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We present ab initio calculations of the temperature-dependent exchange of energy between a
classical charged point-particle and the phonons of a crystalline material. The phonons, which are
computed using density functional perturbation theory (DFPT) methods, interact with the mov-
ing particle via the Coulomb interaction between the density induced in the material by phonon
excitation and the charge of the classical particle. Energy relaxation rates are computed using time-
dependent perturbation theory. The method, which is applicable wherever DFPT is, is illustrated
with results for CsI, an important scintillator whose performance is affected by electron thermal-
ization. We discuss the influence of the form assumed for quasiparticle dispersion on theoretical
estimates of electron cooling rates.

PACS numbers: 63.20.kd,72.10.Di

I. INTRODUCTION

A unified quasiparticle picture of crystalline solids in
which the physics of crystals is understood as a system
of interacting electrons, holes, and phonons (and in some
circumstances other types of quasiparticles like magnons)
has become a universal way to understand interaction
between crystals and external probes (e.g. photon, neu-
tron, electron beams). Many experimental results can
be predicted quantitatively using this picture, but some
phenomena are described only qualitatively owing to an
insufficient description of the quasiparticle properties or
of their interactions. Often, analytic models based on
model systems (e.g. the electron gas or the Hubbard
model) with quasiparticles and interactions parametrized
by a few numbers give a correct qualitative picture, but
quantitative agreement requires fitting or numerical sim-
ulation. This work aims to make quantitative estimates
based on a unified ab initio approach to the interac-
tion between electrons and phonons in crystals. This
interaction is well-understood qualitatively, but quanti-
tative predictions from the standard picture rely on many
untested and ad hoc assumptions.

The last decade has seen significant advances in the
understanding of the microscopic physics and intrinsic
performance limits of inorganic scintillators1–10 which are
used in a variety of contexts as spectroscopic radiation
detectors. A feature of the emerging understanding of
these systems is that variations in the spatial density of
secondary excitations lead to non-proportionality of the
scintillation signal to the energy of the exciting radiation,
which in turn limits the achievable energy resolution of
radiation detectors.1,3–5,7,11 Detailed modeling based on
Monte-Carlo methods,12–14 pursued by the present au-
thors and their collaborators, is shedding light on the
microscopic processes occurring in scintillators. In this
approach, an attempt is made to parametrize all the mi-
croscopic physical processes (e.g. photoabsorption, plas-

mon excitation by secondary electrons, exciton formation
and diffusion, activator excitation and relaxation) that
affect the transport of energy imparted to the scintillator
by irradiation. These parameterizations are then used to
simulate ensembles of scintillation events; the statistical
distribution of the results is then interpreted as a theoret-
ical prediction of the performance of real materials. Due
to the dependence of scintillation non-proportionality on
the spatial distribution of the excitations during scintil-
lation, reliable theoretical predictions require a quanti-
tative description of the dynamics of the excitations and
thus rely heavily on an accurate treatment of electron-
phonon interactions.

II. BACKGROUND

When a material undergoes high-energy excitation
(e.g. by irradiation by photons or ions with energies
up to MeV), the subsequent relaxation produces a large
number of hot electrons and holes. If the material has
a gap in the spectrum of electronic excitations, particles
with kinetic energy smaller than the gap can not lose
energy by electronic excitation. In this regime, the parti-
cles still exchange energy with the vibrational degrees of
freedom. Although there has been a long history of scien-
tific work on the electron-phonon interaction,15–18 most
treatments of the electron-phonon interaction focus on
low energy carriers confined to a single band in small
regions of k-space, which is natural in many contexts,
such as superconductivity and low-energy transport, but
is not sufficient for a faithful Monte-Carlo treatment of
the thermalization phase. Therefore, the approach de-
veloped here is more general than these methods and
provides a consistent treatment of the cooling of high-
and low- energy particles by the lattice.
Frölich15 made seminal contributions to our under-

standing of the electron-phonon interaction in the form
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effects included m
∗

