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Abstract 

Magnetoelastic coupling, i.e., the change of crystal lattice induced by a spin order, is not only 

scientifically interesting, but also technically important. In this work, we propose a general 

microscopic model from first-principles calculations to describe the magnetoelastic coupling and 

provide a way to construct the microscopic model from density functional theory calculations. 

Based on this model, we reveal that there exists a previously unexpected contribution to the 

electric polarization induced by the spin-order in multiferroics due to the combined effects of 

magnetoelastic coupling and piezoelectric effect. Interestingly and surprisingly, we find that this 

lattice deformation contribution to the polarization is even larger than that from the pure 

electronic and ion-displacement contributions in BiFeO3. This model of magnetoelastic coupling 

can be generally applied to investigate the other magnetoelastic phenomena. 
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Magnetoelasticity refers to the phenomenon where a change of magnetic state can induce a 

change in crystal volume/shape and vice versa. The study of this phenomenon can be traced back 

to 1960s [1,2]. Magnetoelastic materials are playing an increasingly important role in 

applications ranging from actuation, sensing, and energy harvesting [3]. The large scientific 

interest in the magnetoelastic coupling is connected to its fundamental importance in many 

research areas. For example, in some negative thermal expansion (NTE) magnetic material [4-8], 

the system shows abrupt increase in crystal volume on cooling in the vicinity of the magnetic 

transition from the paramagnetic (PM) state to ordered magnetic state. In some frustrated spin 

systems such as spinel ACr2O4 (A=Mg, Zn) [9-12], the magnetoelastic coupling causes a change 

of the crystal lattice from cubic to tetragonal when they undergo an antiferromagnetic (AFM) 

phase transition. Furthermore, in the phenomenon of magnetostriction [3], the strain dependence 

of the magnetic anisotropy and/or exchange interactions can lead to a lattice change in the certain 

direction when a magnetic field is applied. First-principles density function theory (DFT) 

calculations [13-15] have been performed to understand magnetoelasticity (in particularly 

magnetostriction). While direct DFT calculations agree well the macroscopic lattice response 

associated with various magnetic configurations, a theoretical model that elucidates the 

microscopic origin will be desired. 

For dielectric materials, the response properties can be systematically treated by 

electric-magnetic enthalpy as functions of ionic displacement, strain, applied electric, and 

magnetic fields [16,17]. Here in this paper, we further develop a first-principles based model 

describing magnetoelastic coupling. In this model, the relationship between the change of crystal 

lattice and spin order is simplified to two linear equations from which the atomic displacements 

and strains induced by the spin order can be obtained simultaneously, thus quantitatively 

describing the lattice changes. This model is general so that it can be adopted to understand the 

other magnetoelastic related phenomena [including symmetric exchange, antisymmetric 
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Dzyaloshinskii-Moriya (DM) interaction and single-ion anisotropy (SIA) related cases]. 

According to our model, we reveal that there is a new contribution (i.e., lattice deformation) to 

the spin-order induced electric polarization in multiferroics: The spin order induces a lattice strain, 

which subsequently gives rise to an additional electric polarization through the piezoelectric 

effect [16,18]. By combining our model with DFT calculations, we demonstrate that the lattice 

deformation contribution is larger than the pure electronic and ionic contributions in BiFeO3. 

In general, the total energy of a localized magnetic system can be written as E( mu , jη ,

iS )=EPM( mu , jη )+Espin( mu , jη , iS ), where mu  is the atomic displacement from a reference 

structure, jη  (j ={1…6}) is the homogeneous strain in Voigt notation, and iS  refers to the spin 

vector. Here, EPM is the energy of the paramagnetic (PM) state which can be expanded as [16, 

17]: 

PM 0 m m j j mn m n jk j k mj m ju u u u

terms of thi
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The first-order coefficients Am and Aj and the second-order coefficients Bmn, Bjk and Bmj 

represent force, stress, force constant, frozen-ion elastic constant, and internal-displacement 

tensor, respectively. By choosing a reference structure that is in equilibrium in the PM state, we 

will have Am=Aj=0. It should be noted that an implied-sum notation is adopted in this work. The 

spin interaction energy Espin usually contains three parts [12] (Espin = EH + EDM + ESIA): the 

Heisenberg symmetric exchange interaction EH, antisymmetric Dzyaloshinskii-Moriya (DM) 

interaction EDM, and single-ion anisotropy (SIA) ESIA. The Heisenberg exchange interaction EH 

can be expanded as: 
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Here, 0
HE  is the zero-order term with mu 0=  and jη 0=  [12], 'ii

J is the symmetric exchange 
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are the derivatives of the exchange parameters. Similarly, we can derive the expressions for EDM 

and ESIA.  

