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We examine the dynamics of a skyrmion moving over a two-dimensional periodic substrate uti-
lizing simulations of a particle-based skyrmion model. We specifically examine the role of the
non-dissipative Magnus term on the driven motion and the resulting skyrmion velocity-force curves.
In the overdamped limit, there is a depinning transition into a sliding state in which the skyrmion
moves in the same direction as the external drive. When there is a finite Magnus component in
the equation of motion, a skyrmion in the absence of a substrate moves at an angle with respect
to the direction of the external driving force. When a periodic substrate is added, the direction
of motion or Hall angle of the skyrmion is dependent on the amplitude of the external drive, only
approaching the substrate-free limit for higher drives. Due to the underlying symmetry of the sub-
strate the direction of skyrmion motion does not change continuously as a function of drive, but
rather forms a series of discrete steps corresponding to integer or rational ratios of the velocity com-
ponents perpendicular (〈V⊥〉) and parallel (〈V||〉) to the external drive direction: 〈V⊥〉/〈V||〉 = n/m,
where n and m are integers. The skyrmion passes through a series of directional locking phases
in which the motion is locked to certain symmetry directions of the substrate for fixed intervals of
the drive amplitude. Within a given directionally locked phase, the Hall angle remains constant
and the skyrmion moves in an orderly fashion through the sample. Signatures of the transitions
into and out of these locked phases take the form of pronounced cusps in the skyrmion velocity
versus force curves, as well as regions of negative differential mobility in which the net skyrmion
velocity decreases with increasing external driving force. The number of steps in the transport
curve increases when the relative strength of the Magnus term is increased. We also observe an
overshoot phenomena in the directional locking, where the skyrmion motion can lock to a Hall angle
greater than the clean limit value and then jump back to the lower value at higher drives. The
skyrmion-substrate interactions can also produce a skyrmion acceleration effect in which, due to the
non-dissipative dynamics, the skyrmion velocity exceeds the value expected to be produced by the
external drive. We find that these effects are robust for different types of periodic substrates. Using
a simple model for a skyrmion interacting with a single pinning site, we can capture the behavior
of the change in the Hall angle with increasing external drive. When the skyrmion moves through
the pinning site, its trajectory exhibits a side step phenomenon since the Magnus term induces a
curvature in the skyrmion orbit. As the drive increases, this curvature is reduced and the side step
effect is also reduced. Increasing the strength of the Magnus term reduces the range of impact
parameters over which the skyrmion can be captured by a pinning site, which is one of the reasons
that strong Magnus force effects reduce the pinning in skyrmion systems.

PACS numbers: 75.47.Np,75.30.Kz,75.10.Hk,75.25.-j,75.75.-c

I. INTRODUCTION

Skyrmions were predicted to occur in certain magnetic
systems1 and were subsequently experimentally identified
in the chiral magnet MnSi2. Since this initial discovery
there has been tremendous growth in the field as an in-
creasing number of materials have been found that can
support a skyrmion phase3–10. There are also numerous
proposals on how to stabilize skyrmion states by utiliz-
ing different materials properties or bilayers11–14. Direct
imaging of skyrmions with Lorentz microscopy3–5,7,10

and other techniques8,15,16 show that the skyrmions form
a triangular lattice and have particle-like properties simi-
lar to vortices in type-II superconductors17. As an exter-
nal magnetic field is increased, skyrmions emerge from a
spiral state and their density initially increases and then

decreases with field until the sample enters a uniform fer-
romagnetic state2,3,9. In bulk samples, skyrmions form
three-dimensional (3D) line objects and occur in a limited
range of fields and temperatures2,16, while for thin sam-
ples the skyrmions exhibit two-dimensional (2D) proper-
ties and are stable over a much larger range of fields and
temperatures extending close to room temperature4–7.
Skyrmions can be set into motion through the appli-
cation of an external current7,10,18–20, and it has been
shown that there is a critical current above which the
skyrmions depin into a sliding state19–26. Skyrmion mo-
tion can be directly observed with Lorentz microscopy7,10

or deduced from changes in the transport properties, per-
mitting the construction of effective skyrmion velocity
versus applied force curves that show that the skyrmion
velocity increases with increasing current20. Other meth-
ods to move skyrmions include the use of temperature



2

gradients27–31, electric fields32,33, and coupling to a mag-
netic tip15.

From an applications standpoint, skyrmions are at-
tracting attention due to their potential use in racetrack
memory devices where they would play a role similar to
that of magnetic domain walls34–36. Skyrmions have sev-
eral advantages over domain walls due to their size and
the fact that the current needed to depin a skyrmion
can be orders of magnitude smaller than that needed
to move domain walls20,34. It has been experimentally
demonstrated that individual skyrmions can be created
or annihilated with a magnetic tip, indicating that it
is feasible to read and write skyrmions16. Developing
applications of skyrmions will require an understanding
of how skyrmions interact with and move along tailored
landscapes, so examining skyrmion dynamics on periodic
substrates is an important step in this direction.

Skyrmions have many similarities to vortices in type-II
superconductors, such as the effective skyrmion-skyrmion
interaction, which is repulsive and favors triangular or-
dering, and the fact that both skyrmions and vortices
can be driven by an external current. In the pres-
ence of quenched disorder, skyrmions exhibit pinning-
depinning transitions36, as observed in experiments20

and simulations21–25, and these are similar to the
depinning transitions observed for vortices in type-II
superconductors17,37–39. There are important differences
between the two systems, particularly the dominant role
that non-dissipative effects can take in skyrmion motion.
For superconducting vortices, non-dissipative effects such
as a Magnus force are typically small, permitting the sys-
tem to be effectively described as obeying overdamped
dynamics17,38. In a skyrmion system, by contrast, the
Magnus term can strongly affect how the skyrmions in-
teract with pinning sites and how they move under an
external drive19,21,22. Numerical simulations using con-
tinuum and particle-based models for skyrmions inter-
acting with pinning have shown that the Magnus term
reduces the effective pinning in the system by creating a
velocity component that is perpendicular to the force in-
duced by a pinning site19,21–23,25. As a result, skyrmions
have a tendency to swing around the edge of a pinning
site and escape, while for overdamped systems a particle
moves toward the center of a pinning site and is much
more likely to be pinned.