α

bare electron 1.0 5.44

band structure 0.312 3.13

polaron 1.9 7.50

polaron + band structure 0.593 4.31

TABLE I: Various plausible effective masses and correspond-
ing Frölich coupling constants for electrons in CsI.
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FIG. 1: (Color online) Power transferred to the longitudi-
nal optical phonons in the Frölich model at zero (solid lines)
and room (dashed lines) temperature with different coupling
strengths α corresponding to different choices for the quasi-
particle effective mass listed in Table I.

of a phenomenological treatment that follows from con-
sidering the macroscopic polarization induced by op-
tical modes in polar crystals. A unified picture of
the interaction of electrons with all modes was devel-
oped by Ziman16 who assumed a (largely unspecified)
independent-particle description of the electronic struc-
ture, in which the electrons in the solid occupy a collec-
tion of Bloch states ψk, and derived expressions for the
coupling of these orbitals by nuclear motion in the Born-
Oppenheimer approximation. An account of this theory
accessible to modern readers is given in the first chapter
of Mahan.19 The resulting formal theory remains the ba-
sis for most work on the electron-phonon interaction.20,21

To use it to make quantitative predictions, the electron-
phonon matrix elements must be estimated in some way.
To illustrate the difficulty posed by the unknown cou-

pling strength, we consider the Frölich model in which
the scattering rate and hence the transferred power are
proportional to the dimensionless coupling constant α =
(

m∗

2ωLO

)1/2 (
1
ǫ∞

− 1
ǫ0

)

. This model requires knowledge of

the static and “high frequency” dielectric constants, ǫ0
and ǫ∞, as well as the effective massm∗ of the carrier be-
ing scattered. It is not clear exactly which effective mass
should be used. A straightforward application of stan-
dard techniques (i.e. finding the self-energy to first order

using perturbation theory and taking twice the imaginary
part as the scattering rate) yields a model in which the
mass appearing in the Frölich expressions is the band ef-
fective mass without renormalization by polaron effects.
If one instead considers polaron quasiparticles (i.e. elec-
trons dressed by phonon clouds) the same Frölich expres-
sions are found but with the band effective mass replaced
with the (greater) effective mass of the dressed polaron.
The dependence on the effective mass in these models
originates from a band picture of the crystal. As we dis-
cuss below, the description of the particle by an effective
mass is inconsistent with modern, numerical knowledge
of the actual quasiparticle band structure. In Table I,
we list the values of these various effective masses for
electrons in CsI. In Fig. 1, we plot the power exchanged
between a particle and the lattice calculated for CsI with
these different values for the effective mass. The lack of
a clear prescription for selecting the appropriate effec-
tive mass leads to significant uncertainties in the power
transferred and thus in predictions of the thermalization
phase of scintillation.

Attempts to make realistic predictions for energy and
momentum transfer were made by Sparks et al.22 and
Akkerman et al.23 who used phenomenological arguments
to parametrize and estimate the electron-phonon matrix
elements. We are unaware of any more definitive work.
For previous Monte-Carlo simulations,12–14 we have de-
veloped models for the cooling of electrons by phonons
based on this type of work.15,22–24 With the current work,
we aim to reduce the amount of ad hoc assignments in-
volved in this estimation by resorting to DFT electronic
structure calculations for the strength of the interaction
directly.

In order to find a workable and quantitative method
to estimate the exchange of energy between phonons and
charged particles, we have developed a semi-classical the-
ory in which the field of a charged particle (moving with
a specified velocity) is treated as a perturbation to the
vibrational modes of the crystal and present numerical
calculations of the power transferred between the lattice
and perturbing charge that are based on density func-
tional perturbation theory calculations of the density re-
sponse to lattice distortions. We have chosen a classi-
cal description of the particle to maintain compatibility
with our scintillator simulations.12–14,25,26 This approach
is preferable because a wave-packet description of a par-
ticle in the Bloch picture requires the spatial extent of
the region in space at which the particle might be mea-
sured to contain many unit cells (so that the packet can
be limited to a relatively small region in k-space) while
we want to model the interaction of the particle with
point defects (e.g. activators) that are situated at cer-
tain definite positions. These models will invariably in-
volve the distance between the particle and the point
defect, leading to ambiguity if the particle wave packet
is large compared to the unit cell. Although the differ-
ence between quantum and classical descriptions of the
particle that is being scattered is conceptually stark, the
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resulting expressions for phonon scattering have the same
form. Thus a close analogy between the classical theory
presented here and the traditional quantum picture can
easily be drawn by equating the coefficients of the energy-
and momentum-conserving δ-functions. When viewed in
this light, the present work amounts to fixing the ad hoc

