For the state with gap nodes near the hot-spots,
the variation of Tc is very weak. This enhancement is
resulting from the suppression of the SDW state due to
pure intraband impurity scattering. The intraband scat-
tering is a strong pair-breaker for the SDW state, and
suppresses superconductivity only if the order parame-
ter is anisotropic on the Fermi surface. The Anderson’s

theorem still holds in the presence of the SDW order, it
is clear that the ordinary nonmagnetic impurities do not
cause pair-breaking for the isotropic gaps. As the in-
terband scattering increases rate of Tc enhancement de-
creases as shown in the panel Fig. 3 (b). For r=1.3 state,
the Tc now start to decrease, which was least affected by

pure intraband scattering. This happens because finite
interband impurity scattering causes more pair-breaking.
The amount of pair-breaking increases with a rise in the
interband scattering. Fig. 3 (c) shows the Tc when the
interband scattering is as strong as the intraband scat-
tering. In this case Tc also decreases for the isotropic
s± state. The decrease in Tc is minimal for r= −1.3,
when nodes are located away from the hot-spots. In this
case Tc increases near the disappearance of the SDW or-
der. For a specific value of the impurity scattering rate
the transition to the SDW phase and the superconduct-
ing phase occurs simultaneously at a temperature Tcross.
Whenever the clean limit Tc is smaller than Tcross, the
superconducting transition temperature increases with
the disorder. Although the Tc may increase nonmono-
tonically. In the Fig. 3 (c) for r=0 and r=1.3 this simul-
taneous transition happens at a temperature below the
clean limit Tc for isotropic impurity scattering, hence Tc

decreases with the disorder in the co-existing phase and
on the contrary for r= −1.3 this crossing is higher than
clean limit Tc, so Tc increases with the weakening of
the SDW phase due to the impurity scattering. There
is a weak suppression of Tc in this case for low disor-
der. This happens because isotropic impurities are also
suppressing superconductivity, but for moderate disor-
der the enhancement of superconductivity is not able to
overcome the pair-breaking effect of impurities. There
are two competing phenomena taking place in the co-
existing phase. First is the direct effect of the disorder
on Tc which is the suppression of superconductivity and
the secondary effect is the enhancement of Tc due to the
suppression of the competing SDW state. Depending on
the strength of pair-breaking component of the impurity
scattering either of this effect can win, which may lead
to an increase or a decrease of Tc. In the next section, I
present the effect of disorder on the low energy density of
states which directly reflects in many physical properties
at the low temperatures.
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FIG. 4. (Color online) Density of states for a system with
isotropic s± state and pure intraband impurity scattering, for
various values of the total normal state impurity scattering
rate Γ.

IV. DENSITY OF STATES

The low energy quasiparticle excitation spectrum re-
flects in the thermodynamic and the transport proper-
ties of the superconductors. This is not only sensitive
to the structure of the order parameter near the Fermi
surface but also to the impurity scattering. In the case
of a d-wave superconductor linear density of states be-
comes a quadratic function of energy with increasing dis-
order. For systems with accidental nodes, dominant in-
traband scattering leads to an energy gap in the exci-
tation spectrum.28 How does the presence of the SDW
order affect the low energy DOS, and how does it change
due to the impurity scattering, are the important ques-
tions to answer. In order to calculate the DOS, the full
Green’s function is needed in the real frequencies. The
analytic continuation from the Matsubara frequencies is
done with an artificial broadening of 0.025Tc0. The or-
der parameters are calculated at T= 0.1Tc by solving
the self-consistency equations including the effect of the
impurities. In the subsequent sections, I discuss the dis-
order effect on the DOS for each case considered in this
paper.

A. Isotropic s± state

The DOS for the isotropic s± state is shown in Fig.
4 for pure intraband impurity scattering. In the pres-
ence of the SDW order for an isotropic s± superconduc-
tor, there is always an energy gap near the Fermi sur-
face. One should further note that in general the DOS
is particle-hole asymmetric. The structures in the DOS
above |ω| >2Tc are related to the SDW order and moves
towards the lower energies as the superconducting order
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FIG. 5. (Color online) Density of states of a system with
isotropic s± state and moderate interband scattering (α =
0.5), for different values of the total normal state impurity
scattering rate Γ.

becomes stronger. For pure intraband disorder the SDW
phase becomes weaker with increasing disorder. Since
there is not much difference between the two bands, hence
I show the results for only one of the bands. Since the in-
traband scattering is not pair-breaking for the isotropic
s± state, so superconducting phase gets stronger with
more impurities, which reflects as a larger gap in the
DOS with increasing disorder. In fully gapped super-
conductors, pair-breaking impurities can give rise to tail
states.29–31 These states cannot be captured within the
Born approximation. Since these tail states make very a
small contribution to the DOS, hence they do not change
any of the results qualitatively. The addition of inter-
band scattering changes this picture, because it also sup-
presses superconductivity. Fig. 5 shows the DOS for
the isotropic s± with the SDW state with moderate in-
terband impurity scattering. For Fig. 5, the strength
of the interband impurity potential is half of the in-
traband scattering potential. With finite pair-breaking
scattering, the superconducting order doesn’t recover its
clean limit value. However the DOS becomes more and
more particle-hole symmetric with diminishing SDW or-
der. Further increase in the interband scattering causes
more pair-breaking. In the limit of the isotropic impurity
scattering, when both the intraband and the interband
scattering are equally strong, both the orders get sup-
pressed. Depending upon the strength of interband scat-
tering, the effective gap in the DOS becomes very small
due to formation of mid-gap impurity band as shown in
Fig. 6. Stronger interband scattering leads to the anni-
hilation of both the orders, which is shown in Fig. 6. It
should be noted here that small effective gap may lead
to strong deviation from the usual activated behavior ob-
served in some physical properties. Such small gaps can
change the low temperature exponential behavior into a
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FIG. 6. (Color online) Density of states of a system with
isotropic s± state and isotropic impurity scattering (α = 1),
for different values of the total normal state impurity scatter-
ing rate Γ. Inset : The low energy DOS is shown more clearly
for the same case.
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FIG. 7. (Color online) Density of states for a system with
accidental nodes located near the hot-spots on the electronlike
Fermi surface in the absence of the SDW order, with only
intraband impurity scattering for various values of disorder.

