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We use Quantum Monte-Carlo methods to study the ground state phase diagram of a S = 1/2
honeycomb lattice magnet in which a nearest-neighbor antiferromagnetic exchange J (favoring Néel
order) competes with two different multi-spin interaction terms: a six-spin interaction Q3 that favors
columnar valence-bond solid (VBS) order, and a four-spin interaction Q2 that favors staggered VBS
order. For Q3 ∼ Q2 � J , we establish that the competition between the two different VBS orders
stabilizes Néel order in a large swathe of the phase diagram even when J is the smallest energy-scale
in the Hamiltonian. When Q3 � (Q2, J) (Q2 � (Q3, J)), this model exhibits at zero temperature
phase transition from the Néel state to a columnar (staggered) VBS state. We establish that the
Néel-columnar VBS transition is continuous for all values of Q2, and that critical properties along
the entire phase boundary are well-characterized by critical exponents and amplitudes of the non-
compact CP1 (NCCP1) theory of deconfined criticality, similar to what is observed on a square
lattice. However, a surprising three-fold anisotropy of the phase of the VBS order parameter at
criticality, whose presence was recently noted at the Q2 = 0 deconfined critical point, is seen to
persist all along this phase boundary. We use a classical analogy to explore this by studying the
critical point of a three-dimensional XY model with a four-fold anisotropy field which is known to
be weakly irrelevant at the three-dimensional XY critical point. In this case, we again find that the
critical anisotropy appears to saturate to a nonzero value over the range of sizes accessible to our
simulations.

PACS numbers:

I. INTRODUCTION

Ground states of quantum antiferromagnets with S =
1/2 moments on a two dimensional (2d) bipartite lat-
tice (such as square or honeycomb lattices) generally ex-
hibit long-range spin correlations at the Néel wavevec-
tor Q1. This T = 0 antiferromagnetic order, en-
coded in a nonzero value of the Néel order parame-
ter vector ~n, can be destroyed by frustrating further-
neighbour2–8 or ring-exchange interactions, as well as by
certain more tractable multi-spin couplings designed9 to
partially mimic the effect of such frustrating interactions.
In many examples, the resulting phase has no magnetic
order and instead exhibits spatial ordering of the bond-
energy. In such a bond-ordered valence-bond solid (VBS)

state10, the singlet projector P〈ij〉 = −~Si · ~Sj + 1/4 of
two nearest-neighbor spins 〈ij〉 has an expectation value
that exhibits spatial structure at the VBS ordering wave-
vector(s) K, resulting in a non-zero value for the complex
VBS order-parameter ψ.

A standard Landau approach (based on a coarse-
grained free-energy density11 expressed in terms of pow-
ers of ~n and ψ and their space-time gradients) would pre-
dict that this phase transformation generically proceeds
either via a direct first-order transition, or via two con-
tinuous transitions separated by an intermediate phase
which has both orders or no order. Since the latter pos-
sibilities are more exotic, the simplest generic possibility
within Landau theory is thus a direct first-order tran-
sition. Such first-order behavior is indeed observed in
square12 and honeycomb lattice13 spin models where a

multi-spin interaction drives the system to a staggered
VBS state (Fig. 1 b).

The theory of deconfined quantum critical points14–16

proposed by Senthil et. al. argues that such Landau-
theory considerations are misleading when the transition
is towards a state with columnar VBS order (Fig. 1a)
on the square or honeycomb lattice. Indeed, their
arguments14–16 strongly suggest that such transitions can
be generically (without fine-tuning any parameter) sec-
ond order in nature. In this alternate approach, one
writes the partition function as an imaginary-time (τ)
path-integral over space-time configurations ~n(~r, τ), and
notes that the spatial configuration ~n(~r) on a given time-
slice admits topological skyrmion textures in spatial di-
mension d = 2. The corresponding total skyrmion num-
ber is conserved during the imaginary-time evolution
as long as the space-time configuration of ~n remains
non-singular. Conversely, when the skyrmion number-
changing operator Ψ~R acts at imaginary time τ on pla-

quette ~R, it creates a hedgehog defect centered at ~R, τ .
In this path-integral representation, this hedgehog defect

carries a Berry-phase 2πp(~R)/q where p(~R) = 0, 1 . . . q−1

depends on the sublattice to which ~R belongs and q = 3
(q = 4) for the honeycomb (square) lattice case17–20.

Remarkably, this phase factor ensures that the trans-
formation properties of Ψ under lattice symmetries are
identical to those of the complex VBS order parameter
ψ for columnar order on both honeycomb and square
lattices14,15,18,19. The two operators can thus be identi-
fied with each other insofar as their long-distance corre-
lations are concerned (here and henceforth, we refer to
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ψ as the “columnar” order parameter, although ψ is also
non-zero if the system has plaquette VBS order as shown
in Fig. 1a for the honeycomb lattice case). The destruc-
tion of Néel order in the ground state can be described
as a proliferation of such hedgehog defects, providing a
natural mechanism for a direct transition between Néel
and columnar VBS orders14–16. This theoretical descrip-
tion only involves q-fold (q = 3 on the honeycomb lat-
tice and q = 4 on the square lattice) hedgehogs (cor-
responding to Ψq and its Hermitian conjugate), as de-
fects with smaller hedgehog-number carry rapidly oscil-
lating Berry-phases, causing the corresponding terms in
the action to scale to zero upon coarse-graining. Such
restrictions on hedgehog charges in space-time configu-
rations of ~n are best analyzed21 in the CP1 representa-
tion ~n = z∗α~σαβzβ , where zα is a two-component complex
field and ~σ the vector of Pauli matrices. In the CP1 rep-
resentation, hedgehogs correspond to monopoles in the
compact U(1) gauge-field to which the zα are minimally
coupled21–23. Thus, if the corresponding non-compact
CP1 theory (NCCP1) has a second-order transition, and
if 3-fold (4-fold) monopoles are irrelevant perturbations
at the corresponding monopole-free fixed point, one ex-
pects that the Néel-columnar VBS transition on the
honeycomb (square) lattice to be generically continu-
ous, with critical properties in the NCCP1 universality
class14–16. Conversely, if 3-fold (4-fold) monopoles are
relevant at the putative NCCP1 critical point, the sim-
plest scenario is that this leads to runaway flows which
signal weakly-first order behavior for the Néel-columnar
VBS transition on the honeycomb (square) lattice14–16.

To understand the scaling behavior of q-fold monopole
creation operators in the vicinity of the non-compact CP1

critical point, it is instructive to consider a more gen-
eral NCCPN−1 theory which has N -component fields zα
and study the limiting behavior of q-fold monopole per-
turbations in the N = 1 and N = ∞ limits. For in-
stance, four-fold monopoles are known to be irrelevant
both at N = 114,19,24–26 and N = ∞14,19,24, making it
very likely that they are also irrelevant in the physical
N = 2 case14–16. Thus, the Néel-columnar VBS transi-
tion on the square lattice is expected to be generically
second-order, with critical properties described by the
NCCP1 theory14–16.

