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Abstract

In this paper we study the growth properties of domains of low spin molecules in a high spin

background in open boundary elliptically shaped spin crossover systems within the framework of

the mechanoelastic model. The molecules are situated on a triangular lattice and are linked by

springs, through which they interact. Elliptical shapes are chosen in order to allow an in-depth

analysis of cluster shapes as a function of the local curvature at their starting point and the

length of the interface between the two phases. Contrary to the case of rectangular and hexagonal

shapes, where the clusters always start from corners, we find that for ellipses clusters nucleate

from vertices, co-vertices or any other site. We apply and compare two kinds of dynamics, Eden-

like and Kawasaki, in order to determine the stable shape of the clusters and the most probable

starting points. We show that the wetting angle for small clusters is somewhat higher than π/2 and

approaches this value only for large clusters. The stability of clusters is analyzed by comparing the

Gibbs free energy to the elastic energy in the system and is discussed as a function of the cluster

size, curvature of the starting place and temperature.

PACS numbers: 75.30.Wx, 64.60-I, 75.60-d
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I. INTRODUCTION

The spin transition (ST) compounds1,2 are inorganic molecular materials switchable be-

tween two states in thermodynamic competition: the low-spin (LS) state, with a minimum

spin multiplicity and the high spin (HS) state with the maximum spin multiplicity. These

two states have several different physical properties, such as magnetic, optical, dimensional

and vibrational properties, which facilitate their study by different experimental techniques.

The difference in molecular sizes between the two states, with the HS state volume 3-5%

larger than the LS state volume,3 is the premise for the creation of intermolecular inter-

actions of elastic type which trigger the transitions between the two macroscopic HS and

LS phases. If these interactions are higher than a threshold, then the transition between

the two states is accompanied by abrupt hysteresis of various types (i.e. thermal, pressure,

light induced). These properties form the basis of promising applications, such as memory

devices, sensors or actuators.4–6

The hysteresis properties have required the use of the concept of cooperativity as a result

of short range and long range interactions which favor the spreading of clusters of molecules

in the same spin state, the so-called like-spin domains. However, until a few years ago, only

indirect proofs for the existence of domains, such as the experimental determination of mi-

nor hysteresis loops7 or Raman spectroscopy results,8 were available. In addition, these data

were obtained on powder samples. Recent optical microscopy experiments,9,10 anticipated

by a first effort fifteen years ago towards the visualization of a spin crossover compound

structure during the transition,11 have provided excellent proofs of cluster spreading in spin

crossover single crystals of different shapes, such as rectangular, hexagonal, monoclinic or

orthorhombic etc. These experiments have revealed the fact that clusters mostly develop

from corners or around defects and eventually spread throughout the whole sample via an

avalanche-like process. Elastic models that have described the evolution of clusters from

corners or edges12–14 have been proposed almost simultaneously with the first experimen-

tal data,15 which afterwards accelerated the in-depth study of these new models for spin

crossover compounds.

Indeed, models used previously for the study of spin crossover compounds are not ap-

propriate for describing the formation and evolution of clusters. Largely applied mean field

models,16 able to correctly describe macroscopic phenomena, especially in the case of grad-
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ual spin conversions and in the presence of light irradiation,17,18 do not allow any cluster

formation. Ising-like models19,20 with short-range interactions may allow cluster formations,

but they grow from anywhere, either from the bulk or from the edges, which does not corre-

spond to experimental observations. The main drawback of Ising-like models lies in the fact

that they do not include the difference of molecular sizes between the HS and LS molecules

and therefore the elastic interactions are ignored. Thus there is no possibility of obtaining

distortions inside the crystal.13 A recently introduced anharmonic Ising-like Hamiltonian21,22

taking into account the elastic nature of interactions by coupling the electronic and struc-

tural degrees of freedom of interacting spin crossover molecules leads to local distortions

which allow the nucleation and growth of like-spin domains.21–23

In the so-called ball and spring models, the interactions originate just from the different

molecular sizes between the LS and HS states; therefore these models are appropriate for the

study of macroscopic domain formation and clustering. However, it was shown that in an

elastic model applied with periodic boundary conditions the domain growth is hindered.24