Relatively little is known about how particles with a
strong Magnus term move over a periodic substrate, and
skyrmions are an ideal system to study such effects. In
certain limits, a skyrmion can be effectively modeled as
a point-like particle utilizing an equation of motion22,23

derived from Thiele’s equation40. Comparison between
continuum-based models and particle-based models of
skyrmions moving in the presence of pinning have shown
good agreement22,23. In this work we examine the dy-
namics of a skyrmion moving over a square periodic sub-
strate using a particle-based description given in Section
II. We specifically examine the effect of changing the im-
portance of the Magnus term relative to that of the damp-

ing term. Despite the apparent simplicity of this system,
we show in Section III that the Magnus term can induce
a remarkably rich variety of dynamical behaviors that are
absent in the overdamped limit. We find that the Hall
angle for the skyrmion motion is dependent on the ex-
ternal drive amplitude and approaches the substrate-free
limit only at higher drives. Since the skyrmion is mov-
ing over a periodic substrate, as the Hall angle changes
the motion becomes locked to specific symmetry direc-
tions of the substrate, producing a series of steps in the
transport curves corresponding to integer and rational
fractional ratios of the skyrmion velocity in the direc-
tions parallel and perpendicular to the drive direction.
At the transitions into the different directional locking
phases, the skyrmion velocity exhibits a pronounced cusp
accompanied by negative differential mobility in which
the skyrmion velocity decreases with increasing external
driving force. We map the extent of the locking phase as
a function of the external drive and the ratio of the Mag-
nus and dissipative terms, and find a rich structure of
integer and fractional locking effects. We also describe a
speedup effect for skyrmions interacting with a substrate
where the skyrmion velocity can be higher than the ex-
ternal drive. This effect is most prominent just above
depinning and is caused by the Magnus term; it is absent
in the overdamped case. In Section IV we consider a
skyrmion scattering from a single pinning site for varied
impact parameters to show how the Hall angle is reduced
by the pinning due to a side-step phenomenon where the
skyrmion trajectory is shifted by the Magnus term as the
skyrmion moves through the pinning site. For increas-
ing drive amplitude, the skyrmion trajectories become
less curved and the size of the side step is reduced, so
that the Hall angle approaches the clean limit for higher
drives. Our results for the speedup effect and side steps
are in agreement with recent theoretical and computa-
tional studies by Müller and Rosch, who considered a
single skyrmion interacting with a defect site26. In that
work, the pinning potential is of a different form than the
pinning sites we consider; however, the consistency of the
two studies indicates that the Hall angle dependence on
external drive and the speedup phenomenon are generic
features of skyrmions interacting with pinning.

There are other examples of particles moving over or-
dered substrates, such as vortices in type-II superconduc-
tors with periodic pinning arrays41–43 or colloids placed
on optically created periodic substrates44,58. In these sys-
tems the dynamics is overdamped; however, there can be
directional locking effects in which the particles preferen-
tially move along symmetry directions of the underlying
substrate as the direction of drive is rotated with respect
to the substrate lattice45–52. Such directional locking ef-
fects can be exploited to perform particle separation in
colloidal systems by setting up a system in which one
particle species locks to the substrate while the second
species does not, causing the two species to move at an
angle with each other47,48. The direction of motion of
the locked particles undergoes a series of steps as a func-
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tion of the effective angle of drive with respect to the
substrate. The steps are centered at integer and ratio-
nal ratios of the angle of drive and form a devil’s stair-
case structure46–48,50,51,53,54. In the skyrmion system, we
observe directional locking effects when the direction of
external drive is fixed with respect to the substrate and
the drive amplitude is varied. The directional locking and
transitions into the locking states in the skyrmion system
exhibit a number of features that have not been observed
in overdamped systems, such as an overshoot effect in the
locking direction and negative differential mobility at the
locking transition. The steps in the transport response
are also distinct from the Shapiro steps found in systems
that can be effectively described as a particle moving
over a periodic substrate under superimposed ac and dc
drives55,56. In the system we consider in this work, there
is no imposed ac drive.

II. SIMULATION AND SYSTEM

We consider a skyrmion moving over a 2D square peri-
odic substrate and utilize a particle-based description of
the skyrmion from a recently developed equation of mo-
tion for skyrmions22,23. The dynamics of the skyrmion is
obtained by integrating the equation of motion:

αdvi = Fs
i + αmẑ× vi + FD

i + Fs
i . (1)

Here dRi

dt = vi is the skyrmion velocity, and αd is a damp-
ing term representing spin precession and dissipation of
electrons localized in the skyrmion.
The substrate force Fs

i is applied by placing N
skyrmions in a square lattice with lattice constant a and
fixing them in place. These skyrmions interact repul-
sively with the mobile skyrmion. Such a substrate could
be created experimentally by placing an array of mag-
netic dots on the sample to create a background of ef-
fectively immobile skyrmions. Alternatively, in recent
continuum-based simulations it was shown that a de-
fect site formed by removing a single spin creates a po-
tential with a long range repulsion and a short range
attraction26. Our system can then be viewed as con-
taining a periodic array of such pinning sites in the
limit where the moving skyrmion does not experience the
shorter range attraction of the pins. We also consider a
model in which the substrate potential is represented by
a 2D sinusoidal array and find behavior very similar to
that of a skyrmion moving through a pinned skyrmion
lattice, indicating that our results are robust and cap-
ture the general features of skyrmions moving over pe-
riodic substrates. The force from the pinned skyrmions

has the form Fs
i =

∑N
j=1 K1(Rij/ξ)R̂ij , where Rij is the

distance between the driven skyrmion i and an immo-
bile skyrmion j. Here K1 is the modified Bessel func-
tion, which falls off exponentially for large Rij , and ξ
is a screening length which we take to be 1.0 in dimen-
sionless units. The sample size is L × L with L = 36,
and the lattice constant of the substrate is a = 3.26.

In the second system we model the substrate with the
2D periodic form Fi

s = Fp[cos
2(πx/a)x̂ + cos2(πy/a)ŷ],

where a = 3.26 is the substrate lattice constant and Fp

is the amplitude of the substrate force. In Section IV
we describe the interaction of a skyrmion with a single
parabolic pinning site located at xp = L/2, yp = L/2
with radius Rp = 0.35. Here the pinning force is given
by Fi

s = (Fp/Rp)Θ(rip − Rp)r̂ip, where rip is the dis-
tance from the skyrmion to the center of the pinning site,
r̂ip is a unit vector oriented along the line between the
skyrmion and the pin center, and Θ is the Heaviside step
function. In all systems we employ periodic boundary
conditions.
The Magnus term FM = αmẑ × vi produces a force

that is perpendicular to the skyrmion velocity, where αm

is the magnitude of the Magnus term. The driving force
is FD

i = FDd̂ where d̂ is the direction of the applied
drive. Such a force could arise due to the application
of an external current to the skyrmion22,23. In most of
this work, we take d̂ = x̂. We measure the skyrmion
velocity parallel, 〈V||〉, and perpendicular, 〈V⊥〉, to the
drive. In the absence of a substrate or in the overdamped
limit αm/αd = 0.0, the skyrmion moves in the direc-
tion of the drive, while for a finite αm/αd the skyrmion
moves at an angle Θ with respect to the drive, where
Θ = arctan(〈V⊥〉/〈V||〉) = arctan(αm/αd). Increasing
αm/αd produces a larger angle Θ for the skyrmion mo-
tion with respect to the external drive. To quantify the
direction of motion we measure R = 〈V⊥〉/〈V||〉 so that
the Hall angle Θ is given by arctan(R). We increase the
external drive in small increments of δFD = 0.001 to
0.005 and wait several thousand simulation time steps
before measuring the average velocity in order to en-
sure that the skyrmion velocity is in a steady state. We
find that for smaller increments δFD our results do not
change. Throughout this work we impose the constraint
α2
d + α2

m = 1 in order to maintain a constant magnitude
of the skyrmion velocity for varied ratios of αm/αd.