The behavior of three-fold monopoles at the noncom-
pact CP1 critical point is harder to understand from such
a study of limiting cases. This is because the physical
N = 2 case lies between the N = 1 case where three-fold
monopoles are relevant14,19,24,25 and lead to a weakly-first
order transition27, and the N = ∞14,19,24 limit where
they are irrelevant. These contrasting behaviors in the
two limits makes it difficult to argue one way or the other
concerning the behavior of three-fold monopole perturba-
tions at the N = 2 critical point14–16. A nice summary
of the expected behavior of the NCCPN−1 theory with
q-fold monopoles (including results of numerical simula-
tions) can be found in Ref. 28.

This theory of deconfined criticality has motivated sev-

eral numerical studies28–45 of model quantum Hamilto-
nians designed9 to host a Néel-VBS columnar transition.
In parallel work, other studies have tried to access the
physics of deconfined criticality in three dimensional clas-
sical models45–55. On the square lattice (with q = 4),
QMC simulations28–31,33–37,39,40,42,44,45 find no direct sig-
nature of first-order behavior even at the largest sizes
studied. This is true both for SU(2) symmetric mod-
els, as well as spin models with enhanced SU(N) sym-
metry, which are expected to exhibit a transition in the
NCCPN−1 universality class. Further, critical proper-
ties fit reasonably well to standard scaling predictions
for second-order transitions28–30,33–37,39,44. The corre-
sponding values of ηN and ηD, the anomalous exponents
governing power-law decays of the Néel order parame-
ter ~n and the VBS order parameter ψ, are relatively
large28,40,44, as expected from the theory of deconfined
criticality. Additionally, the numerically estimated crit-
ical exponents for large values of N (using lattice spin
models with SU(N) symmetry) approach the limiting val-
ues obtained in a large-N expansion of the NCCPN−1

theory28,39,56. Further, different “designer Hamiltoni-
ans” with different multi-spin couplings29,34,39 yield the
same estimates for exponents and critical amplitudes. At
or close to this critical point, histograms of the phase of
ψ exhibit near-perfect U(1) symmetry29,33,40, consistent
with the idea that the irrelevance of the 4-fold monopole
insertion operator Ψ4 implies, via the identification Ψ ∼
ψ, the irrelevance of the 4-fold anisotropy in the phase
of the VBS order parameter ψ. However, in the SU(2)
case, slow (perhaps logarithmic) drifts with increasing
linear size L are clearly visible31,34–37,45 in certain di-
mensionless quantities which are expected to be scale-
invariant at a conventional second-order critical point in
three space-time dimensions — examples include the spin
stiffness and vacancy-induced spin textures. Since his-
tograms of phase of ψ exhibit U(1) symmetry character-
istic of the non-compact theory, it seems plausible that
these drifts are intrinsic properties of the non-compact
critical point. This interpretation is supported by the
fact that Monte-Carlo simulations of a lattice-regularized
NCCP1 theory45–47 also see some drifts that mar other-
wise convincing scaling behavior (it is also possible to
find different lattice-regularizations that lead to a first-
order behavior45–47). However, at the present juncture,
there is no detailed understanding of these drifts that
goes beyond this reasonable guess (see however the recent
analytical arguments of Ref. 57,58). Finally, we caution
that some authors31,45 have also interpreted these drifts
as either hints of a very weak first order transition, or as
the signature of a flow towards a new universality class
different from NCCP1.

What about the honeycomb lattice case (q = 3)? Re-
cent numerical studies of tractable model Hamiltonians
provide a fairly consistent picture of a direct second-
order transition between the Néel and the columnar VBS
states28,43,44, with numerical estimates of the anomalous
exponents ηN and ηD, correlation length exponent ν, and
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universal scaling functions44 all consistent, within errors,
with the best estimates for the square-lattice transition.
Further, slow drifts in spin stiffness analogous to the
square lattice case, have also been observed at the pu-
tative critical point43. All this strongly suggests that
the honeycomb lattice transition is also described by the
NCCP1 theory of deconfined criticality.

However, our recent work has also identified an impor-
tant new feature of the honeycomb lattice transition43:
if the honeycomb lattice transition is indeed described
by the NCCP1 theory, 3-fold monopoles must be irrel-
evant at the NCCP1 critical point. Since Ψ ∼ ψ, this
would imply that three-fold anisotropy in the phase of
the VBS order parameter ψ is irrelevant at criticality.
However, it was found43 that dimensionless measures of
this three-fold anisotropy at criticality appear to satu-
rate to a non-zero value as a function of increasing size
(at least for the sizes at which numerical calculations
were feasible, which are comparable with those used in
square lattice studies). The simplest explanation is that
tripled monopoles are irrelevant with a very small scal-
ing dimension, meaning that the dimensionless critical
three-fold anisotropy should flow to zero very slowly. If
one only has access to data over a limited range of sizes,
it can appear to saturate at a non-zero value.

The present study aims at clarifying this issue of
anisotropy, as well as adding some further numerical ev-
idence for the less documented case of deconfined criti-
cality on the honeycomb lattice, relevant for frustrated
honeycomb lattice spin models4–7. In this context, we
note that a recent study59 suggests an interesting ex-
perimental realization of deconfined criticality in bilayer
graphene in magnetic and electric fields, further adding
to our motivation for studying the Néel-columnar VBS
transition on the honeycomb lattice.

We focus here on a numerically tractable model in
which the nearest-neighbor antiferromagnetic exchange J
competes with two different multi-spin interaction terms,
a six-spin interaction Q3 that favors a columnar VBS
state (when Q3 � Q2, J), and a four-spin interaction
Q2 that favors a staggered VBS (when Q2 � Q3, J).
The deconfined quantum critical point for the model at
Q2 = 0 has been studied in our previous work43, as well
as in Ref. 44. The motivation for perturbing this model
with the Q2 term was three-fold: (i) this new energy
scale (when not too large) will introduce a critical line
of Q3c(Q2) for the Néel-columnar VBS phase boundary.
Universality of critical exponents and amplitudes can
be tested along this critical line66; (ii) if Q2 tunes the
“bare” value of the three-fold anisotropy of the colum-
nar VBS order parameter ψ, one could test the behav-
ior of the critical three-fold anisotropy along the phase
boundary line Q3c(Q2); (iii) the competition between
the staggered and columnar VBS orders in the regime
Q2 ∼ Q3 � J may reveal exotic physics: the transition
from staggered VBS order (with maximal winding in the
valence-bond pattern) to columnar VBS order (with zero-
winding) may proceed through an intervening quantum
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FIG. 1: (Color online) (a) Columnar VBS order on the hon-
eycomb lattice: dark links represent higher values of 〈Pl〉 (the
singlet projection operator on this link) than light links. If
dark links are instead reinterpreted as representing lower val-
ues of Pl, one obtains a representation of plaquette VBS or-
der at the same wave-vector. (b) Staggered VBS order on the
honeycomb lattice, where again dark links represent higher
values of 〈Pl〉. In both figures, we have created different or-
dered domains (represented by different colors and separated
by dashed lines) by introducing a defect. As already dis-
cussed13, the defect has a spinfull core (a free spin 1/2 sits
at the domain wall intersection) for columnar/plaquette VBS
whereas the core is spinless for the staggered VBS. Also shown
are our conventions for labeling unit cells ~r, bonds µ belonging
to unit cells ~r, and A and B sublattice sites in unit cell ~r. (c)
Schematic representations of the 4− and 6− spins interactions
terms Q2 and Q3.

spin-liquid (where no winding sector is favored).