Therefore, the use of open boundary conditions is a necessary requirement for obtaining

macroscopic clusters. Recent works showed that in the elastic model with open boundary

conditions the nucleation always starts from corners (very rarely from non-corner edge sites),

either in rectangular or triangular lattices. These results were obtained, either in the frame-

work of Molecular Dynamics approaches13 or using Monte Carlo Arrhenius,25 Metropolis

dynamics,26 as well as by combining Molecular Dynamics and Monte Carlo method.27 This

general behavior was also supported by simple energetic considerations.27,28 It has also been

shown that in the framework of elastic models with Molecular Dynamics,13 the nucleation is

a macroscopic process, with the size of the critical nucleus proportional to the total system

size29 and the importance of the shape effects has been underlined.

For circular systems, the absence of corners results in clusters starting from edges any-

where on the circular surface, either in the case of an elastic model with square symmetry

solved by Molecular Dynamics treatment29 or Monte Carlo simulations30 as well in the case

of triangular symmetry studied by Metropolis Monte Carlo.26 No preferential direction for

the cluster development in either lattice symmetry has been found.

Depending on the intermolecular interaction, modeled by way of a spring constant, one

can observe one single cluster for strong interaction or several clusters spreading for weaker

interactions. No cluster can be detected in the case of very weak spring constants, while
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impurities can slow down or even prevent the development of clusters.31 The extremely high

elastic energy determined by the (artificial) growth of a hypothetical cluster inside the bulk

prevents this kind of cluster from spreading, at least as long as the lattice symmetry is

maintained and cracking is not allowed. In Fig.1, one can see examples of clustering from

corners in the case of hexagonal and rectangular systems and from edges in the case of

circular systems, obtained for systems composed of around 40,000 molecules on a triangular

lattice using Monte Carlo Arrhenius dynamics.

As stated above, the mechanoelastic model, which we use further on in this paper

was initially applied to hexagonal shapes, as it corresponds to the hexagonally shaped

[Fe(bbtr)3](ClO4)2] spin crossover crystals9,31–33 and later it was extended to circular

isotropic shapes.26 The theoretical two-dimensional approach is justified by the presence

of typical experimental 2D spin crossover solids, in which the metal ions are bridged by lig-

ands in planes, defining a stack of layers, connected in between by weak interactions (van der

Waals or hydrogen bond bridges). However, most spin crossover compounds are not hexago-

nal, but crystallize in other shapes, either at the nanoscale, microscale or in the case of larger

crystals. A very interesting situation is that of needle shaped spin crossover crystals which

have been recently produced and used for potential applications for molecular actuators34 or

in ultrafast information processing.35 Elongated crystals, also, provided text-book example

for the propagation of HS/LS interfaces, with quasi-1D behavior.27,36 Therefore, it is impor-

tant to study clustering in highly anisotropic shapes, such as ellipses, used also as sample

shapes in other magnetic materials, such as nanopillars.37 Moreover, the study of ellipses is

useful as different points on their surface are characterized by different radii of curvature,

with the smallest ones at vertices corresponding to the corners of hexagonal/ rectangular

systems and the largest ones at co-vertices, approaching infinity for elongated ellipses and

then corresponding to linear edges. In addition, the control of the eccentricity of ellipses

enables one to study systems with shapes changing from circular to needles.

The rest of this paper is organized as follows. First we present the model, and next we

discuss the spreading of LS clusters in HS environments in ellipses of various aspect ratios.

