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Abstract

Molecular dynamics simulations using a first-principles-derived effective Hamiltonian are con-

ducted on lead zirconium titanate ultrathin films possessing nanoscale ferroelectric domains and

being under GHz electric field. Pulses of magnetization are predicted to occur in this system,

when sudden changes of morphology of these nano domains occur. A simple equation relating the

magnetization and product between the electrical polarization and its time derivative is found to

reproduce and explain these magnetization pulses, as well as previously observed magnetoelectric

effects in moving ferroelectric domain walls/phase boundaries in ferroelectrics and magnetoelectrics.

PACS numbers: 77.80.Fm,77.80.Dj,78.20.Bh,77.55.hj,77.55.Nv
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The effect of a magnetic field on phase boundary of ferroelectrics has been known for

around 30 years, since Flerova and Bochkov succeeded in orienting the phase boundary

separating the ferroelectric and paraelectric phases of a BaTiO3 lamella by cooling under a

magnetic field [1, 2]. Once equilibrium is reached under such cooling, the electrical polar-

ization of the ferroelectric phase was always found to lie along a direction (say, the z axis)

that is perpendicular to the applied magnetic field (that is oriented, say, along the y axis)

with these two orthogonal vectors defining the phase boundary plane. Interestingly, this

control of the phase boundary by a magnetic field was only found, when this boundary was

moving along the third, perpendicular axis (the x axis). In particular, the phase boundary

was unresponsive to the application of the magnetic field in the stationary state. Similarly,

Popov, Tikhomirova, and Flerova [3] found that the magnetic field can also influence the

orientation of the ferroelectric domain walls (FDW) in nonmagnetic gadolinium molybdate

Gd2(MoO4)3. Once again, the control of this orientation was only observed, when the FDW

were moving (via the application of rectangular pulses of the electric field [3]), and the ge-

ometry of the set-up is well defined: the plane of the FDW is spanned by the direction of

the electric dipoles and the applied magnetic field (that are perpendicular to each other)

and the FDW is moving along its normal. Interestingly, other dynamical magnetoelectric

(ME) effects have also been reported. This includes the measurement of a magnetization in

gadolinium molybdate [4], as a result of the motion of 180-degree FDW that was initiated

by the application of pulses of electric field.

Different explanations of the aforementioned phenomena have been advocated [4, 5] about

20 or 30 years ago. For instance, Orlov et al [4] modeled the FDW as a finite slab of width

λ, height d and depth l, and assumed that the motion of FDW along the axis defining the

λ width results in a local closed loop of the electric current flowing in this slab. The current

density j = ∂P/∂t was further assumed to be of constant magnitude within the slab (note

that P is the polarization field, which spatial average is the macroscopic polarization, and

which has different sign in the nearest domains separated by the FDW). Such assumptions

resulted in the prediction of a finite magnetic moment given by µ = P0vdlλ, where P0 is the

magnitude of the polarization in the domains and v is the velocity at which the domains

move, since electrodynamics indicates that a loop of electric current I with cross-section A

produces a magnetic moment of magnitude µ = I ·A. On the other hand, Flerova and Chupis

considered another model, based on the translational movement of a topological soliton (in
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the form of FDW) [5]. They proposed that the polarization profile of the FDW in gadolinium

molibdate is not symmetric with respect to the center of FDW, and, as a result, the FDW

motion is accompanied by the displacement of a polarized part of the sample, having the

size of the FDW. Such latter displacement creates, according to Lorentz transformation [6],

a magnetization M =
[
P̄× v

]
, where v is the velocity of the FDW and P̄ is the polarization

of this polarized part.

Based on these interesting results, it is legitimate to determine if the FDW, separating

nanoscale domains recently observed in utrathin films [7], can also exhibit such ME effects,

when moving, and what is the effect on the (hypothetical) magnetization of the ability

of FDW to dramatically change their morphology under applied electric field [8, 9]. Such

determination would be timely and important, once realizing that ME effects, dynamics,

nano science, and FDW are all topics of current interest [10–13]. It is also worthwhile to

know if the assumptions of the models of Refs. [4, 5] are valid in these ultrathin films or,

rather, if other models are to be developed.

The goal of this Letter is to resolve the aforementioned issues. For that, we perform first-

principles-based molecular dynamics simulations on Pb(Zr,Ti)O3 (PZT) ultra thin films

being under an ac electric field and possessing up and down nanoscale domains. Based

on the recently discovered relationship between the time derivative of the electric toroidal

moment and magnetization [14], it is indeed predicted that a magnetization should occur

in these systems. This magnetization has two different features and microscopic origins:

it can be due to the change of magnitude of electric dipoles within non-moving “up” and

“down” domains, and can also exhibit pulses when domains move via sudden change of their

morphology. A simple Equation, that directly relates the electric toroidal moment and the

product between the polarization and its time derivative, nicely explains the existence of

these magnetic pulses in our ultra thin films, as well as the previous observation of Refs.

[1–4] on thicker systems.

