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We study the phase diagram of the spin-1 quantum bilinear-biquadratic antiferromagnet on the kagome lattice,
using exact diagonalization (ED) and the density matrix renormalization group (DMRG) algorithm. The SU(3)
symmetric point of this model Hamiltonian is a spontaneously trimerized state whose qualitative nature persists
even at the Heisenberg point, a finding that contrasts previous proposals. We report the ground state energy per
site of the Heisenberg model to be −1.410(2) and establish the presence of a spin gap.

Introduction— The discovery of experimental realizations
of kagome antiferromagnets1,2 and indications that they have
exotic ground states has spurred immense activity in the last
few years. Even for the simplest realistic model, the near-
est neighbor spin-1/2 kagome Heisenberg antiferromagnet
(KHAF), the nature of the ground state is unresolved3–10, but
has seen great progress10–15 due to advances in numerical al-
gorithms.

In contrast to the spin S = 1/2 case, little has been
definitively established for the ground state of the S > 1/2
case. When S is large, as is the case for the S = 5/2 iron
jarosite KFe3(OH)6(SO4)216, long-range magnetic order of
the
√

3 ×
√

3 type is expected17,18. However, for the inter-
mediate spin case, S = 119–21 and S = 3/222, the theoretical
situation is unclear. There exist several experimental motiva-
tions23 for studying this problem. For example, KV3Ge2O9

24

and BaNi3(OH)2(VO4)225 are candidates for S = 1, and
chromium-jarosite has been reported to be a S = 3/2 kagome
antiferromagnet26.

The focus of this Rapid Communication is the S = 1 case,
with emphasis on the KHAF. Previous numerical studies of
the S = 1 XXZ model with on-site anisotropy27,28 have shed
light on the phase diagram, but the approach is limited for the
KHAF. Recent coupled cluster calculations21 show that the
S = 1 KHAF has no long-range magnetic order, in contrast
to previous analytic results20. Thus, the definitive characteri-
zation of the ground state remains an open question.

Based on exact diagonalization (ED) of the S = 1 KHAF,
Hida proposed that the ground state is a Hexagonal Singlet
Solid (HSS) with a spin gap19. The HSS is a translationally
invariant state that is described by an Affleck-Kennedy-Lieb-
Tasaki (AKLT)29 type wavefunction. As is schematically de-
picted in Fig. 1(b), all the spin-1’s fractionalize into two spin-
1/2’s and then the spin-1/2’s on every hexagon form a singlet
state. However, a recent experiment30 with m-MPYNN-BF4,
believed to be a S = 1 KHAF, has observed magnetization
plateaus different from those predicted by the HSS phase31,
calling for a review of this picture.

In this Rapid Communication, we use ED and the density
matrix renormalization group (DMRG) algorithm32 for cylin-
drical geometries33. We show that even though the HSS has
a competitive energy (≈ −1.36 per site) in comparison to
the DMRG results (≈ −1.41 per site), the qualitative picture
obtained from the latter is that of a trimerized ground state,

schematically illustrated in Fig. 1(a). This state, referred to
as the simplex-solid34 or simplex-valence bond crystal, is a
symmetry-broken state where the three spin-1’s living on each
up (or equivalently down) pointing triangle form collective
singlets or "trimers".

We find no long-range spin-spin correlations and a finite
spin gap of ∼ 0.2 − 0.3, for the choice of lattice geome-
tries studied. In addition, the energy of a recently proposed
ground state candidate Z2 spin liquid, the Resonating AKLT
state (RAL)35, is found to be higher than both the HSS and the
trimerized state found in DMRG.

We have considered the phase diagram of the nearest neigh-
bor bilinear-biquadratic model,

H = Jbl
∑
〈ij〉

Si · Sj + Jbq
∑
〈ij〉

(Si · Sj)2 (1)

where 〈ij〉 refer to nearest neighbor pairs, Jbl is the bilin-
ear Heisenberg coupling (set to Jbl = 1), and Jbq is the bi-
quadratic coupling. While a previous tensor network study
showed the ground state to be a simplex solid at the SU(3)
symmetric point (Jbl = Jbq)36, here we provide evidence that
this trimerization survives on reducing the magnitude of Jbq
all the way to zero. A quantum phase transition to a ferro-
quadruolar spin nematic is observed only at Jbq ∼ −0.16.