Then, two different kinds of dynamics, Eden-like and Kawasaki, are applied in order to

determine the most probable cluster shapes. Finally, the stability of clusters is discussed in

terms of starting point, size and temperature.
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FIG. 1: (Color online) Clusters of LS molecules in a HS background spread from corners in hexag-

onal and rectangular shaped systems and from edge in a circular system.

II. MODEL

In the 2D mechanoelastic model used in this paper, the molecules are located at the sites

of a triangular lattice of elliptic shape with open boundary conditions. Every molecule,

except those on the edge, has six nearest neighbors to which it is linked by connecting

springs. In the fully LS or HS states, the system is in mechanical equilibrium, i.e., all the

springs have their natural lengths. When a molecule flips, due to the different sizes of the

two states, elastic forces are generated inside the system, starting from the nearest neighbors

of the switched molecule. Consequently all molecules move, following an oscillatory damped

law, in order to find their new equilibrium positions (actually leading to minimize the elastic

energy of the spin-frozen system26). After every switch, all molecules change their positions,

depending on their relative positions to the flipped molecule and to the edge of the system.

Therefore the elastic spring constant generates both the short and long range interactions

of the phenomenological Ising-like models used for spin crossover compounds, as recently

demonstrated analytically in the frame of an electro-elastic model proposed by A. Slimani

et al.21 Deformations appear inside the lattice and a position and time dependent elastic

force, denoted here local pressure, acts on every molecule.

In order to establish which molecules switch, we need to define appropriate switching

probabilities. The evolution of the system in the framework of the mechanoelastic model

has been previously studied using either a Monte Carlo Arrhenius-type dynamics based on

local pressure influence on every molecule or a Monte Carlo Metropolis dynamics depending
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on the energy of the system. In the first situation, the transition probabilities from HS to

LS and LS to HS can be written as:38

P i
HS→LS =

1

τ
exp

(

D − kBT ln g

2kBT

)

exp

(

−
E + κpi
kBT

)

(1a)

P i
LS→HS =

1

τ
exp

(

−
D − kBT ln g

2kBT

)

exp

(

−
E − κpi
kBT

)

(1b)

respectively. Here τ is a scaling constant, chosen so that the above probabilities are

well below unity at any temperature, κ is a scaling factor between the local pressure and

the activation energy of the individual molecule, g = exp(∆S/kBT ) is the vibronic HS:LS

degeneracy ratio, while E corresponds to the activation energy of the HS→LS relaxation

relative to a global reference state in which all the molecules are in the HS state. D is

the energy difference between the two states in the case of non-interacting molecules, pi

is the local pressure acting on molecule i, defined as pi =
∑

neighbours
springs

k

A
δxij where k is

the spring constant, A the molecular cross-sectional area and
∑

neighbours
springs

δxij the algebraic

sum at mechanical equilibrium of elongations of neighboring springs (here taken positive for

elongated springs and negative for compressed ones).

One can easily formulate the above probabilities in terms of energy. The Hamiltonian of

the system (in the harmonic case) can be written as:

H =
1

2

∑

i

(D − kBT ln g)σi +
k

2

∑

i,j

δx2
ij (2)

where the first term corresponds to the classical Hamiltonian used to treat the spin-

crossover Ising-type system (σi takes the value +1 for HS and −1 for LS) and the second

term stands for the elastic energy Welastic calculated as the sum of energies for all the springs

in the system.

Let us suppose that a molecule changes from HS to LS. Consequently, if its nearest spring

elongations were δxij before the switch, then immediately after the switch (unrelaxed state)

they become δxij + δr, where δr is the radius change of the molecule. As the spring system

has not yet relaxed to its new equilibrium configuration, this is a high-energy transient state

of the system. The energy difference between the transient state and the initial HS state

can be written as:
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FIG. 2: (Color online) Variation of the elongation while a molecule flips from the HS to the LS

state (l0 is the natural length of the spring, rHS and rLS are the radii of HS and LS molecules,

respectively, and and are the elongations before the flip).