III. VELOCITY-FORCE CURVES AND

DIRECTIONAL LOCKING

In Fig. 1 we plot 〈V||〉 and 〈V⊥〉 versus FD for a
skyrmion moving over a periodic substrate in the over-
damped case where αd = 1.0 and αm = 0.0. Figure
2 shows the system geometry, highlighting the motion
of the mobile skyrmion through the background of po-
tential maxima. In Fig. 1 there is a depinning tran-
sition to a sliding state for FD > 0.1 as indicated by
〈V||〉 > 0. Here the skyrmion moves strictly in the di-
rection of the applied drive so that 〈V⊥〉 = 0 for all FD

and R = 〈V⊥〉/〈V||〉 = 0. The dashed line in Fig. 1 is
the expected value of 〈V||〉 in the clean limit, and we find
that as FD increases, 〈V||〉 gradually approaches the clean
limit value. Figure 2 shows the skyrmion trajectory for
fixed FD = 0.5, where motion occurs in a straight line
along the driving direction.
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FIG. 1: (a) The velocity for a skyrmion under a dc driving
force FD in the overdamped limit with αm/αd = 0 moving
over a periodic substrate. The drive is applied in the x-
direction; the system geometry is illustrated in Fig. 2. 〈V||〉 is
the velocity component parallel to the applied drive and 〈V⊥〉
is the velocity component perpendicular to the drive. Here
there is a depinning transition into a sliding state where the
skyrmion moves strictly in the direction of the applied drive.
The Hall term R = 〈V⊥〉/〈V||〉 = 0.0 in this case. Dashed line:
〈V||〉 response in the absence of a substrate.
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FIG. 2: The geometry for the system in Fig. 1 with αm/αd =
0 where the skyrmion (large red dot) is driven in the x-
direction under an applied drive FD. The black line is the
skyrmion trajectory and the smaller blue dots indicate the
locations of the potential maxima in the periodic square sub-
strate lattice.

-1

0

1

2

3

<
 V

|| >
, <

 V
⊥
 >

0 0.5 1 1.5 2 2.5 3
FD

-0.5

-0.4

-0.3

-0.2

-0.1

0

R

< V|| >

< V⊥  >

αm/αd = 0.45

0/1

1/4
1/3

2/5 3/7

1/2

(a)

(b)

FIG. 3: (a) 〈V⊥〉 and 〈V||〉 vs FD for the same system as
in Fig. 1 but with αm/αd = 0.45. (b) R vs FD in the
same sample. The dashed line indicates that in the clean
limit R = −0.45. There are a series of dips in the velocity-
force curves correlated with jumps in R, indicating that the
skyrmion undergoes a series of transitions between locking to
different symmetry directions of the substrate. The largest
steps in R, corresponding to n/m ratios of 0/1, 1/4, 1/3, 2/5,
3/7, and 1/2, are marked; there are also additional smaller
higher order steps at other integer values of n and m.
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FIG. 4: The skyrmion trajectories and substrate maxima for
the system in Fig. 3 with αm/αd = 0.45. (a) |R| = 0/1 state
at FD = 1.0. (b) |R| = 1/4 state at FD = 1.3. (c) |R| = 2/5
state at FD = 2.2. (d) |R| = 1/2 state at FD = 2.75.
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A. Directional Locking

In Fig. 3 we illustrate the transport behavior in a sam-
ple with αm/αd = 0.45, αm = 0.41, and αd = 0.912085.
In the absence of a substrate the skyrmion would move
at an angle of |Θ| = 24.227◦ with respect to the drive
direction and would have R = 〈V⊥〉/〈V||〉 = −0.45. Fig-
ure 3(a) shows 〈V||〉 and 〈V⊥〉 vs FD, and in Fig. 3(b) we
plot R vs FD. Here there is a transition from a pinned to
sliding state just above FD = 0.1. The skyrmion moves
strictly in the direction of the drive for 0.1 < FD < 1.28,
which corresponds to the R = 0 regime shown in Fig. 3(b)
for the same interval of FD. Figure 4(a) shows the
skyrmion trajectory in the R = 0 region for FD = 1.0 for
the system in Fig. 3(a). The skyrmion no longer passes
through the centers of the potential minima but its tra-
jectory shifts closer to the bottom row of potential max-
ima and develops an oscillation in the y direction that
was absent in the αm/αd = 0 case shown in Fig. 2. As
FD is further increased the skyrmion shifts even closer to
the row of potential maxima and its velocity parallel to
the drive decreases, as indicated by the dip in 〈V||〉 near
FD = 1.28. As FD increases further, both 〈V⊥〉 and 〈V||〉
increase, indicating that the skyrmion is now translating
in the y direction as well as in the x direction. Additional
dips in both 〈V||〉 and 〈V⊥〉 occur at higher FD, with occa-
sional regions containing multiple closely spaced smaller
dips. Figure 3 indicates that these dips correlate with
the jumps in R, and that between the dips, R remains
constant. This means that the direction of motion or
Hall angle of the skyrmion changes in a discrete fashion
with increasing FD. The steps in R appear at values that
are rational ratios of 〈V⊥〉/〈V||〉 of the form n/m, where
n and m are integers. In Fig. 3(b) we highlight the steps
at |R| = 1/4, 1/3, 2/5, 3/7, and 1/2. There are also nu-
merous additional steps in R for smaller intervals of FD

for higher order rational ratios of R = n/m. In general,
the larger the values of n and m, the smaller the interval
in FD over which the step appears.

During each step interval in R, the skyrmion follows
an ordered periodic orbit, translating n substrate pla-
quettes in the direction perpendicular to the drive for
every m plaquettes it translates in the direction parallel
to the drive. Figure 4(a) shows the orbit of a skyrmion
in the |R| = 0/1 state, while Fig. 4(b) illustrates the
orbit in the |R| = 1/4 state at FD = 1.3. Here the
skyrmion moves periodically through the system at an
angle Θ = arctan 1/4 = 14.036◦ with respect to the drive
direction. In each period of the motion, the skyrmion
translates to the right by four plaquettes in the drive
or x direction and down by one plaquette in the per-
pendicular or y direction, giving n/m = 1/4. At the
transition out of the |R| = 1/4 state, the skyrmion slows
down, producing a cusp in the velocity curves in Fig. 3(b)
and a dip in the net velocity near FD = 1.327. A sim-
ilar ordered orbit occurs in the |R| = 1/3 state, where
the skyrmion moves three plaquettes in the x-direction
and one plaquette in the y direction during every period.