To obtain the structural distortion and cell deformation caused by the spin order, we can 

minimize the total energy E( mu , jη , iS ) with respect to mu  and jη . Since '
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By solving the above linear equations, we get the displacements mu  and strains jη . The 

spin-order induced strain can be used to obtain the new cell vectors newa :  

new new new PM PM PM
1 2 3 1 2 3, , (I ε) , ,⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦a a a a a a , where PMa  are the cell vectors of the PM state, I is a 

3 3×  unit matrix, and ε  is the strain matrix defined by jη .  

The magnetoelastic phenomena are associated with the dependence of the crystal cell vectors 

on the spin configurations. Using our above model, one can not only quantitatively compute the 

lattice change, but also reveal the microscopic origin of the interesting phenomena in great details. 

In particular, one can tell which spin site, spin pair, and type of the spin interaction are 

responsible for the magnetoelastic coupling. This is different from previous studies [13,14] in 

which the final macroscopic lattice response was obtained by changing the overall magnetic 

configuration of the system in the DFT calculations. In principle, we can use Eq. (3) to 

understand the magnetoelastic phenomena such as spin-order related NTE, magnetic phase 



5 
 

transition induced lattice deformation, and magnetostriction. In the following of this work, we 

will show instead that the magnetoelastic coupling will give rise to a new contribution to the 

electric polarization induced by the spin-order, in which case the dimension of Eq. (3) may be 

greatly reduced. 

Previously, it was shown [19-25] that spin-order induced electric polarization contains a 

pure electronic contribution and an ion-displacement related contribution (see Fig. 1). As we 

discussed above, spin-order may induce not only ion-displacement, but also lattice deformation. 

If the system in the PM state is piezoelectric (e.g., polar), we find that the lattice deformation 

induced by spin order may give rise to an additional electric polarization. Therefore, there is a 

lattice deformation contribution (see Fig. 1) to the electric polarization due to the combined effect 

of spin-order induced stress and piezoelectricity [16,18] in a magnetic material which belongs to 

one of the piezoelectric crystal classes in the PM state. In terms of mu  and jη , the polarization 

[26] can be computed as m m j jP Z u eα α α= + η , where αmZ  and αje  are the Born effective charge 

and frozen-ion piezoelectric tensor, respectively. Here, both the ion-displacement and lattice 

deformation contributions are included in Pα . Setting '

'
'

ii
i i

i,i m

J
0

u
∂

−
∂

⋅ =∑ S S  in Eq. (3), one can 

obtain the polarization contribution due to the stress induced by spin-order. One can also evaluate 

this polarization contribution through the piezoelectric constant ( jdα ) by using j j
j

P dα α= σ∑

where jσ = '

'
'

ii
i i

i,i j

J
η

∂
−

∂
⋅∑ S S  is the total stress due to the spin order. And jdα  can be written as 

j jk kd S eα α=  in which keα  is the relaxed-ion piezoelectric tensor and jkS  is the relaxed-ion 

elastic compliance tensor. Previously, Wojdel and Íñiguez [17] investigated the linear 

magnetoelectric (ME) coupling by including the piezoelectricity and piezomagnetism in BiFeO3 

and related materials. Their model can describe the overall linear ME coupling for the spin 

ground state. In this work, our model is generalized to include the spin interaction energy changes 

under different magnetic orderings and to describe higher-order (e.g., quadratic) ME coupling.  
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Moreover, current model can also identify the exchange paths resulting in the particular 

magnetoelsatic coupling. 