∆Wi = −(D − kBT ln g) +
k

2

∑

j

(

(δxij + δr)2 − δx2
ij

)

(3)

where the sum is calculated over the nearest neighbors of the flipped molecule i. This

means that the activation energy is simply the energy of all springs around a switched

molecule compressed (or elongated) with the difference between the HS and LS radii. The

relation (3) is transformed after a simple calculation as:

∆Wi = −(D − kBT ln g) +
k

2

∑

j

(

2δrδxij + δr2
)

(4)

In order to obtain the same probabilities as those in Eq 1(a,b), the equalities E =
k

2

∑

i δr
2 =

kz

2
δr2 (z is the coordination number, here 6 for bulk molecules) and k = Aδr

must be respected.

During a Monte Carlo time step, each molecule of the system is randomly visited in

order to decide whether it switches or not. For every molecule we compare the probabilities

according to equations 1a and b with a random number η ∈ (0, 1). A given molecule

changes its state (and consequently its volume) only if this random number is smaller than

the corresponding probability. After each successful switch, the new equilibrium positions of

all molecules are calculated by solving a system of differential damped oscillatory equations,

as discussed in previous papers12,39.
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III. RESULTS AND DISCUSSION

We have performed extensive simulations for elliptical systems on triangular lattices with

Arrhenius dynamics in order to determine where clusters (domains) start from. In order

to analyze the cluster stability as a function of temperature, all the simulations in this

paper have been performed at a constant temperature below the transition temperature

(T = 100K if not stated otherwise), i.e. during a relaxation process. The parameters used

in the model were D = 1100K, g = 1096, E = 400K, κ = 2000Km2/N, k = 0.7N/m, kB = 1,

δr = 0.1rHS. At first sight and by similitude with clusters growing from corners in the above

mentioned rectangular or hexagonal systems, one could expect that the nucleation would

always start from the vertices of the ellipse, which are the points of maximum curvature.

For most situations, this is actually the case, as represented in Figure 3. In the initial state

of the system, all molecules are in the HS state; then they are allowed to flip according to

the probabilities 1a,b. For large major axes, i.e. large distances between antipodal points

of the ellipse, two clusters will spread starting from opposite vertices and join somewhere in

the middle part of the ellipse (Fig. 3 left), with a similar kinetic and quasi-constant velocity

as described in a previous paper and observed in experiments.27,28 For smaller values of the

major axis, the evolution of a cluster will in most cases prevent the spreading of another

cluster from the opposite vertex (Fig. 3 right). The few LS switched molecules in the vicinity

of the opposite vertex will be affected by the spreading of the first cluster formed and, under

the effect of a lower local pressure they will quickly switch back to the HS state. This

nicely illustrates the long range effect of the elastic interaction. For large ellipses, this effect

will be attenuated and consequently there is a non-negligible probability to observe cluster

spreading from both vertices. However, these general considerations have only a statistical

value as it is possible that two opposite clusters form and then spread with comparable

speeds even for small ellipses. Moreover, simulations carried out for ellipses with different

eccentricities and at different temperatures have shown that these statements are valid only

for ellipses with large ratios between major and minor axes (high eccentricities), while in

the general case, it is possible to obtain clusters starting from different sides of the ellipses,

as one can see in the examples shown in Fig. 4.

In order to rationalize this complex behavior, we calculated the increase of the elastic

energy associated with a cluster starting from different points of the edge. In previous
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FIG. 3: (Color online) (left) Most probable cluster evolution at T = 100K for highly elongated

ellipses (high eccentricities; in this case the ellipses are composed of 46969 molecules, with a ratio

10 between the major and minor ellipses axes and 720 molecules on the major axis). The two

clusters join somewhere near the middle of the ellipse. (right) Possible spreading of one single

cluster for smaller ellipses (in the figure the ellipses are composed of 4545 molecules, with the ratio

2 between axes and 100 molecules on the major axis).

papers26,29 the total potential energy of the system was analyzed as a function of the relative

size of a LS domain growing from the edge of a circular system, considering a contact

(wetting) angle of π/2.