There is another dip in the net skyrmion velocity near
FD = 2.0 that occurs when the system transitions to
the |R| = 2/5 state. Figure 4(c) illustrates the orbit at
this value of R for FD = 2.2. Here the periodic orbit
is more extended and the skyrmion moves two plaque-
ttes in the negative y-direction for every five plaquettes
in the x-direction. Above the |R| = 2/5 state, the sys-
tem enters the |R| = 3/7 state, followed by some higher
order steps which occur over small intervals of FD as
shown in Fig. 3(a) near FD = 2.55. The system then
reaches the |R| = 1/2 state illustrated in Fig. 4(d) at
FD = 2.75, where the skyrmion moves two plaquettes in
the x-direction for every one plaquette in the y-direction.
At the other higher-order locking steps, similar ordered
orbits appear.
The dips in 〈V||〉 and 〈V⊥〉 in Fig. 3 are associated

with transitions in the skyrmion orbit from one direc-
tionally locked state to another, with a corresponding
change in the Hall angle. The symmetry of the square
lattice determines the specific directions along which the
skyrmion motion locks, so that for other geometries such
as a triangular substrate, the locking directions will be
different. At the transitions between locking steps, the
net skyrmion velocity 〈V 〉 = (〈V||〉

2+〈V⊥〉
2)1/2 decreases

with increasing external drive FD. This phenomenon is
known as negative differential mobility, and it has been
observed in other systems where particles are driven over
a periodic substrate, such as superconducting vortices
moving over periodic pinning arrays where there are tran-
sitions between different dynamical phases43. Negative
differential mobility is also a common feature in semi-
conductor devices57 and can be useful for creating logic
devices. The ability to control differential mobility in
skyrmion systems could open new approaches for appli-
cations.

B. Overshoot Effect at αm/αd = 0.45

At FD = 3.0 in Fig. 3(b), |R| = 0.5, indicating the
skyrmion is moving at a Hall angle of Θ = 25.565◦,
which is higher than the clean limit value of |R| = 0.45
or Θ = 24.23◦. This phenomenon occurs when the
clean value of Θ is oriented close to but slightly below a
strong symmetry locking direction of the substrate. The
skyrmion locks to the substrate and its Hall angle slightly
exceeds that expected for the clean limit. As FD is in-
creased, the effectiveness of the substrate is reduced and
the direction of motion of the skyrmion gradually ap-
proaches the clean limit value, as shown in Fig. 5 where
we plot a portion of the R vs FD curve for the same sys-
tem from Fig. 3(b) but for drives up to a higher value
of FD = 12.0. The dashed line in Fig. 5 indicates the
clean value limit of |R| = 0.45. For FD > 4.2, there is
a jump from the |R| = 0.5 = 1/2 state to a lower value
of |R| = 0.46143 = 6/13, followed by another jump to
the |R| = 0.4545 = 5/11 state. There is then a small
region where the system locks to the |R| = 0.45 = 9/20
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system in Fig. 3 at αm/αd = 0.45, where we examine the
locking for drives up to FD = 12.0. The system is locked to
the |R| = 1/2 value but then jumps to |R| = 6/13 and 5/11
before reaching |R| = 4/9. As FD is further increased, R
gradually approaches the clean limit value, indicated by the
dashed line.
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state before jumping to |R| = 0.444 = 4/9. As FD in-
creases further, R gradually approaches the clean limit
value, as indicated by the dashed line in Fig. 5(b). This
shows that there can be an overshoot effect in the lock-
ing behavior for a certain range of drives, giving rise to
non-monotonic behavior of R as a function of FD. We
have observed similar overshoot effects for other values
of αm/αd.
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FIG. 7: The skyrmion trajectories and substrate maxima.
(a) The |R| = 1/1 step for αm/αd = 1.28 for the system in
Fig. 6(a,c). (b) The |R| = 5/3 step for αm/αd = 1.91 for the
system in Fig. 6(b,d). (c) The |R| = 2/1 state for αm/αd =
4.925 for the system in Fig. 8(a,c). (d) The |R| = 3/1 state
for αm/αd = 4.925 in Fig. 8(a,c).
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FIG. 8: (a) 〈V||〉 and 〈V⊥〉 vs FD at αm/αd = 4.925. (b) 〈V||〉
vs FD for αm/αd = 9.962. (c) R vs FD for the sample in
panel (a) with αm/αd = 4.925. The steps at |R| = 2/1, 3/1,
7/2, 4/1, 17/4, and 9/2 are highlighted. (d) R vs FD for the
sample in panel (b) with αm/αd = 9.962, where the steps at
|R| = 5/1, 6/1, 7/1, 8/1, 17/2, and 9/1 are highlighted.
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C. Higher Order Steps

The specific features in the velocity force curves are
strongly dependent on the value of αm/αd. In Fig. 6(a,b)
we show 〈V⊥〉 and 〈V||〉 for αm/αd = 1.28 and 1.91, re-
spectively, while in Fig. 6(c,d) we plot the correspond-
ing R vs FD curves. For αm/αd = 1.28, the system is
predominantly locked to the |R| = 1/1 step as shown in
Fig. 6(b). On this step, the skyrmion moves along the 45◦

direction as illustrated in Fig. 7(a) for FD = 1.0. Here the
skyrmion follows a sinusoidal trajectory, moving by one
plaquette in the x-direction and one plaquette in the y-
direction in a single period. At values of FD higher than
those plotted in Fig. 6(a), further locking steps occur as
|R| approaches |R| = αm/αd = 1.28. At αm/αd = 1.91,
a larger number of steps occur, as indicated in Fig. 6(d)
where we highlight the |R| = 1/1, 4/3, 3/2, 5/3, 7/4,
5/9, and 33/18 steps. For FD values higher than those
shown in Fig. 6(d), additional steps appear as |R| ap-
proaches the clean limit value. Figure 7(b) illustrates
the skyrmion trajectory on the |R| = 5/3 step for the
system in Fig. 6(b). The skyrmion moves five plaquettes
in the direction perpendicular to the drive for every three
plaquettes in the direction parallel to the drive during a
single period. Fig. 8(a) shows 〈V||〉 and 〈V⊥〉 versus FD

for a sample with αm/αd = 4.925, and the corresponding
R vs FD curve appears in Fig. 8(c). In this case, the
clean limit Hall angle is large, and there is no longer a
phase where the skyrmions move only in the direction of
the drive, so the 0/1 step is lost. Instead, above depin-
ning the motion jumps straight into the |R| = 1.0 state.
This is followed by steps at |R| = 2/1, 3/1, 7/2, 4/1,
17/4, and 9/2. There are also numerous smaller interme-
diate steps corresponding to higher order fractions. In
Fig. 7(c) we plot the skyrmion orbit on the |R| = 2/1
step for the system in Fig. 8(a,c), while Fig. 7(d) shows
the skyrmion orbit at |R| = 3/1 for the same system. In
general, as αm/αd increases, more steps become visible.
In Fig. 8(b) we plot only 〈V||〉 versus FD for a sample with
αm/αd = 9.962 to show more clearly the increased num-
ber of features in the velocity-force curve. Figure 8(d)
shows the corresponding R vs FD curve, where we high-
light the steps at |R| = 5/1, 6/1, 7/1, 8/1, 17/2, and
9/1. The largest observable integer step has a value of
n that is the largest integer which is smaller or equal to
the value of αm/αd.

In Fig. 9(a) we plot the skyrmion trajectories at |R| =
5.0 for the system in Fig. 8(b,d) with αm/αd = 9.962,
showing that the skyrmions circle around every fifth sub-
strate maximum. At |R| = 8.0, shown in Fig. 9(b), the
trajectories are much straighter and the skyrmion moves
at an angle that causes it to translate by eight plaquettes
in the negative y direction for every one plaquette in the
positive x-direction.

x(a)

y

x(b)

y

FIG. 9: Skyrmion trajectories and substrate maxima for (a)
the |R| = 5.0 state for the system in Fig. 8(b,d) at αm/αd =
9.962, and (b) the |R| = 8.0 state for the same system.
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FIG. 10: The regions of FD vs αm/αd where the pinned phase
and the |R| = 1/0, 1/1, 2/1, and 3/1 locking states occur.