interaction strengths in the old models with DFT calcu-
lations. We also remark that the correspondence of quan-
tum and classical descriptions suggests that, as far as the
energy relaxation is concerned, details of the wave-packet
in the quantum description probably are not important.

III. SEMICLASSICAL TREATMENT OF THE

ELECTRON-PHONON INTERACTION

In this manuscript we present a model in which a clas-
sical charged particle interacts with a quantized phonon
system. The properties of the phonon system are de-
rived using adiabatic Born-Oppenheimer dynamics in the
harmonic approximation. The interaction Hamiltonian
is taken as the instantaneous Coulomb interaction and
hence neglects retardation, transverse effects, etc. These
approximations for the phonons are standard and dis-
cussed by many authors.16,17,19 The classical treatment
of the perturbing charge is nonstandard. For example,
the perturbing particle is not described in terms of the
band structure of the host material and is simultaneously
assigned a precise position and momentum.
We denote an arbitrary point in momentum space with

q +G where q is from the first Brillouin zone and G is
from the reciprocal lattice. We use Hartree atomic units
(e2 = h̄ = m = 1). We analyze a model of the interac-
tion of a crystal with an external point particle of charge
Z at a time-dependent position r(t). The fundamental
quantities in this analysis are the positions {Rs,κ(t)} of
the nuclei of the atoms that comprise the crystal. The
subscript s refers to the unit cell and κ refers to the sub-
lattice which hosts nuclei of charge Zκ. The crystal has
N repeated unit cells which occupy a volume V = NΩ.
These nuclear positions (and their conjugate momenta)
are quantum mechanical operators; the Hamiltonian of
our theory is the kinetic energy of the nuclear motion
plus the ground state potential energy surface which de-
pends only on the nuclear positions. As the perturbing
particle moves through the lattice, it exerts forces on the
crystal, which responds by deforming. We assume the
interaction energy is given by

Hint(t) = Z

∫

d3r′
δntot (r

′)

|r(t)− r ′|
, (1)

where

δntot (r) = δnnuc (r) + δnelec (r)

=
∑

s,κ

Zκ

[

δ3 (r−Rs,κ)− δ3
(

r−R(0)
s,κ

)]

−
[

n (r; {Rs,κ})− n
(

r;
{

R(0)
s,κ

})]

(2)

is the change in the ground state charge density of the
crystal (electrons and nuclei) induced by displacing the

nuclei from their equilibrium positions
{

R
(0)
s,κ

}

to posi-

tions {Rs,κ}.
We write the Hamiltonian for our model in terms of

annihilation and creation operators for phonon modes:

H = H0 +H1

=
∑

λ,q

ωλ,q

(

a†λ,qaλ,q +
1

2

)

+
∑

λ,q

Hλ,q(t)
(

a†λ,−q + aλ,q

)

.

(3)

In the sums here, q runs over the Brillouin zone of the
crystal and λ over the phonon branches of which there
are three times the number of sublattices. The energy of
branch λ at wavevector q is ωλ,q. The time dependent
coupling

Hλ,q(t) =
∑

G

(4πZ)

|q+G|
2nλ (q+G) ei(q+G)·r(t)

(4)

is the Coulomb interaction between the charge density
nλ (q+G) induced at wavevector q + G by excitation
of the phonon mode (q, λ) (which has annihilation and

creation operators aλ,q and a†λ,q) and the charge den-

sity Zei(q+G)·r(t)/V of the perturbing particle, which has
charge Z and is moving through a crystal with volume
V .
To complete the theory, the induced density

nλ (q+G) must be specified. We do so in the context
of density functional perturbation theory (DFPT) in a
plane wave setting.27,28 This choice yields ab initio pre-
dictions based on detailed electronic structure calcula-
tions and distinguishes the current work from previous ef-
forts which relied on ad hoc forms for the electron-phonon
interaction.