We will now discuss how to obtain the parameters in Eq. (3) within the first-principles 

framework. Density functional perturbation theory can be used to compute the force constant 

(Bmn), the internal-displacement tensor (Bmj). The frozen-ion elastic constant (Bjk) can be easily 

obtained by calculating the strain-stress relation within DFT. To compute the first-order 

derivatives of the symmetric spin exchange parameter 'ii
J  with respect to jη , we propose a 

four-states mapping approach: 
j

ii 'J
η

∂
∂

= IVI II III

j j j j

EE E E1 ( )
4

∂∂ ∂ ∂+ − −
∂η ∂η ∂η ∂η

= I IV II III
j j j j

1 ( )
4

− σ + σ − σ − σ  

(see Fig. 2). Here, I-IV refer to the four spin states with different spin orientations for sites i and i’ 

(see Fig. 2 for an example), E and σ  denote the total energy and stress, respectively. We note 

that the stress can be computed without doing extra DFT calculations due to the celebrated 

Hellmann-Feynman theorem. The first-order derivatives of the symmetric spin exchange 

parameter 'ii
J  with respect to mu  can be also efficiently evaluated by using a four-states 

mapping approach [12]. 

In the following, we will apply our general model of magnetoelastic coupling to the classic 

room-temperature multiferroic BiFeO3. BiFeO3 [27-29] crystallizes in a R3c structure with a 

large polarization (~100 2C / cmμ ) [30] when the temperature is lower than the FE Curie 

temperature TC = 1000K. On cooling below TN = 650K, a G-type AFM order with a long period 

incommensurate modulation takes place. Interestingly, some experiments [31-33] discovered the 

ME coupling in BiFeO3. However, how magnetoelectric coupling actually occurs on a 

microscopic level in multiferroic BiFeO3 is not clear. We will investigate the microscopic origin 

of the ME coupling in BiFeO3 from our model. Our total energy calculations are based on the 

DFT plus the on-site repulsion (U) method [34] within the generalized gradient approximation 

[35] (DFT+U) on the basis of the projector augmented wave method [36] encoded in the Vienna 

ab initio simulation package (VASP) [37]. The plane-wave cutoff energy is set to 500 eV in the 
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DFT calculations unless noted otherwise. The on-site repulsion U and exchange parameter J are 

set to 5 and 1 eV for Fe. For the calculation of electric polarization, the Berry phase method [38] 

is used. 

Our new four-states approach for computing 'ii

j

J
η

∂
∂

 is compared with the a conventional 

finite difference method in which the exchange interactions at different strains are computed 

explicitly. To compute all 'ii

j

J
η

∂
∂

 (j = 1-6) for a given exchange interaction 'ii
J , the finite 

difference method requires 48 DFT total energy calculations, while only 4 total energy 

calculations are needed in the four-states approach. Thus, the four-states approach is 

computationally more efficient and convenient. To check the accuracy of the four-states 

approach, we take BiFeO3 as an example. A 2 2 2× ×  supercell of a rhombohedra R3c structure 

is adopted to compute NN

j

J
η

∂
∂

, where NNJ  is the nearest neighboring (NN) Fe-Fe spin exchange 

interaction in BiFeO3. The plane-wave cutoff energy is increased to 700 eV in order to obtain 

converged results for the stress. The results are presented in Table I. Our subsequent analysis 

shows that NN

3

J
η

∂
∂

 plays the most important role on the magnetoelastic coupling in BiFeO3. 

Therefore, we also use the finite difference method to evaluate NN

3

J
η

∂
∂

 in which JNN is calculated 

as a function of the strain ( 3η ) ranging from 0 to 0.006. As shown in Fig. 3(a), the plot of JNN 

versus 3η  is a straight line in the studied region, thus we can obtain NN

3

J
η

0.088∂ = −
∂

 eV that is 

very close to that ( 0.084−  eV) obtained from our four-states approach. 

Our above calculations show that NN

3

J
η

∂
∂

 is negative, i.e., a positive strain along the z-axis 

makes NNJ  smaller. We will understand the dependence of NNJ  on 3η  on the basis of the 
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superexchange theory. As shown in Fig. 3(b), when 3η  is positive, the ∠ Fe1-O-Fe2 angle ( θ ) 

will become closer to 180° and the Fe1-O and Fe2-O bond lengths will be elongated. According 

to the Goodenough-Kanamori rule, the superexchange interaction J  is proportional to 
2t

U
 

[39,40], where t and U are the effective orbital hopping and Hubbard repulsion, respectively. A 

larger angle makes the hopping stronger, while the longer bond length weakens the hopping. 