D. Arnol’d Tongues

By conducting a series of simulations for varied αm/αd

we can examine the evolution of the different locking
phases. In Fig. 10 we show the evolution of the pinned
phase and the |R| = 0/1, 1/1, 2/1, and 3/1 locking phases
for 0 ≤ FD ≤ 3.0 and 0 ≤ αm/αd ≤ 5.0. The depinning
threshold for the pinned phase remains roughly constant
as a function of αm/αd. For small αm/αd, the skyrmion
motion is strictly in the x direction as indicated by the
presence of the |R| = 0/1 phase. As FD increases, the
range and the width of the lower order locking phases de-
creases while new locking phases appear. The regions in
which the locking occurs have the characteristic features
of Arnol’d tongues, which occur in dynamical systems
when there are two competing frequencies53,54. In our
system, the two frequencies are given by the inverse rate
of translation along the x direction and the inverse rate of
translation along the y direction when the system is on a
locking step. These frequencies are quantized on the step
due to the periodicity of the substrate; unlike the case of
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FIG. 11: (a) FD vs αm/αd for the αm/αd < 1.0 side of the
|R| = 1/1 locking step from Fig. 10. (b) FD vs αm/αd showing
only the |R| = 1/1 locking phase from Fig. 10. The width of
the step decreases for large FD.

Shapiro steps, we do not apply any ac drive and the fre-
quencies arise from the combination of dc motion and
the substrate. If the substrate were rectangular instead
of square, a different set of Arnol’d tongues would arise.
At higher values of αm/αd, a larger number of locking
steps appear in the velocity-force curves. For example, at
αm/αd = 2.5, as FD increases the system passes through
a small region of |R| = 0/1 followed by the |R| = 1/1
locking phase and then by the |R| = 2/1 phase. Another
feature of the phase diagram is that at higher drives the
width of each locking phase decreases. To illustrate this
more clearly, we focus on the width of the |R| = 1/1 step
as a function of FD, as highlighted in Fig. 11(a) where
we plot the location of the |R| = 1/1 step over the nar-
row range 0.8 < αm/αd < 0.96 out to FD = 20, much
higher than the maximum value of FD shown in Fig. 10.
The lower edge of the locking regime, which was dropping
to lower values of αm/αd with increasing FD in Fig. 10,
bends back around for higher FD as shown in Fig. 11, and
shifts to higher αm/αd with increasing FD. The resulting
nose structure is the origin of the overshoot phenomenon,
where over a certain range of αm/αd, the system locks
to the |R| = 1/1 step for lower FD only to drop out of
that step as FD increases. Here the skyrmions can lock
to the |R| = 1/1 direction even though their resulting
motion follows a higher angle Θ than would occur in a
clean system. As FD increases above the edge of the
|R| = 1/1 step, the skyrmion jumps to smaller values of
|R| in a series of steps. On each step the skyrmion locks
to different symmetry directions which are closer to the
clean system value of |R| = αm/αd. The overall shape
of the |R| = 1/1 step is shown in Fig. 11(b), where we
plot the range 0 ≤ FD ≤ 25 and 0.8 ≤ αm/αd ≤ 1.32.
There is a decrease in the extent of the locking phase at
higher drives and at higher αm/αd values. The width of
the |R| = 1/1 step gradually decreases and approaches a
point centered at the αm/αd = 1.0 value for the highest
drives. We find that the regions over which the other
integer locking phases occur have similar shapes to that
shown in Fig. 11(b).
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FIG. 12: (a) R vs FD for the αm/αd < 1.0 regime of the
|R| = 1/1 locking phase from Fig. 11(b). From top right
to bottom right, αm/αd = 0.8166, 0.8418, 0.8668, 0.98041,
0.81475, and 0.9274. The |R| = 1/1 step is marked, and the
dashed line indicates the value of R for αm/αd = 0.8166 in the
clean limit. (b) R vs FD for the αm/αd > 1.0 regime of the
|R| = 1/1 locking phase from Fig. 11(b). From top right to
bottom right, αm/αd = 1.084, 1.1, 1.134, 1.17, 1.207, 1.246,
and 1.2885. The |R| = 1/1 step is marked and the dashed
line indicates the value of R for αm/αd = 1.2885 in the clean
limit.

E. Overshoot Effect for Varied αm/αd

A new set of locking steps arises for values of FD

greater than that where the |R| = 1/1 locking occurs
in Fig. 11(a). In Fig. 12(a) we plot R versus FD for dif-
ferent values of αm/αd on the αm/αd < 1.0 side of the
|R| = 1/1 locking phase shown in Fig. 11(b), where an
overshoot effect occurs. The dashed line is the value of R
at αm/αd = 0.8166 in the clean limit; similar overshoots
occur for the other values of αm/αd. The black curve
shows that for αm/αd = 0.8166 in the presence of a sub-
strate, the skyrmion locks to the |R| = 1/1 direction for
1.2 < FD < 2.0 and then jumps to the |R| = 4/5 = 0.8
state. For FD > 9.6, R jumps off of the |R| = 0.8 step
and, for higher values of FD, further small jumps in R
occur as R approaches the clean value limit. As αm/αd is
increased toward αm/αd = 1.0, the width of the interval
of FD over which the system is locked to the |R| = 1/1
step increases since the clean limit Hall angle is closer to
the |R| = 1/1 angle of 45◦. In each case, when the sys-
tem jumps out of the |R| = 1/1 step for increasing FD, it
can jump into a series of other locking steps as R grad-
ually approaches the clean value. In Fig. 12(b) we plot
R versus FD for the αm/αd > 1.0 side of the |R| = 1/1
locking phase from Fig. 11(b). The dashed line indicates
the clean limit value of R for αm/αd = 1.2885. As αm/αd
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FIG. 13: (a) The locking phases for FD vs αm/αd highlighting
the fractional locking steps with |R| = 1/4, 1/3, 1/2, 2/3,
3/4, 5/4, 4/3, 3/2, 5/3, and 7/4 steps along with the integer
matching steps with |R| = 0/1, 1/1, and 2/1. (b) Integer
locking phases only for FD vs αm/αd, for |R| = 0/1 through
|R| = 12/1 from left to right.

approaches 1.0 from above, the extent of the region over
which the system is locked to the |R| = 1/1 state again
increases. After jumping out of the |R| = 1/1 state, the
system jumps to larger values of |R| in a series of smaller
locking steps as it approaches the clean limit value of R.
We observe similar changes in R for the other integer
locking phases such as |R| = 2/1 and |R| = 3/1.