IV. COMPUTATIONAL METHODS

A. Integral to evaluate

Within DFPT, the ground state energy of the crys-
tal and attendant quantities like the Kohn-Sham orbitals
and the electronic density are expanded in powers of the
strength of a perturbation applied to the crystal system.
For phonon physics, the relevant perturbations are dis-
placements of the nuclei and the application of a homo-
geneous electric field. A great advantage of DFPT is that
these perturbations do not have to be commensurate with
the crystal ground state, and calculations at arbitrary
wave vectors can be accomplished without constructing a
supercell commensurate with the perturbation. In prac-
tice, we use the ABINIT code27–30 to construct the first-

order density response n
(1)
κ,i,q to small displacements of

each sublattice κ along each crystal axis i on a regu-
lar grid of points q in the Brillouin zone. (For each q
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the cell-periodic response is output in real space; we use
fast Fourier transform routines to convert them to mo-
mentum space.) The same calculations yield the phonon
band structure and the eigenvectors of the dynamical ma-
trices that characterize the motion of the various atoms
in the crystal when a phonon mode is excited. These
methods are described in Ref. [27].
In order to make predictions useful for modeling the

dynamics of charged particles traversing the crystal, we
have taken these ingredients from DFPT and computed
the rate of change of the energy stored in the phonon
system using perturbation theory applied to Eqs. 3 and
4. Using second-order time-dependent perturbation the-
ory and assuming that the perturbing particle’s kinetic
energy is given in terms of its velocity v by v2/2 we find
(after averaging over positions of the perturbing particle
at time t = 0) the following expression for the rate of ex-
citation (upper sign) or deexcitation (lower sign) of the
λ,q phonon mode:

Γ
(±)
λ,q =

2πN

V

∑

G

∣

∣

∣

∣

∣

4πZnλ(q+G)

(q+G)
2

∣

∣

∣

∣

∣

2

δ

(

±ωλ,q − (q+G) · v +
1

2
(q+G)2

)

.

(5)

This equation has the form of a sum over channels (in
this case the Fourier component q + G of the induced
density) of a coupling strength times an energy conserv-
ing delta-function. The sum is incoherent: the square
of the interaction Hamiltonian is taken before summing
over Fourier components. This feature results from av-
eraging over trajectories with the same velocity. It is
interesting to note that Eq. 5 can also be obtained from
a quantum description of the scattered particle in which
the unperturbed eigenstates are plane waves eik·r/V 1/2

with energies k2/2.
An explicit expression for the induced density is

nλ (q+G) =
∑

κ,i

u∗κ,i,λ (q)
√

2Mκωλ,q

(

ñ
(1)
κ,i (q+G)− iZκe

−iτκ·(q+G) (q+G) · x̂i

)

,

(6)

where Zκ, Mκ, τ κ are the charge, mass, and location
in the first unit cell of the atoms occupying the κth

sublattice. The first term in parentheses in Eq. 6 is
the electronic response; the second is the nuclear re-

sponse. The phonon quantities ñ
(1)
κ,i, uκ,i,λ, and ωλ,q are

respectively the induced density, phonon eigenvector, and
phonon energy (band structure). All of these are taken
directly from the ABINIT output; i denotes the direc-
tion in which the atoms move, and x̂i is a unit vector in
this direction. To avoid infrared divergences in the scat-
tering rate for acoustic phonons, we evaluate the power
Prad =

∑

λ,q ωλ,qΓλ,q transferred to the lattice by the
perturbing particle instead of the scattering rate.
We can also consider the rate of scattering for a parti-

cle moving through the crystal whose phonon modes are

in thermal equilibrium at a given temperature T . In this
case the power transmitted from the perturbing parti-
cle to the crystal, averaged over a thermal ensemble of
systems, is

〈Prad〉 =
∑

λ,q

ωλ,q

[

(N(T, ωλ,q) + 1)Γ
(+)
λ,q −N(T, ωλ,q)Γ

(−)
λ,q

]

,

(7)

where

N(T,E) =
(

eE/(kBT ) − 1
)−1

(8)

is the Bose occupation factor (kB is the Boltzmann con-
stant). Eq. 7 is the expression we wish to evaluate.