Therefore, this qualitative analysis is not able to determine how NNJ  will change. Quantitatively 

speaking, the effective hopping between the 3d orbitals of Fe1 and Fe2 can be approximately 

expressed as pd pd
1 2t t t cosσ σ= θ , where pd

it
σ  is the hopping integral between the eg orbital of the 

i-th Fe ion and the 2p orbital of the intermediate O ion. Because pd
it

σ  is proportional to 4
i

1
| |l

 

[the distance vector il  is defined in Fig. 3(b)] [41], we find 4 4
1 2

cost
| | | |

θ
l l

. Expanding i| |l  and 

cos θ  as a function of 3η , we obtain 10 20 3
5 5

10 20

t ~
| | | |

⋅ + αηl l
l l

, where i0l  is the original distance vector 

with 3η 0= , and 
z 2 z 2
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. One can easily see [42] that 0α < , 

thus t becomes smaller for a positive 3η  and NN

3

J 0
η

∂ <
∂

, in consistent with the DFT result. 

Similarly, we can demonstrate that NN

1

J 0
η

∂ <
∂

 and NN

2

J 0
η

∂ <
∂

. 

From our model, we can compute the total stress resulting from the ordering of the G-type 

AFM order by using 
NN

'

'
'

ii
AFM i i

ii j

J
η< >

σ =
∂

⋅
∂

− ∑ S S , where only the NN Fe-Fe pairs are considered. 

This stress can be compared to the direct DFT value from a DFT calculation on BiFeO3 in the 

G-AFM spin state with the equilibrium structure of the PM state (simulated by two orthogonal 
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spins in the 10-atom rhombohedra cell). Table I indicates a good agreement between the model 

and the direct DFT calculation. This also suggests that NN

j

J
η

∂
∂

 is sufficient for describing the 

magnetoelastic coupling in BiFeO3. We now turn to examine how the magnetoelastic coupling 

influences the electric polarization in BiFeO3. By solving Eq. (3), we find that the strain is η = 

(-8.26, -8.26, -35.58, 0, 0, 0) in the order of 10-4 as a result of the G-AFM ordering. Mediated by 

the coupling between polarization and strain, the lattice change will induce a polarization. As can 

be seen in Table II, our model predicts a lattice deformation contribution to the polarization of P 

= 1.32 2C / cmμ , which is even larger than the sum of the pure electronic and ion-displacement 

contributions. This is an unprecedented result in that a previously unknown contribution to 

electric polarization induced by spin order is found to be even larger than the widely known 

contributions. Table II shows that the result obtained from our model is also in agreement with 

the direct DFT calculations. Summing up all the three spin-order induced contributions with the 

same sign, the total polarization calculated for the G-type AFM order in BFO reaches ~2 µC/cm2. 

The spin-induced polarization in BFO is also comparable with that of HoMnO3 [24,43]. We find 

that the direction of the polarization caused by the spin order is opposite to the inherent electric 

polarization due to the R3c structure distortion. This is consistent with a recent experimental 

observation [31]. In that experiment [31], the ion-displacement contribution deduced from the 

displacement of the Fe ions was determined to be 0.4 2C / cmμ , which is also close to the value 

(0.56 2C / cmμ ) obtained from our model.  

Some experiments [32,33] suggested that an external magnetic field may change the electric 

polarization of BiFeO3. Qualitatively, we can understand the ME coupling in BiFeO3 from our 

model. Considering only the NN spin exchange interaction and Zeeman term, the total energy can 

be written as 
NN

NN i i ' B i
i,i ' i

E J g
< >

= ⋅ − μ ⋅∑ ∑S S S H , where Bμ , g and H are Bohr magneton, Landé 

factor and magnetic field, respectively. By minimizing the total energy, the angle θ  between the 
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two spins S1 and S2 in the 10-atom cell in a magnetic field is B

NN

5 H2arccos( )
12J

μθ =  (the effective 

NNJ = 35.76 meV in our study). As can be seen from Eq. (3), the spin-order induced polarization 

i i 'P cos∝< ⋅ >∝ θS S . It can be easily shown that 2P P(H) P(0) HΔ = − ∝ . Therefore, we obtain a 

quadratic dependence of this spin-order induced polarization on the magnetic field, i.e., the 

quadratic ME coupling (see Fig. 4). At a magnetic field of 20 T, we find that P 9Δ = x10-4

2C / cmμ , which is in agreement with the result from one experiment [32], but there is a large 

discrepancy between our result and another experimental result [33]. Note that our above analysis 

is based on a simplified spin Hamiltonian without DM interactions and single-ion anisotropy. 