We follow here a more general approach which does not imply the a priori consideration

of a wetting angle of π/2.40 Indeed, as recently discussed in Ref.30, the wetting angle itself

is the result of the lattice energy optimization including the deformation of the surface.

However, a detailed study of the shape of the cluster (that is, the interface line between

LS and HS domains) requires using advanced types of dynamics leading to better-defined

borderlines, such as the Eden-like dynamics used below or the Kawasaki dynamics used in

the following section.
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FIG. 4: (Color online) Examples of cluster evolution at T = 100K for less elongated ellipses (lower

eccentricities), resulting from independent simulations with various random seeds. The clusters

occur not only at the vertices, but also at lateral points. The situation presented here corresponds

to an ellipse composed of 46443 molecules (major/minor axis ratio 2, 320 molecules on the major

axis).

The Eden-like dynamics used here is an extension of an approach developed by Eden for

the growth of cell colonies.41 Let us consider all molecules initially in the HS state, except

for a LS cluster located in the vicinity of a selected point on the edge (typically around

fifty molecules or 0.1% for an ellipse containing fifty thousand molecules). In this way

we created the seed (germ or nucleation site) needed for the subsequent spreading of the

cluster. Following the genuine Eden method, the cluster is forced to grow by only allowing

the flipping of the HS molecules which have at least one LS neighbor (this means that only

the HS molecules in the nearest vicinity of the cluster may switch). However, in the present

extension of the method once switched to LS, they are allowed to switch back. We randomly

address all the molecules in the system and check if they have at least one LS neighbor. If so,

we decide if the molecule switches or not by applying the probabilities (1a,b) for HS and LS

molecules. Earlier, it was pointed out that some differences can be obtained depending on

whether one is addressing HS or LS molecules. The present method mimics surface tension

by considering the total flipping probability of a HS molecule at the interface as proportional
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FIG. 5: (Color online) The growth of a cluster at T = 100K from a vertex (top), a co-vertex

(middle) or in-between (bottom) obtained using an Eden-like dynamics as described in text, for

cluster size/ellipse area ratios of 1%, 5%, 15% and 25%.

to the number of its LS neighbors (see42) and therefore should lead to a smoother interface

than the alternative method. By this procedure we obtain a dynamical configuration of

clusters. At variance from the previous calculations presented in Figs. 3 and 4, only one

cluster is allowed to grow, with a well-defined interface which is not blurred by the diffusion

of LS states into the HS domain.

In Fig. 5 is presented the evolution of clusters starting from different points at the edge

of the ellipse: at its vertex (peak), at its co-vertex (side) and in-between these points. We

notice that the cluster which starts from in-between positions spreads towards the vertex

where the energetic conditions are more favorable and, from a point on, its evolution will be

similar to a cluster starting from that vertex. On the other side, we notice also the fractal-

like shape of the edge of the LS cluster, similar to that of the Eden model applied for cellular

growth. As long as the clusters are not too large, their shape is close circular; this feature

seems to be more prevalent for the clusters starting from the co-vertex; consequently, the
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FIG. 6: (Color online) Determination of the wetting angle for a system with a 10% LS cluster

starting from a co-vertex. (left) hypothetical configuration of the system if the molecules were

fixed. (right) real configuration after the molecules have moved in order to minimize the elastic

energy. The dashed green line is the original tangential line at the wetting ridge for a non-deformed

system (fixed molecules). The solid red line follows the HS-LS interface line at the wetting ridge.