Before proceeding further, it is useful to summarize the
key findings of the present work: (i) we establish that the
transition from Néel to columnar VBS order is continu-
ous for all values of Q2, and that critical properties along
the entire Néel-columnar VBS phase boundary Q3c(Q2)
are well-characterized by critical exponents and ampli-
tudes of the NCCP1 theory of deconfined criticality; (ii)
the three-fold anisotropy of the phase of the VBS order
parameter persists all along this phase boundary, with
slight but perceptible upward drift in its value as Q2 is
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increased. To explore the possibility that this may re-
flect the fact that tripled-monopoles are irrelevant with
a very small scaling dimension, we use a classical anal-
ogy and study the critical point of the 3d XY model
with a four-fold anisotropy field which is known to be ir-
relevant with a small scaling dimension25,60. Our results
for the dimensionless anisotropy on this classical model
are qualitatively similar to our results for the three-fold
anisotropy at the Néel- columnar VBS transition: in both
cases, the anisotropy appears to saturate to a non-zero
value over the available range of sizes, although, in the
classical case, one expects it to be irrelevant at the tran-
sition; (iii) for Q3 ∼ Q2 � J , the competition between
these two different VBS orders does not lead to an inter-
vening spin-liquid phase. Rather, it stabilizes Néel order
in a large swathe of the phase diagram even when J is
the smallest energy-scale in the problem.

The article is organized as follows: in Sec. II, we in-
troduce the J-Q3-Q2 models that we will study and pro-
vide some computational details. In Sec. III, we show
our estimates for the phase boundaries in the (Q2, Q3)
plane. In Sec. IV, we study in greater detail the nature
of phase-boundary Q3c(Q2) separating the Néel phase
and the columnar VBS phase, including the behavior of
the three-fold anisotropy in the phase of the columnar
VBS order parameter. In Sec. V, we study the classical
three-dimensional XY model with four-fold anisotropy.
Finally, we conclude in Sec. VI with a brief discussion
about possible directions for future work. Some addi-
tional numerical results (on the finite-size scaling anal-
ysis of critical anisotropy, as well as 3d XY model with
q = 3, 5-fold anisotropic fields) are relegated to Appen-
dices A and B.

II. MODEL AND METHODS

The main focus of our work is the numerical study of
a model of spin-1/2 moments on sites of the honeycomb
lattice, coupled by a nearest neighbor exchange J that
competes with a four-spin interaction Q2 and a six-spin
interaction Q3:

H = HJ +HQ3 +HQ2 (1)

HJ = −J
∑
〈ij〉

P〈ij〉

HQ3 = −Q3

∑
〈ijklmn〉

P〈ij〉P〈kl〉P〈mn〉 + P〈jk〉P〈lm〉P〈ni〉

HQ2 = −Q2

∑
〈ijklmn〉

P〈ij〉P〈lm〉 + P〈jk〉P〈mn〉 + P〈kl〉P〈ni〉,

where P〈ij〉 = 1/4− Si.Sj is the singlet projector on the
bond 〈i, j〉 and 〈ijklmn〉 denotes an elementary hexagon
with vertices labeled cyclically (Fig. 1c). We set J = 1 so
that all energies are measured in units of J . This model
is studied using the same techniques as in Ref. 43, for
both obtaining the ground-state and characterizing its

physical properties. We summarize them here for com-
pleteness, using the same notations: we use a QMC pro-
jector algorithm61 on honeycomb lattices of linear size up
to L = 60, consisting of L2 unit cells with two spins cor-
responding to the two-sublattice structure of the honey-
comb lattice. Periodic boundary conditions are imposed.

Néel order is characterized using the vector order pa-

rameter ~M = 1
2L2

∑
~r ~n(~r), with ~n the local Néel field

~n(~r) = ~S~rA − ~S~rB . The unit cell is labeled by ~r and sub-
scripts A and B refer to the two sites in this unit cell
located on the different sublattices. The VBS order at
the columnar wavevector K ≡ (2π/3,−2π/3) is charac-
terized by the order parameter ψ = 1

2L2

∑
~r V~r, where V~r

is the local field:

V~r = (P~r0 + e2πi/3P~r1 + e4πi/3P~r2)eiK·~r ,

with P~rµ (µ = 0, 1, 2) the singlet projector on one of the
three bonds µ corresponding to the unit cell labeled by ~r
(see Fig. 1). This definition implies a phase of 0, 2π/3 and
4π/3 for ψ for the three symmetry-related pure columnar
ordered VBS (Fig. 1), and π/3, π and 5π/3 for ψ for
the three symmetry-related pure plaquette ordered VBS
(Fig. 1). Finally, to quantify the staggered VBS order,
we follow Ref. 13 and use the nematic order parameter
φ = 1

2L2

∑
~rW~r, where W~r is the local staggered VBS

order parameter field, written as

W~r = (P~r0 + e2πi/3P~r1 + e4πi/3P~r2) .

Note the absence of any ~r dependent phase factor in this
definition. This is consistent with the fact that staggered
VBS order only breaks the symmetry of three-fold rota-
tions, while preserving translational symmetry.

To detect quantum phase transitions, we consider the
square of the modulus of the three order parameters of

interest: 〈 ~M2〉, 〈|ψ|2〉 = 〈ψ†ψ〉, and 〈|φ|2〉 = 〈φ†φ〉. For a
continuous Néel-columnar VBS transition, we expect the

scaling forms: 〈 ~M2〉 = L−(1+ηN )f ~M ((Q3 − QN3c)L
1/νN )

and 〈|ψ|2〉 = L−(1+ηVBS)fψ((Q3−QD3c)L1/νD ). In writing
these scaling forms, we assume that the phase bound-
ary is crossed by varying Q3 at fixed Q2 and allow for
two different correlation length exponents νN/D associ-
ated with Néel / columnar VBS correlations at different

critical values Q
N/D
3c . We do not quote the scaling form

for the staggered VBS order as this transition is strongly
first order.