B. Tabulation of the scattering potential

We have developed a computer program to complete
the evaluation of Eq. 7 as a function of temperature and
the velocity of the perturbing particle. The program first
computes and tabulates (on the plane wave grid inherited
from ABINIT and a regular grid of q-points spanning the
irreducible Brillouin zone) in a binary file the combina-
tion

2πN

V

∣

∣

∣

∣

∣

4πZnλ(q+G)

(q+G)
2

∣

∣

∣

∣

∣

2

(9)

that appears in Eq. 5. We call this quantity the scatter-
ing potential.
Since the scattering potential is ill-defined at the ori-

gin, we employ a special treatment of the Γ-point to find
the first-order induced dipole moment that is based on
the first-order orbitals at Γ. One can derive a multipole
expansion for the induced density by expanding the ex-
ponential e−iq·r = 1− iq · r+ · · · involved in the Fourier
transform of the induced density. Each term in this ex-
pansion gives rise to a multipole tensor. The monopole
term vanishes because the total charge of the system is
fixed (the phonons simply move around existing charges).
Similarly, when a long-wavelength acoustic phonon is ex-
cited, the crystal experiences a uniform translation in
space. Since the density is rigidly translated, there is
no induced dipole moment for long-wavelength acoustic
modes. We calculate the first-order density near q = 0
using

iñ
(1)
κ,i,q ≈ q·

[

occ
∑

α

∫

Ω0

d3r ψ(0)
α ∇ψ

(1)
α,κ,i,q=0 − ψ

(1)
α,κ,i,q=0∇ψ(0)

α + c.c.

]

.

(10)

Here α denotes the band and crystal momentum of an oc-

cupied orbital ψ
(0)
α in our calculation of the ground state

of the crystal, and ψ
(1)
α,κ,i,q=0 is the corresponding first
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order orbital (output in the 1WF files by ABINIT) re-
sulting from a uniform displacement of the κ sublattice in
the ith direction. The vector in square brackets in Eq. 10
is tabulated for all the combinations of i and κ and saved
to disk. In this step, we assure that the dipole moment
induced by a rigid translation of the crystal vanishes by
shifting the dipole expansion coefficients for all sublattice
by the same amount. This is numerically necessary since

∫

d3q

(2π)
3 q

−nδ
(

αq + q · v + q2/2
)

(11)

diverges for n ≥ 3, and any small dipole moment in-
duced by the excitation of a long-wavelength acoustic
mode (with energy αq) will lead to divergence in the cal-
culated power.
During the course of the integration the value of the

scattering potential for a given phonon mode is required
at arbitrary points in momentum space. We use linear
interpolation of the tabulated values of Eq. 9 when none
of the tabulated points involved in the interpolation is
q = G = 0. Otherwise, we assign the origin the value
of the scattering potential deduced from the dipole ex-
pansion Eq. 10. This gives interpolated results that be-
come identical to the dipole expansion near the origin
and smoothly change over to direct linear interpolation
outside the first shell of points in the q-grid.