The Heisenberg point— We consider Jbq = 0, the Heisen-
berg point, and assess the quality of the HSS wavefunction
with respect to ED calculations. Following Hida19, we asso-
ciate two spin-1/2 degrees of freedom (labelled by α and β)
with every spin-1, and define,

|+ 1〉 ≡
ψ1/2,1/2√

2
|0〉 ≡ ψ1/2,−1/2 | − 1〉 ≡

ψ−1/2,−1/2√
2

(2)
where ψα,β ≡ 1√

2
(ψα ⊗ ψβ + ψβ ⊗ ψα). ψα(β) is the wave-

function of a single spin-1/2. Then the HSS wavefunction is
defined to be,

ΦHSS =
⊗
i

ψαi,βi

∏
i

(δα,γi+δβ,γi)
∏
p

wγip ,γjp ,γkp ,γlp ,γmp ,γnp

(3)
where ip, jp, kp, lp,mp, np refer to the sites on the el-
ementary hexagon (given the label p) and γip through
γnp are the spin-1/2 state labels (±1/2) for those sites.
wγip ,γjp ,γkp ,γlp ,γmp ,γnp is the coefficient of the lowest energy
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Figure 1. (Color online) (a) shows a schematic of the simplex solid on the kagome lattice. The bond thicknesses represent the relative
magnitude of the bond energy. (b) shows a schematic of the Hexagon Singlet Solid (HSS). Each spin-1 (depicted in blue) fractionalizes into
two spin-1/2 (shown by red circles). The spin-1/2’s on the hexagons form a singlet, shown by the black lines connecting them. (c) shows the
cylindrical geometry used in the DMRG calculation. Periodic boundary conditions in the width direction have not been shown.

singlet state of a S = 1/2 nearest neighbor Heisenberg model
on a hexagon.

Table I shows the energy of the HSS, the RAL35 and ground
state wavefunctions from ED for various finite clusters with
periodic boundary conditions; the geometries and nomencla-
ture are the same as Ref.19. We estimate the HSS energy in the
thermodynamic limit to be −1.36 per site37. This is compa-
rable to the energy from ED (roughly −1.4), and much lower
than the RAL energy, suggesting that the HSS is a competitive
candidate for the ground state.

However, a clear picture of the ground state emerges only
for larger systems, which were studied with DMRG. Cylin-
ders with periodic boundaries in the width (W ) direction and
open boundaries in the length (L) direction, as shown in
Fig. 1(c), were chosen for the simulations. In order to have
complete hexagons, even widths were considered.

Wavefunction 12 15 18 a 18 b ∞
HSS -1.38781 -1.36024 -1.36108 -1.36995 ≈ -1.36

RAL35 - - - -1.38 -1.2696
ED -1.46841 -1.44958 -1.45110 -1.43926 ≈ -1.4

Table I. Energy per site for the Hexagon Singlet State (HSS), Res-
onating AKLT state (RAL) and exact diagonalization (ED) wave-
functions on kagome clusters of different sizes with periodic bound-
ary conditions.

The number of renormalized states (denoted by m) kept in
the DMRG simulations, were typically 2000, 3000 and 4000
for widths 4, 6 and 8 respectively. On cylinders with widths
4 and 6, and odd lengths (these have equal numbers of up and
down pointing triangles), a pattern of alternating strong and
weak trimers propagates from both the left and right edges.
These competing patterns superpose in the center of the finite
sample, leading to uniform bond energies; the bond energy
being defined as 〈Si ·Sj〉 for nearest neighbor sites i, j. On the
even-length cylinders, which have more down triangles than
up, the left-most row of boundary sites form dimers effectively

decoupling them from the bulk of the system. Thus, the even-
length cylinders have bulk properties similar to the odd-length
cylinders.

For width 8 cylinders, the tendency to form dimers along
the width direction is suppressed and a robust trimerization
pattern is observed throughout the bulk. For the odd lengths,
DMRG tends to break the symmetry between the up and down
pointing triangles, which we take to be evidence that the sys-
tem prefers to trimerize. This is a "finitem" effect, as an exact
calculation should yield a perfect superposition of both trimer
states.