F. Fractional Locking

In Fig. 13(a) we plot the locking phases as a function
of FD and αm/αd over the range 0 ≤ αm/αd ≤ 2.5, high-
lighting the fractional locking steps at the |R| = 1/4,
1/3, 1/2, 2/3, 3/4, 5/4, 4/3, 3/2, 5/3, and 7/4 states
falling between the integer steps at |R| = 0/1, 1/1, and
2/1. Here the widths of the fractional locking states be-
have similarly to those of the integer locking states. Fig-
ure 13(a) shows that for certain values of αm/αd, the
fractional steps will be the dominant feature observed in
transport. The higher order fractional steps, not shown
in the figure, exhibit similar features. The overshoot ef-
fect described for the |R| = 1/1 locking step in Fig. 11
occurs for all of the integer and fractional locking steps as
well, with the overall width of each of the steps decreasing
with increasing FD. In Fig. 13(b) we plot only the integer
locking regions from |R| = 0/1 to |R| = 12/1 as a func-
tion of FD and αm/αd for the range 0 < αm/αd < 16.5.
Between each of the integer steps, there is a series of
fractional steps (not shown) similar to that illustrated in
Fig. 13(a). The fractional steps have the form N +n/m,
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FIG. 14: (a) The net skyrmion velocity 〈V 〉 = (〈V||〉
2 +

〈V⊥〉
2)1/2 vs FD for αm/αd = 9.962 (upper curve), 0.0 (lower

curve), and the clean limit value (dashed line). Here there are
regions of the αm/αd = 9.962 curve where 〈V 〉 exceeds the
clean limit value, indicating a speedup or acceleration effect.
(b) ∆V = 〈V 〉 − 〈V 〉clean for αm/αd = 9.962 (upper line),
0.0 (lower line), and the clean limit value (dashed line). The
speedup effect is indicated by regions in which ∆V > 0.

where N are the integer steps.

G. Speedup Effects

The Magnus term can produce an acceleration or
speedup effect of the skyrmion, in which the speed of
the skyrmion is higher in the presence of a substrate
than it would be in the absence of a substrate or in
the overdamped limit. In Fig. 14(a) we plot the net
skyrmion velocity 〈V 〉 = (〈V||〉

2+〈V⊥〉
2)1/2 versus FD for

αm/αd = 9.962, the overdamped case of αm/αd = 0, and
the clean limit. In the overdamped case, 〈V 〉 is always
smaller than the clean limit value, indicating that the
substrate does not accelerate the skyrmion. In contrast,
for αm/αd = 9.962 there are clear regions where 〈V 〉 is
higher than the clean value. This effect is most promi-
nent for values of FD just above the depinning thresh-
old. To show the speedup more clearly, in Fig. 14(b)
we plot ∆V = 〈V 〉 − 〈V 〉clean for αm/αd = 9.962 and
0.0. For the overdamped case, ∆V < 0.0 over the en-
tire range of FD. The lowest values of ∆V occur just
at depinning, and then ∆V gradually approaches zero as
FD increases. The behavior of the overdamped system
is similar to the velocity-force curves observed in other
overdamped systems such as colloids driven over periodic
substrate arrays44,58. For αm/αd = 9.962, ∆V shows a
series of peaks which are correlated with transitions be-
tween the different locking regimes. For 0.1 < FD < 0.44,
∆V > 0.0 due to the speedup effect, where there is an en-



10

0 5 10 15 20 25
α   / αm d

0.1

0.15

0.2

0.25

<
V

>

F
D

 = 0.2

FIG. 15: 〈V 〉 vs αm/αd for fixed FD = 0.2. The dashed
line indicates the clean limit value of 〈V 〉 = 0.2. The speedup
effect occurs when 〈V 〉 > 0.2 and increases in magnitude with
increasing αm/αd.

hancement in the net velocity of up to twice the velocity
in the clean limit. As FD is further increased the mag-
nitude of the speedup effect decreases and there are sev-
eral intervals of FD where the skyrmion is moving signifi-
cantly slower than it would in the clean limit. For further
increases in FD, ∆V approaches zero. The speedup effect
is generated by the non-dissipative terms in the equation
of motion which cause the skyrmions to be accelerated
through certain portions of the substrate potential.
In Fig. 15 we plot 〈V 〉 versus αm/αd for a fixed FD =

0.2, where the dashed line indicates the clean limit value
of 〈V 〉 = 0.2. Values of 〈V 〉 > 0.2 indicate a speedup
effect. For αm/αd = 0, in the overdamped limit, 〈V 〉 <
0.2. We find a series of oscillations in 〈V 〉 corresponding
to the different locking phases through which the system
passes as a function of αm/αd. Here, the magnitude of
the speedup effect increases on average with increasing
αm/αd.
A speedup effect for a driven skyrmion interacting with

a defect has also been observed in simulations by Müller
and Rosch, who find that for some cases the defect causes
a net increase in the skyrmion velocity26. They also
find that the magnitude of the speedup effect decreases
when an externally imposed skyrmion drift velocity is in-
creased. This is similar to what we observe for the peri-
odic substrate case where for increasing external driving
force the speedup effect is reduced as shown in Fig. 14(b).
In Ref.26 the speedup was up to an order of magnitude
higher than the velocity in the clean limit, while we ob-
serve a velocity enhancement of only up to a factor of 2.
This is because in our system there is a minimum critical
force required to depin the skyrmion, whereas in Ref.26

there was no lower bound on the imposed drift velocity.
Since the speedup is increased for lower drives, Müller
and Rosch could access lower drives and obtain larger
velocity enhancements from the speedup effect.
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FIG. 16: A gray scale image of a portion of the 2D analytic
substrate. The external drive is applied along the x-direction.
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FIG. 17: The transport for a skyrmion moving over the 2D
sinusoidal substrate illustrated in Fig. 16 for Fp = 1.5 and
αm/αd = 4.925. (a) The net skyrmion velocity 〈V 〉 vs FD

shows a series of cusps. Dashed line: the clean value limit.
(b) 〈V⊥〉 and 〈V||〉 vs FD for the same system. (c) R vs FD for
the same system with the |R| = 1/1, 2/1, 3/1, and 4/1 steps
highlighted. There are also numerous smaller scale fractional
locking steps.

H. Two Dimensional Analytic Substrate

In order to understand how general our results are for
different details of the periodic substrate, we next con-
sider a 2D analytic substrate with the same lattice con-
stant a used in obtaining the previous results. The force
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from the substrate is given by Fs = Fp[cos
2(πx/a)x̂ +

cos2(πy/a)ŷ], where Fp is the maximum force exerted by
the substrate and a = 3.26 is the lattice constant as in
the system shown in Fig. 2. Figure 16 shows a gray scale
of a portion of the substrate, where the potential max-
ima are highlighted. In Fig. 17(a) we plot 〈V 〉 versus FD

for a skyrmion moving over a substrate with Fp = 1.5
for αm/αd = 4.925. The dashed line indicates the clean
limit value of 〈V 〉. Figure 17(b) shows 〈V||〉 and 〈V⊥〉 vs
FD for the same system, while in Fig. 17(c) we plot the
corresponding R vs FD curve with a dashed line indicat-
ing the value of R in a clean system and with the locking
steps at |R| = 1/1, 2/1, 3/1, and 4/1 highlighted. Al-
though there are some differences in the details, we find
the same general transport features for the analytic sub-
strate as we observed for the pinned skyrmion substrate
at αm/αd = 4.925, including the locking of the skyrmion
motion to different symmetry directions and the steps
in R at integer and fractional ratios of 〈V⊥〉/〈V||〉. Fig-
ure 17(a) shows that there are a similar series of dips
in 〈V 〉 corresponding to transitions between the different
locking phases. We find that with an analytic potential,
a somewhat larger number of small looking steps can be
resolved, as shown for 1.25 < FD < 1.75 in Fig. 17(a),
and the steps in R in Fig. 17(c) for this region have a
devil’s staircase structure. Figure 17(a) also shows that
〈V 〉 exhibits regions where it is higher than the clean limit
(dashed line), indicating that the same type of speedup
effect occurs for the analytic potential. We have also ex-
amined the locking effects on the analytic potential for
other values of αm/αd and Fp, and find that all the fea-
tures highlighted in Fig. 17 are robust. This indicates
that the directional locking effect is a generic feature of
skyrmions moving over periodic substrates.