C. Adaptive integration for the transferred power

With the scattering potential and dipole expansion
coefficients tabulated, Eq. 7 can be evaluated. To do
so, we employ an adaptive integration method based on
the tetrahedron method. The delta-function in Eq. 7
enforces conservation of energy and momentum on the
emission and absorption of phonons: the scattering pro-
cesses that contribute to the transferred power all lie on
the kinematically allowed surface defined by

0 =± ωλ,q − (q+G) · v +
1

2
(q+G)2

=
1

2
[v − (q+G)]

2
± ωλ,q −

v2

2
=Ef − Ei

(12)

where Ef and Ei are the energies after and before the
collision respectively. Our iterative integration method
is based on integration over cubes in q+G space. For a
given velocity of perturbing particle and phonon branch,
we start our procedure with eight cubes chosen to enclose
the kinematically allowed surface. Each cube has one
corner at the particle velocity. Since the RHS of Eq.
12 attains its minimum at q + G = v, these corners
are inside the kinematically allowed surface if Eq. 12
has a solution. The side length of these eight cubes is
chosen so that the RHS of Eq. 12 is positive for all other
(exterior) cube corners. This guarantees that three faces
of each cube intersect the kinematically allowed surface if

Starting

1st iteration

2nd iteration

3rd iteration

FIG. 2: (Color online) Schematic drawing of cubes used in the
adaptive integration scheme. In this two-dimensional analogy,
the cubes are represented by squares and the volume circum-
scribed by the kinematically allowed surface is shaded in gray.
The initial cubes (purple solid lines) all share a common ver-
tex at the particle velocity, and all other vertices are outside
the kinematically allowed surface. The 7 cubes resulting from
the first subdivision (red dashes), the 17 cubes resulting from
the second subdivision (blue dash-dots), and the 38 cubes re-
sulting from the third subdivision (green dots) are also shown.

it exists. The cubes are decomposed into tetrahedra. The
contribution to the integral Eq. 7 is then computed for
each of these using standard techniques.31 The program
now has a list of cubes and a current (generally very
poor) approximation of the contribution of each cube to
the desired integral.
The program then proceeds iteratively by considering

the first cube on the list. This cube is subdivided into
eight daughter cubes, and the integral is estimated in
each of these that intersects the kinematically allowed
surface using the tetrahedron method. If the sum of the
integrals over the daughter cubes is within tolerance of
the previous estimate for the parent cube, this contri-
bution is accumulated and the cubes are discarded from
the list. If the estimate from the subdivided cubes dif-
fers from the previous one by more than the tolerance,
the parent cube is replaced on the list by its contributing
daughters, and the integration continues with the daugh-
ter cubes at the top of the list. Eventually the cube list is
exhausted and the accumulated result is the final value of
the integral. The cubes involved in the first few iterations
are schematically illustrated in Fig. 2. This procedure
has been found to give good numerical results for models
(e.g. the Frölich model) for which analytic results are
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FIG. 3: (Color online) Computed phonon band structure
along [111] and [100] directions in CsI compared to measure-
ments taken from Ref. [34].

available.

V. RESULTS AND DISCUSSION

We have completed calculations using these methods
for the ionic scintillator CsI. As mentioned above, the
phonons are computed using the ABINIT code. We
used norm-conserving pseudopotentials of the Troullier-
Martins32 type obtained from the ABINIT website for all
calculations presented here. The LDA parametrization of
Goedecker, Teter, and Hutter33 was used.
For CsI, a 12×12×12 regular grid (resulting in 84 sym-

metry inequivalent points) of points in the Brillouin zone
was employed for both the electronic and phonon struc-
tures. The energy cutoff was set at 20 Ha. The resulting
phonon band structure is plotted in Fig. 3. It is seen
to be in good agreement with the measured34 phonon
spectrum. Our calculations find the longitudinal-optical
phonon mode at Γ to have frequency 4.13 × 10−4Ha =
0.0112 eV = 90.7 cm−1. This energy has been labeled
ωLO in Figs. 4, 5, and 7. The phonon eigenvectors and
first-order induced densities were printed out. At Γ, the
first-order wave functions were also printed out.
These ingredients were then used as described in Sec-

tion IV to compute the rate of energy transfer between
particles and the lattice at ≃ 1000 randomly selected
velocities v such that the corresponding kinetic energy
is less than 10 eV (corresponding to the energy range
over which phonons might play a significant role in en-
ergy transfer in CsI). The contributions to the transferred
power by the LO mode are plotted in Fig. 4 at zero and
room temperatures. Also plotted in that figure is the
Frölich model for m∗ = 1 (the α = 5.44 trace from Fig.
1).
We plot the contributions to the transferred power by

the acoustic modes in Fig. 5. The ab initio room tem-
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FIG. 4: (Color online) Computed power transferred by the
longitudinal optical phonons compared to the Frölich model
with coupling strength α = 5.44 (appropriate for electrons
with vacuum electron mass m∗ = 1 in CsI).