To estimate the energy per bond in the thermodynamic
limit, we used two procedures. First, we considered the to-
tal energy E(L,W ) of the cylindrical sample and fit it to the
functional form,

E(L,W )/Nb(L,W ) = eb + a1/L+ a2/L
2 (4)

where Nb(L,W ) is the number of bonds and eb, a1, a2 are
fit parameters. In the second method, we average the bond
energies on a central feature, such as the bowtie or "star" con-
sisting of three up and three down triangles. We refer to this
estimate as the "bulk" energy. Fig. 2 shows the length de-
pendence of the energy and its extrapolation to infinite length
for different cylinder widths. Both analyses yield similar esti-
mates; for the width 4, 6 and 8 cylinders the values of the en-
ergy per bond are −0.7117(1), −0.7067(1) and −0.7058(4)
respectively. Assuming small variations for energy estimates
beyond W > 8, the energy per bond in the thermodynamic
limit is −0.705(1), which in terms of the energy per site (E0)
is −1.410(2). This is comparable to (and slightly lower than)
the coupled cluster result of E0 = −1.40312138.

Next, we verified the presence of a spin gap in the thermo-
dynamic limit, by calculating the energy difference between
the singlet and triplet states for both even and odd length cylin-
ders. Our results are shown in Fig. 2(b). The magnetization of
the first excited state is distributed over the entire sample, es-
tablishing that the excitation is a bulk one. The large variation
in the energy gap for the width 4 and the other larger cylinders
is a finite size effect; this qualitative difference is also seen in
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Figure 2. (Color online): (a) The total ground state energy per bond for cylinders of odd lengths and different widths is extrapolated to infinite
length by fitting to the functional form, Eq. (4). The bulk energy (see text) is also shown. (b) shows the spin gap for various cylinder widths
and lengths. The estimated gap in the infinite length limit is finite.

ground state energy estimates. The trends in the spin gap for
width 6 and 8 cylinders indicate that its value is in the range
0.2− 0.3.

To build further confidence in these results, we study the
bilinear-biquadratic (BLBQ) model (1) and use Jbq as a knob
to connect the Heisenberg point to the SU(3) point. Analyzing
other Hamiltonians should lead to similar conclusions. For ex-
ample, an extended Heisenberg model studied by Cai et al.39,
also has a trimerized ground state.

The bilinear-biquadratic (BLBQ) model— For insights into
the BLBQ model, we performed ED calculations on a 21
site sample with periodic boundary conditions. Multiple low-
energy excited state energies, resolved by spatial momenta,
have been plotted in Fig. 3. On tuning Jbq from 1 towards
0, we find no energy crossings in the first few states in the
low-energy manifold. In the range −0.2 < Jbq < −0.1, a
marked decrease in energy spacings (or increased crowding
of energy levels) and the appearance of a small finite size gap,
are indicative of a quantum phase transition.

Next, we look for signatures of possible phase transitions
as a function of Jbq by monitoring the wavefunction fidelity40,
defined as F ≡ 〈ψ(p)|ψref 〉, where |ψ(p)〉 is a wavefunction
dependent on parameters p and |ψref 〉 is a reference wave-
function. Fig. 4 shows fidelities of the 12 and 21 site clusters
as a function of Jbq/Jbl, by fixing the reference wavefunction
to be the ground state wavefunction of (a) the SU(3) model
(Fig. 4(a)) and (b) the Heisenberg model (Fig. 4(b)). In either
case, the fidelity decreases on going away from the chosen
reference point and with increasing lattice size; the latter is
expected because overlaps involve the multiplication of an in-
creasing number of factors less than 1. We consider an overlap
of 0.45 between the Heisenberg and SU(3)-symmetric point
wavefunctions for the 21 site lattice to be large and view the
sharp fall in fidelity in the range −0.2 < Jbq < −0.13 to
be the only sign of a phase transition. We thus infer that the
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Figure 3. (Color online): The low-energy spectrum of the BLBQ
model on the 21 site kagome lattice, resolved by lattice momenta, as
a function of Jbq , is shown. On tuning Jbq from 1 towards 0, the
low-energy features appear adiabatically connected, suggesting the
persistence of the trimerized phase to the Heisenberg point. Qualita-
tive changes in the energy spectrum seen at a negative value of Jbq ,
indicate a quantum phase transition to a ferroquadrupolar phase.

Heisenberg point corresponds to a trimerized ground state.