IV. SCATTERING OFF A SINGLE PINNING

SITE

In order to better understand the dependence of the
Hall angle on the external drive, we consider the case of
a skyrmion scattering from a single pinning site. We
drive the skyrmion toward the pinning site for varied
impact parameters b, and measure the resulting shift in
the skyrmion position perpendicular to the driving force
for the outgoing state. To define the impact parame-
ter, we identify a line oriented along the Hall direction
passing through the center of the pinning site, and a sec-
ond parallel line passing through the initial position of
the skyrmion. The perpendicular distance between these
two lines is the impact parameter. We model the pinning
site as a parabolic trap with radius Rp and a maximum
force of Fp. The skyrmion is driven from a point out-
side the trap towards the trap with an external drive
FD applied in the positive y-direction. In Fig. 18(a) we
show the overdamped case with αm/αd = 0.0, Fp = 0.1,
Rp = 0.35, and FD = 0.05, We highlight the trajectory of
a skyrmion with an impact parameter b slightly different
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FIG. 18: Skyrmion trajectories (lines) for a single skyrmion at
different impact parameters b interacting with a single pinning
site of radius Rp = 0.35 and maximum pinning force of Fp for
an external drive FD applied in the positive y-direction. (a)
αm/αd = 0.0, Fp = 0.1, and FD = 0.05. The skyrmions that
interact with the pinning site are captured. (b) αm/αd = 0,
Fp = 0.1, and FD = 0.12. The skyrmions can escape from
the pinning site. (c) αm/αd = 10.0, Fp = 0.1, and FD =
0.05. The dashed line is a trajectory that a skyrmion would
follow in the absence of the pinning site. For a certain range
of impact parameters, the skyrmion is captured. For other
impact parameters, skyrmions that escape from the pinning
site have their trajectories shifted as highlighted by the thick
line. (d) αm/αd = 10.0, Fp = 0.1, and FD = 0.12. Here the
shift in the trajectories of the skyrmions that pass through
the pinning site is reduced and there is less curvature in the
trajectories.

from 0 to emphasize that the change in the trajectory
induced by the pin is linear. For this value of FD, all
skyrmion trajectories that contact the pinning site form
straight lines directed toward the equilibrium position of
the pinned state along the x = 0.0 line. The pinned equi-
librium position is shifted in the positive y-direction from
the center of the pinning site due to the applied external
force. Figure 18(b) shows the same system with higher
FD = 0.12. The trajectories are shifted toward the cen-
ter of the pinning site, but since FD > Fp the skyrmions
can escape from the pinning site. The trajectory for an
impact parameter b = 0 comes in and out of the pinning
site at x = 0.0, so there is no shift, while the shift of
the trajectories for non-zero impact parameters, one of
which is highlighted in blue, are symmetric across x = 0.
Fig. 18(c) shows the trajectories for the same system

at αm/αd = 10.0 for FD = 0.05, where the external drive
is still applied in the positive y-direction. In this case,
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the trajectories that do not intersect with the pinning
site move at an angle of | arctan(αm/αd)| = 84.3◦ with
respect to the y-axis. The dashed line represents the
trajectory a skyrmion would follow in the absence of the
pinning site. When the skyrmion moves through the pin-
ning site, the trajectory is no longer straight as in the
overdamped case but is now strongly curved due to the
Magnus force. The skyrmions that encounter the pinning
site on the upper left side become trapped by entering
a spiral trajectory that carries them to the equilibrium
pinned position in the upper portion of the pinning site.
Skyrmions that enter the pinning site on the lower left
side can escape from the pin; however, the position of the
outgoing skyrmions are shifted in the positive y direction
as indicated by the highlighted trajectory in Fig. 18(c).
This shift is similar to the side jump effect that occurs for
electron scattering59, where the interaction with pinning
or disorder shifts the outgoing trajectory of the particle
relative to its incoming trajectory. In the case of a pe-
riodic substrate, a skyrmion would be repeatedly shifted
as it moves through the system, so that for αm/αd = 10
the average direction of skyrmion motion follows a Hall
angle that is less than the clean value limit of 84.3◦. Fig-
ure 18(c) also shows that when the skyrmion is captured
it becomes pinned along the x = 0.0 line at a position
above the center of the pin. The shift of the pinned equi-
librium position to this location is caused by the bias
from the external drive, and the location of the equi-
librium position is not changed by the inclusion of a fi-
nite Magnus term. Figure 18(d) shows the trajectory for
αm/αd = 10 with a higher drive of FD = 0.12. Here, the
size of the side jump is reduced, so that the Hall angle
that would be observed for motion through a periodic
substrate is closer to the pin-free value of 84.3◦. This in-
dicates that the Hall angle increases with increasing driv-
ing force, as also observed in the simulations with a peri-
odic substrate. The shift is reduced at the higher drives
in Fig. 18(d), since the skyrmion is moving more rapidly
through the pinning site and the trajectory spends less
time being bent.

To quantify the the dependence of the magnitude δr of
the shift or side jump of the trajectory as a function of
the external drive, in Fig. 19 we plot δr for a skyrmion
approaching the pinning site with b = 0. Figure 19(a)
shows the shift for Fp = 0.1, Rp = 0.35, and αm/αd =
10. The shift is highest at low FD, starting near δr =
0.3 in Fig. 19(a) and gradually approaching zero as FD

increases. In Fig. 19(b) we plot δr versus FD for a sample
with Fp = 0.1, Rp = 0.35, and αm/αd = 1.0. Here the
initial value of δr is smaller due to the smaller value of
αm/αd. From an initial value of δr = 0.15, the magnitude
of the shift decreases with increasing drive. For αm/αd =
0.0 (not shown), δr = 0 for all values of FD. If we apply
a fit to the decrease of the shift as a function of drive,
we find δr ∝ F−ν

D , with ν = 1.44 − 2.0 depending on
the choice of the low drive cutoff. In the work of Müller
and Rosch for a skyrmion scattering off a single defect26,
they found through both simulations and perturbation
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FIG. 19: δr, the magnitude of the trajectory shift, vs FD for a
skyrmion entering a single pinning site with an impact factor
of zero. (a) Fp = 0.1, Rp = 0.35, and αm/αd = 10.0. δr
approaches zero at higher drives. (b) The same for αm/αd =
1.0.

that the shift as a function of drive goes as δr ∝ F−2
D .

Even though the pinning potential we use has a different
form than that used in Ref.26, our results are consistent
with the pinning site inducing a trajectory shift.