We also use the following Binder ratios gM =

〈( ~M2)2〉/〈 ~M2〉2, gψ = |Eψ|4/
(
|Eψ|2

)2
and gφ =

|Eφ|4/
(
|Eφ|2

)2
to locate the quantum critical points

where Néel, columnar and staggered VBS orders respec-
tively disappear. The two first Binder ratios are ex-
pected to scale close to a continuous quantum phase
transitions as gM = gM ((Q3 − QN3c)L

1/νN ) and gψ =

gψ((Q3 − QD3c)L1/νD ) respectively. Note that both VBS
Binder ratios are not written in terms of the powers of
the corresponding VBS order parameter, as this would
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involve computations of 8−spin correlation functions, for
which there is no simple expression in the valence-bond
formalism used in the QMC simulations. Instead, we use
moments of the Monte-Carlo estimator Eψ

29,33 (respec-

tively Eφ), whose Monte-Carlo average Eψ (respectively

Eφ) coincides with the quantum-mechanical expectation
value 〈ψ〉 (〈φ〉) of the columnar (resp. staggered) VBS or-
der parameter. Explicit description of the related Monte
Carlo measurements can be found in Ref. 29. In all our
simulations, we found that this correctly reproduces the
expected physical behavior for moments of ψ or φ.

Close to continuous quantum phase transitions, we
have fitted our numerical data to the respective scaling
forms, using polynomial up to second order in most cases
for the universal functions fM/ψ and gM/ψ.

We now introduce the observables related to the phase
of the columnar VBS order parameter ψ. The phase of
ψ distinguishes a fixed columnar (‘Kekulé’) pattern of
bond-energy expectation values from one in which a sub-
lattice of plaquettes hosts a valence-bond resonance (see
Fig. 1). Both patterns correspond to a three-fold sym-
metry breaking and lead to order at the same wavevector
K, but they differ in the phase of the complex VBS order
parameter ψ. In our QMC simulations, we do not have
access strictly speaking to the phase of ψ, but rather to
the phase θEψ of the estimator Eψ ≡ |Eψ| exp(iθEψ ). We
nevertheless expect that it reflects the behavior of the
true phase of ψ. We recall that our definition of ψ leads
θEψ to take 0, 2π, 3 and 4π/3 for the three symmetry-
related columnar VBS, while θEψ takes π/3, π and 5π/3
for the three symmetry-related plaquette VBS. To ad-
dress the relevance of 3-fold monopole events, we consider
the following dimensionless measure of the anisotropy in
the distribution of this phase:

W3 =

∫
dEψP (Eψ) cos(3θEψ ) (2)

with P (Eψ) is the normalized probability distribution for
this quantity as sampled by the Monte-Carlo run. W3

thus takes a value of 1 for a pure columnar VBS when
θEψ is 0, 2π/3 or 4π/3 in any superposition, while it takes
a value of −1 for a pure plaquette VBS when θEψ is π/3,
π or 5π/3 in any superposition. In the total absence of
phase anisotropy, W3 takes a value of 0.

It is also possible to analyze our data using scaling the-
ories25,26,64 to capture the finite-size behavior of W3 near
criticality. We have used such a scaling analysis to fit our
numerical data as detailed in Appendix A, but we pre-
fer to display the bare numerical data for the anisotropy
measure W3 in Sec. IV B in order to avoid any assump-
tion regarding the scaling form obeyed by W3.

III. PHASE DIAGRAM

We first present our results on the phase diagram of
the ground-state of H in the (Q2, Q3) plane. As noted
earlier, HJ favors Néel ordering, while HQ2

(HQ3
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FIG. 2: (Color online) Color maps of Binder cumulants (top
: Néel Binder cumulant gM , middle: VBS columnar Binder
cumulant gψ, bottom: staggered Binder cumulant gφ) for dif-
ferent values in the (Q2, Q3) parameter space, for a system of
linear size L = 24. Low values indicate long-range order, while
high values indicate absence of order. These results allow to
map the phase diagram where Néel, columnar and staggered
VBS phases can be identified (green lines are indications of
approximate phase boundaries).

staggered (columnar) VBS order. We can locate two lim-
iting points using results from previous works. The model
HJ +HQ3

has been shown43 to host a continuous phase
transition from the Néel to a columnar VBS state at
Q3c(Q2 = 0) ' 1.19. Since Q2 disfavors columnar VBS
order, we expect the phase boundary Q3c(Q2) between
the Néel state and the columnar VBS state to define an
increasing function of Q2, at least for small Q2. On the
other hand, Ref 13 showed that the model HJ +HQ2

ex-
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hibits a strongly first-order transition from the Néel to
the staggered VBS state at Q2c(Q3 = 0) ' 6.4. We ex-
pect the first-order transition to staggered VBS order to
shift to increasing values of Q2 when Q3 is turned on.

A first estimate on the location of these phase bound-
aries is given by the magnitude of the Néel Binder cumu-
lant gM . In our definition of gM , and for a large enough
system size, a value close to 1 corresponds to a phase
with antiferromagnetic order, while a value 5/3 corre-
sponds to gaussian fluctuations centered at zero, signal-
ing no magnetic order. At the quantum Néel-columnar
VBS critical point at Q2 = 0, the Néel Binder cumulant
takes43 a value ' 1.42 (which should be universal), lying
between these two limiting values. In contrast, close to
a first-order transition62, this Binder cumulant can take
values larger than 5/3 on finite-systems. We display the
magnitude of gM for a system of moderate size L = 24
in the top panel of Fig. 2. This allows a first estimate
of the phase boundaries: we clearly observe two transi-
tion lines emerging from the limiting points at Q3 = 0
and Q2 = 0. The nature of the transitions does not ap-
pear to change, since we observe very high values for gM
(signaling a first-order transition) for the line emerging
from Qc2(Q3 = 0), and intermediate values (between 1
and 5/3) for the line emerging from Qc3(Q2 = 0), sig-
naling a continuous transition. This is confirmed by a
finite-size scaling analysis in the next section. From this
study of gM , we also see that antiferromagnetism sur-
vives in the region Q2, Q3 � J . Thus, the competition
between the two VBS orders does not lead to spin-liquid
behavior. Rather, it allows antiferromagnetism to set in
although J is the smallest energy scale in the Hamilto-
nian. The phases where no antiferromagnetism is present
are naturally expected to host columnar (at low Q2) and
staggered (low Q3) VBS orders. This is well confirmed
by the low values (close to 1) taken by the columnar and
staggered VBS Binder cumulants displayed in the middle
and bottom panels of Fig. 2.