Further experimental and theoretical studies are called for to resolve this discrepancy. 

In summary, we propose a microscopic model that describes magnetoelastic coupling. All 

the parameters in this model can be computed from first-principles. In particular, we propose an 

efficient four-states approach for computing the derivate of the spin interaction parameter with 

respect to the strain. On the basis of this model, we reveal that there exists a previously 

unexpected contribution to the electric polarization induced by the spin-order in multiferroics due 

to the combined effect of magnetoelastic coupling and piezoelectric effect. Interestingly, we find 

that this lattice deformation contribution to the polarization is even larger than that from the pure 

electronic and ionic contributions in BiFeO3. The spin-order induced polarization is opposite to 

the proper polarization due to the R3c distortion, in agreement with the negative ME effect 

observed experimentally [31]. Furthermore, how an external magnetic field modulates the 

electronic polarization in BiFeO3 is discussed qualitatively by using the general model. Our 

microscopic model of magnetoelastic coupling will be useful to investigate the linear and higher 

order ME effects and the origin of magnetoelastic phenomena. 
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Table I. First-order derivative of the nearest-neighbor (NN) spin exchange parameter with respect 

to the strain jη  ( NN

j

J∂
∂η

) computed by using the four-states approach. The total stress ( jσ ) 

induced by the G-type AFM order in BiFeO3 from the model and DFT calculations is presented as 

well. 

J 1 2 3 4 5 6 

NN

j

J∂
∂η

(eV) 
-0.086 -0.041 -0.084 0.022 0.075 -0.029 

jσ (kB) 

Model 

-4.769 -4.769 -6.322 0 0 0 

jσ (kB) 

DFT 

-4.420 -4.420 -5.475 0 0 0 

 

 

Table II. The different contributions to the electric polarization (in unit of 2C / cmμ ) induced by 

the G-AFM order in BiFeO3 from model and DFT calculations. Plattice, Pe and Pion refer to the 

lattice deformation, pure electronic and ion displacement contributions, respectively. 

Polarization Plattice Pe Pion 

Model 1.32 0.53 0.56 

DFT 1.22 0.40 0.54 
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Figure 1. Schematic illustration of three contributions to the electric polarization induced by a 

spin-order in multiferroics. The pure electronic contribution [19,21,22] arises from the electron 

density redistribution induced by the spin-order. For the ion-displacement part, it results from the 

ion displacements caused by the induced forces associated with a spin order [20,24]. In this work, 

we reveal a new contribution, i.e., the lattice-deformation contribution, which results from the 

spin-order induced stress (i.e., the magnetoelastic coupling). 
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Figure 2. Schematic illustration of the four spin states in the four-states approach to calculate the 

derivative of exchange parameter with respect to strain 
j

ii 'J
η

∂
∂

. In the four spin states, only the 

spins at sites i and i’ change the orientation. 
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Figure 3. (a) The NN symmetric spin exchange interaction JNN as a function of 3η . The obtained 

NN

3

J
η

∂
∂

 from the finite difference method is in good agreement with that ( NN

3

J
η

∂
∂

=-0.084 eV) from 

the four-states approach. (b) Illustrations of the changes of bond lengths ( 1| |l , 2| |l ) and angle 

( θ ) with strain ( 3η ) in a Fe1-O-Fe2 system related to JNN. Green arrows indicate the directions 

of 1l  and 2l . 
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Figure 4. Polarization (P) versus magnetic field (H) calculated from our simple theoretical model. 

PΔ  is defined as P P(H) P(0)Δ = − . Experimental results (Exp.1 [32] and Exp. 2 [33]) are also 

shown for comparison. 