The inferences from ED are verified on larger samples us-
ing DMRG, by considering a variety of metrics. First, as
shown in the inset of Fig. 5, the energy as a function of Jbq
has a discontinuity in its derivative at a value Jbq ≈ −0.16.
This value coincides with the location of the minimum of the
singlet-singlet gap, obtained by taking the energy difference
of the lowest Sz = 0 states in the DMRG method (not shown
in plot). However, the most direct evidence is that of a non-
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Figure 4. (Color online): The fidelity of ground state wavefunctions
from ED of 12 and 21 site clusters, is shown as a function of Jbq for
two reference wavefunctions. The reference wavefunction is chosen
to be the ground state of (a) the SU(3) symmetric model, known
to favor a trimerized (simplex solid) phase and (b) the Heisenberg
model, whose qualitative nature remains to be established and is the
subject of this study. An abrupt change in fidelity is found to occur
in both cases in the range −0.2 < Jbq < −0.13.
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Figure 5. (Color online): The main panel shows the trimerization
order parameter for the 8×8 and 14×8 kagome lattice, as a function
of Jbq . The dashed line gives an extrapolated estimate of the Jbq

∗ at
which the trimerization vanishes. Inset: Derivative of the total energy
per bond with respect to Jbq shows an abrupt change around the same
value of Jbq

∗ ≈ −0.16.

zero trimerization order parameter, defined to be

Trimerization ≡
∣∣∣〈Si · Sj〉∆ − 〈Si · Sj〉∇∣∣∣ (5)

where 〈Si · Sj〉∆(∇) is the average spin-spin bond correla-
tor on the up (or down pointing triangle). The trimerization
is (relatively) uniform throughout the sample on the width 8
cylinders and this data is used to determine the critical Jbq∗ at
which the phase transition occurs. When Jbq is close to Jbq∗,
the trimerization is small and inhomogenous and the presence

of the open boundaries becomes important. This is why we
used only the values of trimerization for Jbq ≥ 0 and extrapo-
lated them to Jbq < 0 in Fig. 5.

Below Jbq <∼ −0.16, a ferroquadrupolar spin nematic is
present, a generic occurence in many S = 1 antiferromagnets
with negative biquadratic couplings41. This state has 〈Si〉 = 0
but still breaks the spin rotational symmetry. This is verified
by the observation that 〈S+

i S
−
i 〉 6= 〈(Szi )2〉 and that 〈(Szi )2〉

abruptly changes from 0.66(= 2/3) to ≈ 0.4 at the critical
point.

Conclusion— We have performed ED and DMRG calcula-
tions on the spin-1 kagome antiferromagnet with bilinear and
biquadratic terms. We find evidence for trimerization at the
Heisenberg point, which is not consistent with the hexagonal-
singlet state (HSS) picture19, nor with the

√
3 ×
√

3 order
predicted by 1/S methods20. We also estimated the location
of the phase transition from the trimerized state to the spin-
nematic phase to be Jbq∗ ∼ −0.16.

Recently, Li et al.35 proposed a spin liquid ground state for
the S = 1 KHAF, the resonating AKLT state (RAL), obtained
by creating a uniform superposition of all possible "AKLT-
loops". On an 18 site lattice, the RAL energy is marginally
lower than that of the HSS but in the infinite lattice limit is
significantly higher35. A plausible reason is that the RAL is
dominated by long loops, that are still relatively short on an
18 site lattice. Presumably, if the longest loops are penalized
(i.e. a loop tension is added in the wavefunction), the RAL
energy could improve significantly. Whether such a modifica-
tion preserves the spin liquid properties or alternately drives
it to a confining phase, such as the trimerized phase, is not
known. Since the trimerization strength is small, it will be
interesting to see if additional interactions at the Heisenberg
point stabilize the RAL, HSS or other exotic states.

Finally, we comment on the possible experimental conse-
quences of our finding. Since trimerization does not change
the magnetic unit cell structure of the kagome lattice, we still
expect to see the 1/3 magnetization plateau for the S = 1
KHAF, based on the Oshikawa-Yamanaka-Affleck criterion42.
However, prominent magnetization plateaus seen in the exper-
iment with m-MPYNN-BF4, which also has a slight

√
3×
√

3
distortion30, correspond to 1/2 and 3/4. This is indicative of
an enlarged magnetic unit cell with 12 atoms. Thus, we intend
to understand the effective low-energy Hamiltonian better to
resolve this issue.

Note added - — At the time of submission of this paper,
we became aware of two related works. Liu et al.43 indepen-
dently concluded that the ground state of the S = 1 KHAF is
a simplex solid, using complementary tensor network meth-
ods. Picot et al.44 provided evidence for the 1/3 plateau for
the S = 1 KHAF in a magnetic field, consistent with our in-
ferences.
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