We now consider more carefully the transition line
Q2c(Q3) between the Néel and staggered VBS order, by
locating the abrupt first-order jumps in the two order pa-
rameters. An example of these jumps is shown in Fig. 3
and the resulting phase boundary is represented as a line
in Fig. 2. The transition between the Néel and columnar
VBS transitions deserves a more careful finite-size scal-
ing analysis, which is presented in Sec. IV: the resulting
transition line Q3c(Q2) is also represented in Fig. 2.

IV. NÉEL-COLUMNAR VBS TRANSITION
LINE

A. Exponents and scaling forms

We focus here on the nature of the phase-boundary
between the Néel and the columnar VBS states. Follow-
ing our earlier work43 at Q2 = 0, we locate the point at
which Néel order is lost using the dimensionless Binder
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FIG. 3: The first-order transition from Néel to staggered VBS
order is readily identified by the sharps jumps in the corre-
sponding order parameters (filled squares for 〈M2〉 shown on
left y-axis, filled circles for 〈φ2〉 shown on right y-axis), for
three values of Q3 (system size L = 24).

ratio gM , and the point at which the columnar VBS or-
der turns on using the corresponding Binder ratio gψ.
For four different values of Q2, we vary Q3 to locate the
quantum phase transition and attempt to collapse the
Binder ratio data onto the corresponding scaling forms
(see Sec. II). In the analysis, we allow these two scaling
forms to use different values of Q3c as well as different
correlation length exponents νN and νD. We also analyze
the collapse of the modulus squares of order parameters
〈M2〉 and 〈|ψ2|〉 according to the forms in Sec. II, pro-
viding estimates of Q3c, νN , νD as well as ηN and ηD.

In Figs. 4 and 5, we provide representative examples
of the results of such an analysis. Our data all along the
Néel-columnar VBS phase boundary is well-described by
conventional scaling forms. For ready-reference, we also
tabulate estimates of the corresponding critical points,
exponents and amplitudes values obtained using these
different observables in Table I.

We find that these estimates of Q3c at a given value
of Q2 agree approximately with each other within sta-
tistical errors. More precisely, the spread in the best-fit
values of Q3c obtained from VBS data in two different
ways (from gψ and 〈|ψ2|〉) is of the same order as the
difference in the best-fit Q3c values obtained from scal-
ing collapses of gψ and gM . The same is true for the
correlation length exponents νN and νD at a given value
of Q2. Therefore, we conclude that one can consistently
account for all the data at a given value of Q2 in terms of
a single critical point Q3c(Q2) at which Néel order is lost
and columnar VBS order turns on, with both Néel and
columnar order parameters controlled by a single correla-
tion length exponent ν. Within errors, this estimate of ν
does not exhibit any Q2 dependence. The anomalous ex-
ponents ηN and ηD are also found to be Q2-independent
within error bars (which are larger for ηD). Addition-
ally, we note that ηN and ηD are close to each other in
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〈M2〉 gM = 〈M4〉/〈M2〉2 〈|ψ|2〉 gψ = 〈|Eψ|4〉/〈|Eψ|2〉2

Q2 Q3c νN ηN Q3c νN gM (0) Q3c νD ηD Q3c νD gψ(0)

0.14 1.496(2) 0.58(2) 0.27(3) 1.496(1) 0.57(3) 1.425(2) 1.483(2) 0.59(2) 0.37(3) 1.491(1) 0.57(3) 1.718(5)

0.60 2.506(2) 0.56(2) 0.31(2) 2.500(1) 0.56(2) 1.427(1) 2.491(5) 0.57(3) 0.23(7) 2.495(1) 0.56(2) 1.721(3)

0.85 3.058(2) 0.55(4) 0.33(2) 3.050(2) 0.56(2) 1.428(3) 3.03(1) 0.60(3) 0.26(8) 3.044(2) 0.56(2) 1.721(5)

20.0 45.3(1) 0.57(2) 0.31(3) 45.27(2) 0.56(2) 1.430(2) 45.0(1) 0.61(3) 0.32(6) 45.18(1) 0.56(2) 1.727(1)

TABLE I: For different values of Q2 : estimates of critical point, exponent and amplitudes resulting from the finite-size scaling
analysis of order parameters 〈M2〉, 〈|ψ|2〉 and associated Binder cumulants 〈M4〉/〈M2〉2, 〈|Eψ|4〉/〈|Eψ|2〉2. Error bars were
determined from the spread on extracted fit parameters depending on critical window size, minimum system sizes included,
and degree of polynomial for the universal scaling functions, with χ2 per degree of freedom always . 1.5.
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FIG. 4: (Color online) Crossing plot of Binder cumulants for
different system sizes : Néel cumulant gM (top panel, for
Q2 = 0.14) and columnar VBS cumulant gψ (bottom panel,
for Q2 = 0.60). Symbols are QMC data, solid lines fits to
the finite-size scaling form (see text). For the fits, a particu-
lar choice of critical window, minimum system size included,
and order of universal function has been shown here which
gave χ2 per degree of freedom equal to 1.53 and 0.97 for the
plots respectively. For estimates on overall error-bars, refer
to Table I.

value (although the theory of deconfined criticality does
not predict that these anomalous dimensions are equal).
The amplitudes of both VBS and Binder ratios at criti-
cality are also found to be constant within errors along
the critical line. Finally, we emphasize that all estimates
of the critical exponents and amplitudes for Q2 6= 0 agree
with those found in the case Q2 = 043.

Our numerical simulations therefore indicate that the
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FIG. 5: (Color online) Scaling collapse for different system
sizes of the Néel order parameter 〈M2〉 (top panel, Q2 = 0.85)
and columnar VBS order parameter 〈|ψ|2〉 (bottom panel,
Q2 = 20.0) in the critical region. Critical point Q3c and crit-
ical exponents are obtained by fits to the standard finite-size
scaling forms (see text). For the fits, again a particular choice
of critical window, minimum system size included, and order
of universal function has been shown here which gave χ2 per
degree of freedom equal to 1.25 and 1.15 for the plots respec-
tively. For estimates on overall error-bars, refer to Table I.

entire Néel-columnar VBS transition line belongs to a
single universality class. Our estimates for the critical
exponents are very close to the latest estimates for SU(2)
models on the square lattice28,40,44 suggesting that both
honeycomb and square lattice transitions are in the same
universality class, presumably described by the NCCP1

critical theory. This strongly suggests that three-fold
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monopole events are irrelevant at the Néel-columnar VBS
critical point for a SU(2) model on the honeycomb lat-
tice.