perature results are noisier than corresponding results for
the optical modes. We have added smooth lines (using
gnuplot’s bezier smoothing) through the calculated re-
sults in figures where appropriate. This variation comes
from dependence of the results on the direction of the ve-
locity (we use velocities randomly chosen from a uniform
angular distribution). The small (vanishing in the small
q limit) phonon frequencies near the zone center give rise
to large Bose occupation factors and hence large rates
of stimulated absorption and emission of phonons (terms
proportional to N(T, ωλ,q) in Eq. 7). Since these terms
largely cancel, the difference of these terms in Eq. 7 has
large fractional variation. We plot the contributions to
the total power from stimulated absorption and emission
(and their difference) in Fig. 6.

Examination of Fig. 5 shows that our ab initio es-
timates have much more energy exchanged through the
acoustic modes, especially at low energies, than the pre-
viously used phenomenological model (again we show the
phenomenological model form∗ = 1 but the conclusion is
not changed by the use of any reasonable effective mass).
At representative particle velocities (e.g. the particle ki-
netic energy is half of the band gap) the power removed
from the particle by acoustic modes is several times larger
than that removed by the LO modes. This is opposite
to the behavior of the Sparks22 model. The more effi-
cient cooling by acoustic modes leads to overall greater
transferred power as seen in Fig. 7, which shows our
total computed results (including all phonon branches
throughout the Brillouin zone) compared to our previous
model.13 There is more energy transferred, and it mostly
goes through the acoustic modes.

Bardeen and Shockley35 pioneered the usual approach
to electron interactions with acoustic phonons with the
introduction of deformation potential (i.e. the change in
the band structure induced by local changes in lattice
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FIG. 5: (Color online) Computed power transferred by the
longitudinal acoustic phonons compared to the phenomeno-
logical model of Ref. [13] evaluated with the vacuum electron
mass m

∗ = 1. Our ab initio estimates are much larger than
the phenomenological model at all energies of interest.
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FIG. 6: (Color online) Contributions to the transferred power
at T=297 K by stimulated processes.

parameter accompanying acoustic phonon excitation),
which can be closely related to the elastic constants of
the material. This picture is based on the assumption
of a delocalized electron that can only interact with the
G = 0 component of the scattering potential (Umklapp
processes are forbidden). Our model is a complementary
picture in which the particle is assumed to be a classical
point charge with no spatial extent. Such a particle is
much more likely to scatter from the variations in the
potential within the unit cell.

All of the theories of electron-phonon scattering dis-
cussed here have the familiar form (displayed in Eq. 5),
in which each loss channel contributes to the scattering
from a given initial state to each kinematically allowed
final state by an amount equal to the strength of cou-
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FIG. 7: (Color online) Computed transferred power as a func-
tion of particle energy for room and 0 temperature in CsI
compared to the phenomenological model from Ref. [13].

pling of the initial and final states (in the current work
this coupling strength is Eq. 9). If the strength of the
electron-phonon interaction does not depend on the par-
ticle velocity (e.g. if the instantaneous Coulomb interac-
tion is used, as is done in all the models discussed here),
the particle dispersion enters only through kinematical
constraints (i.e. conservation of energy and momentum).
Knowledge of two physical properties is needed to make
useful predictions: the interaction strength (which de-
termines the magnitude of the factor multiplying the δ-
function) and the kinematics of a collision between an
electron and phonon (which determines the zeros of the
δ-function argument). Our understanding of electrons
and phonons is based on standard models15–19,22–24,36,37

which assume effective mass dispersion. In this work
we have replaced semi-phenomenological and ad hoc as-
sumptions about the interaction strength with ab initio

calculations, finding that it is stronger than the interac-
tion in the standard models. Our use of classical disper-
sion for the particle that is being scattered is equivalent
to the normal effective mass approximation for disper-
sion.