power law in the temperature dependence of the penetra-
tion depth or thermal conductivity. The inset in the Fig.
6, highlights the energy range in the DOS, which has a
strong influence on the low temperature properties.

B. Nodes near the hot-spots

Fig. 7 shows the DOS for a state with accidental
nodes located near the hot-spots without SDW order on
the electronlike Fermi surface with only intraband impu-
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FIG. 8. (Color online) Density of states for a system with
accidental nodes located away from the hot-spots on the elec-
tronlike Fermi surface in the absence of the SDW order, with
only intraband impurity scattering for various values of dis-
order.

rity scattering. Even in the clean limit the DOS is fully
gapped. Due to reconstruction of the Fermi surfaces in
the SDW phase, the regions near the hot-spots become
gapped. This reconstruction of the Fermi surface leads
to the disappearance of the nodes, otherwise located on
the Fermi surface in the absence of the SDW energy gap.
Similar to the case of s± state the DOS is particle hole
asymmetric. The gap size reduces with increase in dis-
order, but there is small gap even after the extinction of
the SDW order as shown in the Fig. 7. This is consistent
with disorder driven node-lifting.28 Addition of the in-
terband scattering gives rise to mid-gap impurity bands
and effective gap steadily shrinks with accumulation of
impurities. Interband scattering hinders the node-lifting
phenomena. The possibility of node-lifting depends on
the degree of anisotropy in the order parameter. For
smaller values of r, the nodes get lifted with moderate
amount of the intraband scattering, while larger r val-
ues require stronger intraband scattering. For the band
with isotropic gap, the DOS is qualitatively similar to
the isotropic s± case, with only intraband scattering.

C. Nodes away from the hot-spots

When the order parameter nodes are located far away
from the hot-spots, they survive the Fermi surface recon-
struction, which gaps the regions near the hot-spots. In
such systems with no disorder the nodes in the super-
conducting gap give rise to linear DOS near the Fermi
energy. As illustrated in the Fig. 8, as the impurity scat-
tering increases, the sharp peaks in the DOS get smeared
and the DOS more particle hole symmetric. Fig. 8 shows
the DOS for this case with only intraband impurity scat-
tering. The DOS at the Fermi energy first increases and
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then disappears. This is similar to the behavior shown
by superconducting states with accidental nodes for pure
intraband scattering.28 Like the previous case, depending
on the amount of the anisotropy in the gap (magnitude
of r) nodes may disappear once the SDW order vanishes.
This happens in the case considered here. So the qualita-
tive behavior of nodes on the reconstructed Fermi surface
is same as it would be without the SDW order.

V. CONCLUSION

In this work, I studied the effect of disorder on the
superconducting transition temperature in the presence
of competing SDW order. I considered both the inter-
band and the intraband impurity scattering processes
for several candidates of order parameters, appropriate
for the iron pnictides. I showed that the enhancement
and the suppression of critical temperature, both are
possible in the coexisting phase. The anisotropy in the
order parameter of a superconductor plays an important
role in its response to impurities. The anisotropy is
also critical in determining the transition temperature
in the coexisting phase. The transition temperatures
for systems in which the order parameter nodes/minima
are located near the hot-spots is higher than those of
systems in which the nodes/minima are far from the
hot-spots. The reason for enhancement of Tc with the
addition of the disorder is due to the suppression of
the SDW order. The enhancement becomes weaker as
the pair-breaking component for the superconductivity
order (i.e. interband scattering) increases. This is also
sensitive to the relative strength of the SDW and the
superconducting instabilities in the clean system. In
a realistic situation, systematic insertion of impurities
will lead to suppression of both the orders, because

the realistic impurities have both the intraband and
the interband scattering components and the order
parameters have anisotropy. I also discussed the effect
of disorder on the low energy density of states. In the
presence of the SDW order the DOS remains gapped at
the Fermi surface unless the nodes are located away from
the hot-spots. The DOS is particle-hole asymmetric due
to the presence of the SDW order. Impurity scattering
suppresses the SDW order and the degree of particle-hole
asymmetry decreases. For pure intraband scattering, an
isotropic s± system remains gapped at the Fermi level
and the effective gap in the DOS increases with more
disorder. For states with accidental nodes surviving in
the Fermi surface reconstruction, the DOS is linear near
the Fermi energy. Increasing disorder lifts the nodes as
in case of pure superconducting state. If the anisotropy
is large and the amount of disorder that kills SDW
phase is not sufficient to lift the nodes, then the gap
will be absent in the DOS and nodes will disappear at
higher disorder. The interband scattering slows down
the node-lifting. For isotropic s± system, moderate
interband scattering lowers the gap in DOS and strong
interband scattering very quickly kills the gap. This
may give rise to power law behavior in the temperature
dependence of the penetration depth or the thermal
conductivity. More systematic study on this line is in
progress and will be reported elsewhere.
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