B. Three-fold anisotropy at criticality

Given that the entire phase boundary appears to be
controlled by a single fixed point, it is of interest to in-
vestigate the Q2 dependence of the three-fold anisotropy
in the phase of the columnar VBS order parameter ψ
at criticality. To this end, we focus on the histogram
of Eψ measured at and in the close vicinity of our best
estimate for Q3c(Q2). The simplest methodology is one
that requires the fewest theoretical assumptions about
the scaling properties of the three-fold anisotropy. In
this approach, we simply monitor the large-L behavior
of the dimensionless anisotropy measure W3 (as defined
in Sec. II) for a few values in the vicinity of Q3c(Q2) for
various values of Q2. This L dependence is interpreted by
noting that W3 tends to zero (respectively to unity) with
increasing system size deep in the Néel (resp. columnar
VBS) phase. If three-fold anisotropy is irrelevant at the
transition, one would expect W3 to tend to zero for large
L at the critical point, but increase with increasing L
when one moves into the VBS phase.

In Fig. 6, we display the L dependence of this quan-
tity in the vicinity of Q3c(Q2) for three different values
of Q2, two small and one large. From this data, it is
clear that our earlier finding43, of an apparently non-zero
large-L limit for this quantity at criticality, remains valid
all along the Néel-VBS phase boundary, including at the
largest value of Q2 studied. This nonzero limiting value
W3c appears to increase slightly with Q2, as can already
be observed in Fig. 6. A critical window around W3c can
be defined by considering the values taken by this di-
mensionless anisotropy in the critical region around Q3c

obtained from the analysis of the previous section. In
this window, one can attempt a more sophisticated scal-
ing analysis that uses some assumptions about the struc-
ture of the scaling theory for W3. This is presented in
Appendix A, and provides independent estimates of W3c

from fits to a scaling form. These estimates, and the
resulting conclusions are consistent with those presented
above from the more direct analysis above.

We are thus led to two conclusions that appear, at first
sight, to contradict each other. The first is that critical
exponents and values of Binder cumulants at criticality
along the entire phase boundary are compatible with the
NCCP1 universality class. The second is that this is ac-
companied by a non-vanishing three-fold anisotropy of
the phase of ψ at criticality, which furthermore appears
to vary (albeit slightly) along the critical line. As we
show in the next section, in the better-understood clas-
sical example of a 3d XY model with weakly-irrelevant
four-fold anisotropy, the dimensionless anisotropy at crit-
icality again appears to saturate to a non-zero large-L
limit when studied over a limited range of sizes accessi-
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FIG. 6: (Color online) Finite-size dependence of W3 close to
the critical point forQ2 = 0.14 (top panel), Q2 = 0.60 (middle
panel), Q3 = 20.0 (bottom panel). In each case, we display
data for one value of Q3 closer to our estimate of Q3c, one
slightly above and one slightly below.

ble to Monte-Carlo simulations. As argued in the next
section, this suggests a possible rationalization of our
findings: three-fold anisotropy is indeed irrelevant at the
Néel-columnar VBS transition, but only very weakly so.

V. CLASSICAL 3d−XY MODEL WITH Z4

ANISOTROPY ON THE CUBIC LATTICE

We find it useful to compare this peculiar, apparently
non-zero large L limit of W3 at criticality to the behav-
ior of an analogous quantity in a much simpler classical
setting in which one can explicitly tune the bare value
of the corresponding anisotropy, namely the 3d − XY
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model with Z4 anisotropy on the cubic lattice. This
choice of analogy is dictated by the following consider-
ations: from earlier work, we know that Z3 anisotropy is
relevant at the isotropic 3d−XY transition, driving the
system to a weakly first-order transition, while Z4 and
higher anisotropies have all been found to be irrelevant
at the isotropic XY transition (with Z4 anisotropy hav-
ing the smallest scaling dimension among the irrelevant
terms). These conclusions are based on an ε-expansion of
the corresponding field theory25, Monte Carlo estimates
of the scaling dimensions of q−fold anisotropy terms60,
as well as direct numerical simulations of the 3d − XY
model with Zq≥4 anisotropies (as e.g. in Ref. 26) and of
the q = 3 states Potts model27.

Thus, by adding a Z4 anisotropy field h4 to the
isotropic 3d−XY model and studying the critical point
as a function of h4, we can study an example of critical
behavior in the presence of an irrelevant anisotropy which
scales to zero very slowly (since it has a small scaling di-
mension). This provides us a setting to explore via anal-
ogy the possibility that the nonzero W3c observed for all
Q2 along the Néel-columnar VBS phase boundary could
reflect the fact that three-fold anisotropy is irrelevant at
this transition, but has small enough scaling dimension
that it appears almost marginal (saturating to a non-zero
value) in the range of sizes accessible to numerics.

We consider the 3d classical ferromagnetic XY model
with a Z4 anisotropy term, defined by the Hamiltonian

H = −
∑
〈~r,~r′〉

cos(θ~r − θ~r′)− h4
∑
~r

cos(4θ~r) (3)

where 〈~r, ~r′〉 denotes nearest-neighbor sites on the simple
cubic lattice and θ~r are U(1) angular variables ∈ [0, 2π)
at site ~r. This model has a high-temperature paramag-
netic phase where the U(1) symmetry is unbroken, and a
low temperature ordered phase where the spins align in
one of the 4 preferred directions. At h4 = 0, the model
has a U(1) symmetry which is spontaneously broken in
the low-temperature phase. To access this physics, we
perform classical Monte Carlo simulations on simple cu-
bic lattice of linear sizes L ∈ {8, 16, 24, 32, 48, 64} with
periodic boundary conditions using a combination of lo-
cal Metropolis and Wolff cluster updates63.

We first locate the critical points by a standard scal-
ing analysis for four values of the anisotropy field. To
this end, we define the vector order parameter ~m =
(mx,my) = 1

L3

∑
~r(cos(θ~r), sin(θ~r)). We measure 〈|m|〉

(where |m| ≡
√
~m2) and the Binder cumulant B =

〈(~m2)2〉/〈~m2〉2. We also compute the ratio R of corre-
lation functions at fixed distance R = CL/2/CL/4, where

C` = 1
L3

∑
~r〈eiθ~r+~r`−iθ~r 〉 and ~r` = (`, `, `). The two di-

mensionless observables B and R are expected to satisfy
the standard scaling forms B = fB((T − Tc)L1/ν) and
R = fR((T − Tc)L1/ν) in the vicinity of a second-order
critical point. Similarly, we also expect the scaling form
〈|m|〉 = Lβ/νfm((T − Tc)L1/ν).

We employ this strategy at four values of the
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FIG. 7: (Color online) 3d XY model with four-fold anisotropic
field: crossing plot for different system sizes for the Binder
cumulant B (top panel, for h = 0.05) and correlation ratio R
(bottom panel crossing plot, for h = 2).
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according to the scaling forms mentioned in the text. For
estimates on overall error-bars, refer to Table II.
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anisotropy field: h4 = 0, 0.5, 1.0, 2.0 and present typi-
cal results for these observables in Figs. 7 and 8. Fitting
to the above forms allows to determine the transition
temperature Tc(h4) reasonably accurately for each of the
values of h4 studied. Results of our fits for Tc(h4), criti-
cal exponents and amplitudes are given in Table II. They
clearly confirm that the universality class of the 3d XY
model is unchanged by adding a Z4 anisotropic field, i.e.
it is an irrelevant perturbation at the critical point. Note
as well how little Tc changes as a function of h4.