The wetting angle is then the angle between green and red lines.

wetting (contact) angle varies. The study of the wetting angle on soft surfaces, defined as the

angle from the horizontal of the ligand-vapor interface at the tip of the wetting ridge,43 is an

actual problem for material scientists.44–46 According to this definition, we can estimate the

wetting angle using the tangential line at the initial surface (dashed green) and the HS-LS

interface line (full red) from Fig. 6. With these considerations, the wetting angle θ seems

to be somewhat bigger than π/2. However, an exact determination of the wetting angle

is beyond the objectives of the present paper and would be difficult due to fluctuations at

edges which result in large variations of this angle with time.

The Eden-like method provides clusters which grow dynamically and therefore do not

necessarily correspond to a minimum energy state. In order to minimize the energy, we

therefore apply the Kawasaki dynamics47,48 keeping constant the numbers of HS and LS

molecules in the system. For this, we choose pairs of HS and LS neighboring molecules

and exchange their states. In order to decide if the flipping of both molecules is accepted

or not, we apply a standard Monte Carlo Metropolis procedure, by comparing the elastic
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energies in the system before the switch and after the switch when all the springs in the

system have been relaxed. In this case, as the number of HS molecules is kept constant, the

electronic energy does not play any role in the finding of lower energy states; the probabilities

1a, b are not used here and the only role of the temperature is to determine how often a

switch is accepted. The Kawasaki dynamics is more time consuming than the Eden-like

dynamics; therefore the results presented here have been obtained for a smaller elliptic

system, containing 4545 molecules, with major/ minor axis ratio equal to 2.

In figure 7, we present the evolution of a cluster with an initial straight interface between

the HS and LS domains. The application of the Kawasaki dynamics leads to a radial interface

line perturbed only by thermal fluctuations. It is worth noticing that a similar final shape

is obtained irrespective of the starting shape (i.e. circular or linear interface) but important

differences can be noticed in the case of different temperatures. There exists an optimal

temperature for the fastest minimization of the system energy in our case 0.005 K (see Fig.

8). In this case the interface is close to circular, which is reflected by the fact that its energy

is very similar to the energy of the initial cluster with circular interface.

Obviously, this optimal temperature depends on the elastic constant and on the system

shape. If the temperature is lower than the optimal one, then the thermal fluctuations are

so small that the evolution of the system towards its lowest energy state will be very slow

(as in the case of 0.001 K) or almost absent for a large number of Monte Carlo steps (as

in the case of 0.0001 K). If the temperature is somewhat higher than the optimal one, then

the fluctuations will lead the system towards states with an elastic energy of the same order

as that found by the Eden-like method (0.01K). For a too high temperature, the too large

thermal fluctuations will shift the system away from the minimum energy state.

It is interesting to notice that regardless the initial shape of the initial droplet, the final

shape and energy depend only on temperature: in order to prove this we have compared the

evolution of equivalent systems (same LS fraction, 5%) with different initial shapes: with

either circular or linear interface, or interface shape resulting from the Eden-like dynamics

(Fig. 8, inset). In all three cases the final shape is similar, with a circular interface, and the

energy fluctuates around the same value.

The situation is somewhat different in the case of the Kawasaki dynamics applied for a

cluster formed near a co-vertex, presented in Fig. 9, for different percentages of LS molecules

and considering the optimal temperature previously found for a cluster formed at the vertex
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FIG. 7: (Color online) Evolution of the system using the Kawasaki dynamics for a cluster formed

around a vertex with an area of 5% of the total ellipse area, with an initial linear interface between

HS and LS states. T = 0.005K; MCS number: 0, 1000, 10000, 100000, respectively.

(0.005 K). We notice that in this case the final energy is much smaller than the elastic

energy for the circular interface (Fig. 9 bottom right); the final interface is still not too far

from a circular one (as suggested by the white line in Fig. 9), but the local shape just near

the edge is characterized by a wetting angle larger than π/2 (as the red lines). If the LS

fraction is lower than a critical value, then the initial cluster evaporates and the final state is

a uniform ”gas” of LS molecules in the HS background. This can be already observed in Fig.

9, where the LS cluster seems to be surrounded by a cloud of disconnected LS molecules.