In order to understand the shift of the skyrmion and
when the skyrmion will be captured by a pinning site, in
Fig. 20 we plot δr as a function of the impact parameter b.
Figure 20(a) shows the overdamped case αm/αd = 0.0 for
Fp = 0.1 and rp = 0.35 at FD = 0.12, 0.16, and 0.2. At
b = 0, δr = 0 and there is no shift in the trajectory, while
shifts for positive and negative values of b are symmetric
across b = 0 so that the integrated shift over all impact
parameters is zero. For FD < Fp = 0.1 the skyrmion
is always captured by the pin. Figure 20(b) shows δr
versus b for a sample with αm/αd = 1.0 at drives ranging
from FD = 0.085 to FD = 0.20. Here, δr decreases with
increasing FD, and the shifts are asymmetric for positive
and negative values of b, so that the integrated shift over
all impact parameters is positive. At FD = 0.085 and
0.09, values of b at which there are no points on the curve
indicate that the skyrmion was captured by the pinning
site. For higher values of FD, |δr| is larger for b < 0 than
for b > 0. The results in Fig. 20(b) show that increasing
αm/αb reduces the range of impact parameters where an
incoming skyrmion is captured by the pin, and that for
some ranges of b a skyrmion can escape the pin even when
FD < Fp, in contrast to the overdamped case where the
skyrmion is always trapped whenever FD < Fp.

Figure 20(c) shows δr versus b for αm/αd = 10.0 over
the range FD = 0.03 to FD = 0.2. Here, the ability of the
pinning site to capture the skyrmion is further reduced,
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FIG. 20: The trajectory shift δr vs impact parameter b for a
skyrmion moving through a pinning site with Fp = 0.1 and
Rp = 0.35. (a) αm/αd = 0 for FD = 0.12, 0.16, and 0.20,
from upper left to lower left. δr is symmetric across b = 0.
(b) αm/αd = 1.0 for FD = 0.085, 0.09, 0.10, 0.11, 0.12, 0.14,
0.16, 0.18, and 0.20, from upper left to lower left. Here the
shift is asymmetric across b = 0. For values of b where there
are no points, the skyrmion is captured by the pinning site.
(b) αm/αd = 10 for FD = 0.03, 0.05, 0.08, 0.12, and 0.20,
from upper left to lower left. The shifts become larger with
increasing αm/αd.

and the skyrmion does not become pinned for more than
half the impact parameters at FD = 0.03 even though
this drive is substantially smaller than the maximum pin-
ning force Fp = 0.1. At FD = 0.05 a skyrmion can only
become captured if b > 0.25. The overall shifts are posi-
tive over a much wider range of FD, and the magnitude
of δr decreases with increasing FD. This result shows
that inclusion of a Magnus term in the dynamics reduces
the ability of pinning sites to capture particles since the
Magnus term induces a side jump or shift that permits
the particles to escape from the pin.

V. CONCLUSION

We have numerically examined a skyrmion under a dc
drive moving over a two-dimensional square pinning sub-
strate for varied ratios of the Magnus force term αm to
the damping αd. In the overdamped limit αm/αd = 0,
there is a single depinning transition into a sliding state
where the skyrmion moves in the direction of the applied
drive. For a finite αm/αd we find that the skyrmion
direction of motion or Hall angle depends on the magni-
tude of the external drive and gradually approaches the
substrate-free limit at high drives. Due to the symme-
try of the underlying substrate, the Hall angle does not
change continuously but passes through a series of steps
as the skyrmion motion becomes locked to certain sym-

metry directions of the substrate. These steps occur at
integer and rational fractional ratios n/m of the perpen-
dicular to parallel velocity components of the skyrmion
motion with respect to the direction of the applied drive,
where n andm are the number of plaquettes the skyrmion
moves in the perpendicular and parallel directions, re-
spectively. We find that the Hall angle generally increases
with increasing external drive, but that there can be an
overshoot effect in which the Hall angle is larger than ex-
pected for the substrate-free or clean limit. In this case,
as the drive increases the Hall angle jumps back to a lower
value closer to the clean limit value. At the transitions
between different directional looking steps, the skyrmion
velocity shows a striking series of cusps or dips where
the skyrmion slows down for increasing FD, producing
a negative differential mobility at the transitions. As
αm/αd increases, the number of transitions between dif-
ferent looking steps increases, as we map out in a series of
phase diagrams. The directional locking effects exhibited
by the skyrmions are very distinct from the directional
locking effects previously observed for overdamped parti-
cles such as vortices and colloids interacting with periodic
substrates. In the overdamped system, the angle of the
external drive must be changed with respect to the sym-
metry direction of the substrate in order to induce lock-
ing steps, whereas for the skyrmion system the driving
direction remains fixed; only the magnitude of the driving
force is changed. Additionally, the overdamped systems
exhibit neither the negative mobility phenomenon at the
transitions between steps nor the overshoot effect.

We find that the skyrmion motion can exhibit a
speedup or acceleration effect where the interaction of the
skyrmion with a pinning site can accelerate the skyrmion
such that the skyrmion velocity is higher than the value
that would be induced by the external drive alone. This
effect is generally enhanced at the lower drives and sup-
pressed near the directional locking transitions. It con-
trasts strongly with the behavior of overdamped systems,
where interactions with pinning or a substrate always de-
crease the velocity of an overdamped particle. We find
that all of these features are robust for different forms of
the periodic substrate.

To better understand how the pinning can induce a
Hall angle dependence on the magnitude of the drive, we
consider a skyrmion scattering from a single pinning site.
In the overdamped limit with αm/αd = 0, the skyrmion
becomes trapped by the pin whenever the external drive
is less than the magnitude of the maximum pinning force
that can be exerted by the pinning site. For external
drives larger than this value, the skyrmion escapes from
the pin and its trajectory is shifted perpendicular to the
direction of skyrmion motion. The shift is symmetric for
positive and negative impact parameters, so there is no
net shift of the trajectory when all impact parameters
are integrated. In contrast, at a finite αm/αd, the mag-
nitude of the trajectory shift depends asymmetrically on
the impact parameter, producing a nonzero net shift of
the skyrmion as it moves through the pinning site when
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all impact parameters are integrated. This shift is similar
to the side jump phenomenon found in electron scatter-
ing. As the external drive is increased, the net shift de-
creases and the skyrmion motion approaches the pin-free
trajectory track. The trajectory shift is responsible for
the modified Hall angle experienced by the skyrmion at
low drives, and the gradual decrease in shift with increas-
ing drive causes the Hall angle to gradually approach the
clean limit value. For the case of a periodic substrate, the
additional symmetry of the substrate prevents the angle
of the skyrmion motion from changing continuously; in-
stead, the motion changes in a series of steps with in-
creasing drive as it approaches the clean limit value. We
also find that for finite αm/αd, depending on the im-
pact parameter the skyrmion may or may not become
pinned regardless of whether the maximum pinning force

is smaller than the driving force, and that for increas-
ing αm/αd, the range of impact parameters over which
the particle is not pinned even when the driving force is
smaller than the maximum pinning force increases. This
is one of the reasons that pinning of skyrmions is much
weaker than pinning in overdamped systems such as su-
perconducting vortices.
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