Armed with this knowledge, we now study W4, a di-
mensionless measure of 4-fold anisotropy in the vicin-
ity of this critical point. We define it analogously to
our definition of W3 for the Néel-VBS transition: W4 =∫
d~mP (~m)cos(4θm) with P (~m) the normalized proba-

bility distribution of the order parameter, and θm =
arctan(my/mx) its phase, as measured during the Monte
Carlo run. In Fig. 9, we show the size dependence of W4

close to the critical point for two different values of h4
(similar results are obtained for the third non-vanishing
value of the field studied in our simulations).

Whereas the anisotropy quantifier W4 increases (to-
wards its limiting value 1) with system size below the crit-
ical temperature, it tends to vanish with system size for
temperature above Tc. At criticality, the anisotropy W4

appears to be essentially constant (and non-zero), within
our range of system sizes for all nonzero h4. We also find

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.02 0.04 0.06 0.08 0.1 0.12

W
4

1/L

h = 0.5

T = 2.195
∼ Tc = 2.2
T = 2.205

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.02 0.04 0.06 0.08 0.1 0.12

W
4

1/L

h = 2.0

T = 2.205
∼ Tc = 2.21
T = 2.215

FIG. 9: (Color online) System-size dependence of the
anisotropy parameter W4 close to criticality for three differ-
ent temperatures: above, below and very close to the critical
temperature Tc. Top panel: h = 0.5, bottom panel: h = 2.

that this critical value W4c increases significantly with
increasing h4 (see Fig. 9). A finite-size scaling analysis
of this behavior, employing some assumptions about the
finite-size scaling form, is also reported in Appendix A,
and confirms this more elementary analysis. We have
also studied (see Appendix B) the analogous quantities
for 3− and 5−fold anisotropies and find that this unusual
behavior is specific to the 4−fold case.

Our results in the Z4 case for this better-understood
classical problem are thus entirely analogous to our re-
sults for W3 at the Néel-columnar VBS phase bound-
ary. As in that case, this anisotropy coexists with other
critical properties being well-fit by standard 3d − XY
exponents. Given that Z4 anisotropy is known to be
weakly irrelevant at the three-dimensional XY transi-
tion, this leads us to suggest that three-fold anisotropy
is also weakly-irrelevant at the Néel-columnar VBS tran-
sition on the honeycomb lattice.

VI. OUTLOOK

We close with a brief discussion of a possible avenue for
further progress. It would be desirable to have a model
system where the bare value of the three-fold anisotropy
in the phase of the VBS order parameter ψ could be
tuned by hand. This would be analogous to tuning h4 in
the classical three-dimensional XY model.

To achieve this, we begin with the observation that
the honeycomb lattice quantum dimer model with ring-
exchange on hexagonal plaquettes and no inter-dimer in-
teractions is known65 to order in a plaquette VBS state,
corresponding to the values (2m+1)π/3 (m = 0, 1, 2) for
the phase of the VBS order parameter ψ. The anisotropy
in the phase of ψ in this plaquette-ordered VBS state
is thus exactly the opposite of the anisotropy in the
columnar-ordered VBS phase (which corresponds to val-
ues 2πm/3 for the phase of ψ).

Next, we note that it is possible to write down a six-
spin interaction term in a SU(N) spin model which, for
large enough N , mimics the ring-exchange term of the
honeycomb lattice dimer model. This term, given be-
low, is the honeycomb lattice generalization of similar
constructions employed recently42 on the square lattice:

−R3

∑
〈ijklmn〉

(|(ij)(kl)(mn)〉〈(jk)(lm)(ni)|+ h.c.). (4)

Here, the sum is over all such plaquettes of the hon-
eycomb lattice labelled by 〈ijklmn〉 with vertices la-
beled cyclically, and |(ij)(kl)(mn)〉 is the state in which
(SU(N)) spins i and j form a (SU(N)) singlet (similarly
for spins k and l, and m and n). In the large-N limit,
this reduces to a ring-exchange term on each plaquette.

With this motivation, we expect that a non-zero R3

will counter the columnar phase anisotropy seen at the
critical point of the SU(2) invariant J − Q3 model and
allow us to tune the value of W3 while leaving other
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〈|m|〉 Binder ratio B Correlation ratio R

h Tc ν β/ν fm(0) Tc ν fB(0) Tc ν fR(0)

0.0 2.201(1) 0.667(2) 0.515(1) 1.106(6) 2.202(1) 0.675(10) 1.2346(5) 2.202(1) 0.682(9) 0.882(2)

0.5 2.202(1) 0.666(3) 0.51(1) 1.09(5) 2.202(1) 0.676(8) 1.2365(30) 2.203(1) 0.671(1) 0.882(2)

1.0 2.205(1) 0.665(4) 0.514(4) 1.103(10) 2.204(1) 0.671(5) 1.2377(4) 2.205(1) 0.67(1) 0.883(2)

2.0 2.212(1) 0.657(3) 0.520(5) 1.13(2) 2.211(1) 0.6572(10) 1.2458(11) 2.212(1) 0.665(13) 0.884(2)

TABLE II: Estimates of critical temperature, exponent and amplitudes resulting from the finite-size scaling analysis of order
parameter 〈|m|〉, Binder cumulants B = 〈(~m2)2〉/〈~m2〉2 and correlation ratio R = CL/2/CL/4. Error bars were determined
from the spread on extracted fit parameters depending on critical window size, minimum system sizes included, or degree of
polynomial for the universal scaling functions, with χ2 per degree of freedom always . 1.5.

critical properties unchanged. Thus, we conjecture that
the SU(2) invariant J − Q3 − R3 model (employing the
R3 term defined above) provides a promising setting in
which one can tune the bare value of the anisotropy in
the phase of ψ, and explicitly check the idea that this
three-fold anisotropy is a weakly irrelevant variable at
the Néel-columnar VBS transition. In addition, it may
even be possible to change the character of the ordered
state (from columnar to plaquette VBS) if R3 dominates
over Q3. It should be possible to confirm these ideas us-
ing projector QMC simulations of this J−Q3−R3 model,
and we hope to return to this in future work.
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Appendix A: Finite-size scaling analysis of the
dimensionless anisotropy quantifier