This behavior is similar to the Kawasaki dynamics applied on an Ising system.49

In Fig. 10, we represent the total elastic energy of the spin crossover systems as a function

of the relative size of the LS domain and for different ratios of the major and minor axes of

the ellipse. The results are obtained using the Eden-like dynamics, as this corresponds to

the cluster spreading and allows the study of larger systems, but similar conclusions can be

drawn by the Kawasaki dynamics. In a previous paper29, we have studied circular systems

with elastic interactions and we have shown that the cluster behavior is similar irrespective

of the system size, with a critical nucleus proportional to the system size. However, in

order to allow an immediate comparison between the behavior of ellipses with different
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FIG. 8: (Color online) Energy evolution for a system with an initial cluster formed around a vertex,

with linear (line +full symbols) or circular interface (line +open symbols), in the framework of

Kawasaki dynamics at different temperatures.

eccentricities, we have chosen here ellipses having ratios of major/minor axes between 10

and 1 (the latter corresponds to a circle) but containing approximately the same number

of molecules (between 43853 and 47839). For an accurate comparison, we study the elastic

energy density instead of the total elastic energy of the system.

We notice that the elastic energy of the clusters approaches zero if a cluster starts from

the vertex of a very elongated ellipse (actually, if the ellipse would change into a line, this

energy should be zero). These results are better interpreted as a function of the radius of

curvature of the surface where the clusters start from (from infinity for the co-vertex of a

very elongated ellipse to zero for the vertex of the same very elongated ellipse). Taking into

account that for an ellipse with major axis 2a and minor axis 2b, the radii of curvature at
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FIG. 9: (Color online) Final cluster shape in the Kawasaki dynamics at T=0.005K for systems with

5% (a), 10% (b) and 15% LS fraction (c). In the zooms of (a) and (b) one can notice the deviation

from circular shape of the interface just near the edge. (d) Elastic energy variation starting from

a cluster with circular interface in the three situations (full line) and comparison with the energy

obtained during the Eden-like method (dashed red line).

vertices and co-vertices are defined as R =
b2

a
and R =

a2

b
respectively, we represent in Fig.

11 the relaxed elastic energy as a function of the ratio between the radius of local curvature

and the size of the cluster. Another useful representation is the dependence of the elastic

energy on the length of the interface between the HS and LS phases: in the inset of Fig. 11

it is shown that the longer the separation line, the higher the elastic energy. In other words,

the minimum elastic energy of the system implies the minimum length of the interface.

In the following, we discuss the stability of a cluster as a function of its size, elastic energy

and temperature of the system. For this, we have chosen an ellipse with 47389 molecules and

a moderate ratio between the ellipses axis (b/a = 132/99 = 4/3). In Fig. 12, we represent

the total elastic energy for the situations in which the cluster starts from a co-vertex, vertex

or intermediate point. Similar to the results presented in Fig. 10, the elastic energy of the

system is higher when clusters start from a co-vertex and lower if the cluster starts from a
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FIG. 10: (Color online) Normalized elastic energy increase as a function of the ratio between the

cluster area and the total area (this ratio is similar to LS fraction, that is 1- nHS and usually

denoted nLS) for ellipses with different ratios between major and minor axes and for cluster seed

at vertex or co-vertex.

vertex. The total elastic energy when a cluster starts from some point between vertex and

co-vertex approaches the energy of the vertex cluster while the cluster grows towards the

vertex of the ellipse. This representation is useful for discussing the stability of a cluster as

a function of temperature, as follows.

Taking into account the expression of the Hamiltonian (2), the variation of the Gibbs

free energy of a N -molecule system when a number of NLS molecules have switched from

the HS state to the LS state can be written as:

∆WGibbs =
1

2

∑

i

(D − kBT ln g)2NLS = (D − kBT ln g)N
NLS

N
= (D − kBT ln g)NnLS (5)

∆WGibbs shows a linear dependence on the ratio between the cluster size and the total

size of the system. In the case of a temperature below the thermal equilibrium temperature
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FIG. 11: (Color online) Normalized relaxed elastic energy for 5%, 10% and 15% LS clusters as a

function of the ratio between radius of curvature at the starting point and the size of the cluster

and (inset) as a function of the length of the HS-LS interface.