It has recently been noted2,26 that the effective mass
approximation predictions for particle velocity (v(k) =
k/m∗) agree very poorly with those from modern band
structure calculations over the energy range of inter-
est. For low-energy electrons in a system with a non-
degenerate conduction band such as CsI, there is only one
band that can host carriers, and the assignment of the
effective mass is unambiguous and can be found reliably
from ab initio calculations. But, if the particle’s energy is
great enough (about 0.47 eV above the conduction band
minimum in our LDA calculations), there are multiple
bands available for the electron, and the assignment of
an effective mass to these carriers is ambiguous. Also, at
higher energies, the computed bands are generally much
shallower than the effective mass approximation (leading
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to much higher effective masses). This can be understood
by noting that while the electron Bloch states are eigen-
states of the crystal momentum k they are not eigen-
states of the total momentum k+G. Instead, the Bloch
states contain higher Fourier components with total mo-
mentum contributions in different directions. Therefore,
the expectation value of the momentum operator will ex-
perience vector cancellation of the momentum states and
tend to systematically underestimate the magnitude of
the momentum of individual measurements. As a con-
sequence, for higher energy bands, the dispersion E(k)
will not be expected to adequately describe the dynamics
of particles propagating with a wavepacket largely com-
posed of a narrow spread of momenta.
It is worth noting that the methods presented here

can be used not only for electrons, but also for charged
nuclear particle radiation such as protons, alpha parti-
cles, and recoil ions. In this case, the approximation of
using classical motion for the particle is expected to be
less problematic. Back of the envelope estimates based
on the Rutherford scattering cross-section suggest that
our approximations will be valid for heavy ions of high
energy (with small scattering angles). For slow, heavy
ions, our approximations are expected to break down as
the average scattering angle increases. Specifically, high
angle scattering is important for low-energy projectiles
which experience greater momentum transfers than swift
particles. A rough criteria for the sufficiency of the grid
upon which the scattering potential is tabulated is that,
in atomic units, the product of energy cut-off that defines
the plane-wave grid and the projectile energy (in atomic
units) be greater than the ratio of the mass of the projec-
tile to that of an electron. At the same energy scale (and
for related reasons) the pseudopotential approximation
will also become suspect. The neglect of multi-phonon
processes also is not applicable to slow, heavy ions since
the typical energy transfer for collisions involving such
particles exceeds the phonon energies. We find that the
single phonon approximation is valid when the ratio of
the projectile mass to the average mass of the nuclei in
the material is much less than the product of the projec-
tile energy and a representative phonon frequency. Fi-
nally, slow, heavy ions are likely to be screened by elec-
trons in the material, and the current formulation does

not account for this important process.

VI. CONCLUSIONS

We have used detailed band structure calculations to
directly compute the density response to phonon excita-
tion in CsI and used these results to estimate the power
by which a charged particle moving through the ma-
terial is slowed. Our results show significantly higher
power, especially for acoustic modes, than the conven-
tional models. We suggest that thermalization time and
distance estimates be reassessed. We find that the dis-
persion relation for quasiparticles has a significant effect
on the rate at which energy is lost by a quasiparticle.
The discrepancy between the dispersion resulting from
band structure calculations and the ubiquitous effective
mass approximation poses a serious challenge to the ef-
fort to update classic phenomenological models with first-
principles numerical models. A coherent picture that re-
covers the standard models of electron-phonon interac-
tion has not yet been found. Experimental insight into
quasiparticle motion and scattering by phonons would
be very valuable to illuminate the microscopic physics of
these important processes. We plan to use various de-
scriptions of phonon scattering and quasiparticle disper-
sion in an attempt to improve our models of inorganic
scintillators, but more direct experimental insight into
the electron-phonon interaction would be very welcome.
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B. Carré, J.-F. Hergott, and L. Le Déroff, Phys. Rev. B
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