To supplement the W3 versus L behavior at fixed Q2

that we looked at in the main text, we perform a finite-
size scaling analysis based on the scaling theory of Lou
et al26. Ref. 26 studied the classical 3d XY model in
presence of a Zq anisotropy field, which is a danger-
ously irrelevant operator at criticality for q ≥ 4, and
proposed a scaling form for the dimensionful anisotropy
order parameter as 〈mq〉 = L−β/νfmq ((T − Tc)L

1/νq ),
an extension of the XY order parameter scaling form
〈m〉 = L−β/νfm((T − Tc)L1/ν). νq is the exponent asso-
ciated with a length scale below which the order param-
eter distribution appears isotropic, even below Tc. We
have νq > ν, as this length scale diverges faster than the

Q2 Q3c ν3 gW3(0)

0.0 1.183(2) 0.57(2) 0.115(6)

0.14 1.485(1) 0.58(1) 0.120(3)

0.60 2.485(1) 0.56(2) 0.129(2)

0.85 3.027(2) 0.56(2) 0.128(3)

20.0 45.00(3) 0.57(1) 0.134(2)

TABLE III: Results of finite size scaling analysis for the di-
mensionless anisotropy quantifier W3 for the J − Q2 − Q3

model. Error bars were determined again using the same pro-
tocol as in Sec. IV A of the main text (see Table I).

ferromagnetic correlation length (see the analogy with
the VBS anisotropy length scale in the theory of decon-
fined criticality14,15). Ref. 26 related νq/ν to the scaling
dimension of the anisotropy field, but we note that in a
recent work this relation was questioned64.
J−Q2−Q3 model — In our case of the dimensionless

anisotropy order parameter W3, we can assume follow-
ing Ref. 26 a similar scaling form gW3

((Q3 −Q3c)L
1/ν3)

for fixed Q2, without further assumption on ν3. Fig. 10
shows examples of this scaling analysis and Tab. III sum-
marizes the results of the corresponding fits.

We see that the critical point Q3c extracted from the
scaling analysis is again in agreement with those gotten
from other analyses (Sec. IV A). We again find the same
conclusions as that from visual inspection of W3 versus
L behavior: there is a finite value of W3c = gW3

(0) at
the critical point for all Q2, which furthermore seems to
slightly increase with Q2. Finally, within our precision,
it is not possible to positively confirm that the extracted
value of ν3 is larger than ν (the two exponents are essen-
tially equal within error bars): independent of the exact
relation between the two26,64, this indicates that 3−fold
anisotropy is only very slightly irrelevant, consistent with
a non-vanishing W3c within our system size range.

3d XY model with 4-fold anisotropy field — We per-
form the same analysis for the anisotropy quantifier W4

of the 3d XY model. In Fig. 11, we show the scaling
collapse for W4 with the scaling form W4 = gW4

((T −
Tc)L

1/ν4) as the anisotropy field h4 is varied. Table IV
summarizes the results of the scaling analyses.

We find again the critical temperature Tc is in agree-
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FIG. 10: (Color online) Scaling collapse plots according to

the scaling form W3 = gW3((Q3 −Q3c)L
1/ν3) for the dimen-

sionless anisotropy quantifier W3 in the J−Q2−Q3 model for
Q2 = 0.14 (top panel) and Q2 = 20 (bottom panel). For the
fits, similar to Sec. IV A, a particular choice of critical win-
dow, minimum system size included, and order of universal
function was taken here which gave χ2 per degree of freedom
equal to 1.26 and 1.31 for the plots respectively.

h Tc ν4 fW4(0)

0.5 2.202(2) 0.76(10) 0.031(4)

1.0 2.204(1) 0.70(2) 0.062(4)

2.0 2.211(1) 0.665(20) 0.120(1)

TABLE IV: Results of finite size scaling analysis for
anisotropy quantifier W4 for the 3d XY model with 4−fold
anisotropic field. Error bars were determined with the same
procedure as in the main text (see Table I).

ment with those extracted from other order parameters
(Sec. V) and changes very little with h4, as already men-
tioned. This analysis confirms that W4 takes a clearly
non-zero value W4c = fW4

(0) at the critical point, which
logically increases with h4. In this case, we are able to
confirm that ν4 > ν as found in Ref. 26 except for the
largest field h = 2 where this relation is only marginally
verified (this can be expected as we probably need larger
systems when anisotropy is stronger).
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FIG. 11: (Color online) Scaling collapse plots according to the

scaling form W4 = gW4((T − Tc)L1/ν4) for the dimensionless
anisotropy quantifier W4 in the 3d XY model with 4−fold
anisotropy field for h = 0.5 (top panel) and h = 2 (bottom
panel). For estimates on overall error-bars, refer to Table IV.

Appendix B: 3d XY model with 3− and 5−fold
anisotropic fields

Here we show that a nearly-constant critical anisotropy
is specific to the 3d XY model with 4−fold anisotropic
field by studying the same model with a 3− and 5−fold
anisotropy field, replacing the term −h4

∑
~r cos(4θ~r) by

−hq
∑
~r cos(qθ~r) with q = 3, 5 in Eq. 3. We again com-

pute the Binder cumulant and the anisotropy quantifiers
W3 and W5 adapting the above definitions.

q = 3 case — We know that the anisotropy is rel-
evant here, rendering the transition first-order. This is
clearly seen in the top panels of Fig. 12 where, for two
different field values, the Binder cumulant show signifi-
cant drifts in the crossing point between two consecutive
sizes. The bottom panels show the temperature depen-
dence of W3, which also show drifting pseudo-crossing
points. The clear increase with L of W3 nearest to the
transition temperature where the pseudo-crossing in the
Binder cumulant is located indicates that anisotropy is
relevant at criticality. Note as well how the value of Tc
is substantially modified by h3.

q = 5 case — Anisotropy is irrelevant here and the
second order nature of the transition is revealed by the
nice monotonic crossing behavior of the Binder cumulant
in the top panels of Fig. 13 for two different values of h5.
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There is no observable drift in Tc even when h5 changes
by a factor of 10 – in fact, one observes that the Binder
cumulant are essentially the same, indicating the strong
irrelevancy of 5−fold anisotropy. The bottom panels of
Fig. 13 show the size and temperature dependence of
W5, which as expected clearly goes to zero at the critical
point. We performed a finite-size scaling analys of the
data (not shown) which yield the expected results, such
as non-drifting Tc, ν5 > ν, fW5(0) = 0 and the correct
3d XY value for ν.
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FIG. 12: (Color online) 3d XY model with 3−fold anisotropic
field: temperature dependence of the Binder cumulant (top
panels) and 3−fold anisotropy quantifier W3 (bottom panels)
for two different values of h3 = 0.5, 1.0.
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FIG. 13: Color online) 3d XY model with 5−fold anisotropic
field: temperature dependence of the Binder cumulant (top
panels) and 5−fold anisotropy quantifier W5 (bottom panels)
for two different values of h5 = 1, 10.
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