(

T <
D

kB ln g

)

, where the LS state is the ground state, this line, which always passes through

the origin of axes, has a positive slope. There might be an additional shape entropy term

in ∆W , -kBT ln(a/b), due to the fact that there is more space to form a cluster on a long

side (near a co-vertex), but this might well be numerically negligible for the aspect ratios

we can study.

This observation allows us to discuss the stability of a LS cluster as a function of its area

and of the temperature of the system. If the gain ∆WGibbs in the Gibbs free energy gain is

larger than the increase of the elastic energy ∆Welastic of the system due to distortion, the
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cluster will be stable and may develop; otherwise it is unstable and will vanish.

In Fig. 12, we compare ∆WGibbs and ∆Welastic computed as a function of the cluster

relative area at various temperatures and for various cluster starting positions. Let us

analyze the stability of a cluster starting from different sides of the ellipse as a function

of the temperature. For T = 200K, a cluster growing from the vertex will be stable if

its relative area is bigger than the value a ≈ 11% (see figure 12) of the total system size;

while a cluster starting from a co-vortex will be stable if its area is larger than c ≈ 22% of

the total ellipse. If the cluster is bigger than the critical size, it will spread, while if it is

smaller, it will shrink. It can be observed that a cluster starting from a vertex is stable for

much smaller sizes; therefore the clusters develop from vertices with a higher probability.

However, the threshold size decreases with decreasing temperature. From the diagram in

Fig.12, it can be noticed that if the temperature is smaller than a critical value, depending

on intrinsic parameters of the systems, all LS clusters are stable, regardless of their size and

starting positions. This critical value provides a thermodynamical definition of the HS →

LS transition temperature.

IV. CONCLUSION

In this paper we have studied the shape and the stability of clusters of low spin molecules

formed in elliptically shaped spin crossover crystals. Two methods have been introduced

in order to study cluster formation and spreading: the dynamic Eden-like method and the

Kawasaki dynamics which minimizes the clusters energy at a constant volume fraction. We

have found that the stability of clusters depends not only on the place on the system bound-

ary they are starting from, but also on their size and temperature. The phase interface

of clusters is close to circular for clusters starting close to the vertices of the ellipse, but

presents some deviation from circular in the case of the co-vertices regions, with a wetting an-

gle larger than π/2. Based on previous approaches for square systems on square lattices13,21

and hexagonal systems on triangular lattices25 a similar behavior is to be expected for high

spin clusters in a low spin background during the LS-HS transition. However in this case the

interface between the HS and LS phases should be less well defined due to larger thermal

fluctuations. Then, when the elastic constant is large (leading to wide hysteresis loops) a

homogeneous region (mixture of LS and HS) is expected to appear, as we already noticed
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FIG. 12: (Color online) Stability of clusters resulting from the comparison between elastic energy

and Gibbs free energy for nucleation points on different sides, as a function of temperature and

cluster size.

here in the case of LS clustering. The simulations realized in this manuscript can be useful

for the design and/or the understanding of future experiments based on optical microscopy.

Indeed, experimental studies of the shape and the orientation of the interface between the

high-spin and low spin phases have recently been performed27,28, with the aim of controlling

the interface movement by fine-tuning of the relevant factors influencing the stability of

the competing elastic domains, such as temperature. The experimental investigations are

currently developping towards the control of local conditions, such as crystal shape or the

curvature of the surface. In the future the clustering in realistic three dimensional systems

should be investigated, in order to predict the evolution of clusters in a large number of

experimental spin crossover systems.
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