Here, we consider (001) PZT epitaxial thin films with a Ti composition of 60%, which

leads to a ferroelectric tetragonal ground-state in the bulk, and select a 30×4×20 supercell

that is periodic along the x and y directions but finite along the z axis. We use the Molecular

Dynamics (MD) approach implemented in previous studies (see, e.g., Ref. [15]) with the

Newtonian equations of motion solved for the degrees of freedom of the effective Hamiltonian

described in the Supplemental Material [16–23] (see [24]). It is important to realize that such
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effective Hamiltonian does not incorporate any magnetic degrees of freedom, as consistent

with the fact that none of the ions in PZT possesses local magnetic dipoles. An Evans-Hoover

thermostat [25–27] is employed in these simulations, in order to equilibrate the system at a

fixed temperature of 10 K. At first, we equilibrate the given PZT film under no electric or/and

magnetic field by using 200,000 MD time steps, each being 0.5 fs long. Then, we apply, along

the z axis, the combination of a bias and an ac electric fields E(t) = 2.5[1− sin(2πνt)]×108

V/m with ν = 2.5 GHz. Such field ensures that, in addition to 180o stripe domains (in which

dipoles are lying parallel or antiparallel to the z axis inside the “up” or “down” domains,

respectively), there is a spontaneous polarization lying along the z axis whose magnitude

can change with time but never switches in direction (it remains positive) during the entire

MD simulation. Such procedure was suggested in, e.g., Ref. [28], and prevents the heating

of the sample [29].

The results are analyzed by calculating the macroscopic electric polarization 〈P〉 and

electric toroidal moment G as a function of time t [30]:

〈P〉 = 1
V

∑
pj

G = 1
2V

∑
rj × (pj − 〈p〉)

(1)

where pj is the dipole moment of the j-th atomic site, while 〈p〉 is the dipole moment

averaged over all the sites. V is the volume of the supercell, and rj is the vector locating

the site j inside the supercell. The time derivative of the electric toroidal moment is also

computed since, according to Ref. [14], it is proportional to the dynamical change of the

magnetization:

M = M0 +
dG

dt
(2)

where M is the magnetization (in SI units) at time t, while M0 is the part of magnetization

that is not related to the change of polarization [14].

Figure 1a shows the macroscopic polarization 〈P 〉 along the z axis as a function of time.

It indicates that the polarization rather closely follows the ac applied electric field, thus,

adopting a smooth behavior within some time ranges. On the other hand, there are some

characteristic time points, at which the polarization exhibits some sudden change, which

were numerically found to correspond to rapid modification in morphology and/or domain

wall motions. Moreover, as this is shown in Fig. 1b, the toroidal moment (that is oriented

along the y axis, in the selected case, for which the “up” and “down” domains alternate
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FIG. 1: (color online) Time-dependency of the electric polarization (a), electric toroidal moment

(b), time derivative of the electric toroidal moment (c), and (minus) the product of the macroscopic

polarization and its time derivative (d) in the studied PZT film being under the ac electric field

described in the text. Solid vertical lines mark the position of the extrema of the polarization (which

coincide with those of the electric field), while dashed lines correspond to the time associated with

the pulses in the time-derivative of the electrical toroidal moment. In Panels (a) and (b), the dot

symbols represent the MD data, while the solid lines are fittings of such data [31]. These fittings

are then used to obtain the curves shown in Panels (c) and (d).

along the x axis) exhibits large time windows inside which it varies only slightly. These

small variations result in weak (but non-zero) dGy

dt
, as shown in the inset of Fig. 1c for the

time interval between 0.5 and 0.6 ns. As a result, magnetization of the order of up to 1 A/m

is expected to exist in this time interval, based on the direct relationship between M and

dG
dt

, provided by Eq. (2). In addition, very fast variations of the toroidal moment between

large (' 0.62 nC/m) and smaller (' 0.35 nC/m) values also occur around some specific time

points. As shown in Fig. 1c, such latter fast variations automatically result in pulses for
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the time derivative of the toroidal moment [31]. In other words, pulses of magnetization are

predicted to occur here, as a result of Eq. (2)! Note that this magnetization reaches values

of the order ' 7 A/m, which is much smaller than the saturated spontaneous magnetization

occurring in ferromagnetic Fe and Ni systems (that are of about 1.7×106 A/m and 0.5×106

A/m, respectively [32]). Note also that these pulses in dGy

dt
(and thus of My) can be negative

or positive, depending, of course, if the toroidal moment suddenly increases or decreases with

time. Interestingly, panels a and c in Fig. 1 show that these pulses in the time derivative

of the toroidal moment (and therefore in magnetization) do not occur at time intervals

associated with the extrema of the polarization. For instance, a negative (respectively,

positive) pulse of dGy

dt
occurs at ' 0.232 ns (respectively, 0.4 ns), while the polarization

adopts its first minimum and maximum at 0.1 and 0.3 ns, respectively.

Interestingly, we numerically found that these pulses found by our MD simulations can

be understood if one assumes the following relationship between the time-derivative of the

y component of the toroidal moment and the product between the polarization and its time

derivative:

Ġy = − γ

P0

〈Pz〉
〈
Ṗz

〉
(3)

where γ is a coefficient and where P0 is the z-component of the polarization in one of the

(“up” or “down”) domains under no electric field (note that the Supplemental Material

[24] demonstrates that Equation (3) is valid in the simple case of a FDW moving along

the +x axis, with this FDW separating an “up” domain, inside which the polarization is

along the +z direction, from a “down” domain, inside which the polarization, with the same

magnitude, is now along the −z direction).

As a matter of fact, Fig. 1d reports our simulated MD data for (minus) the product

of the macroscopic polarization and its time derivative. Comparing Fig. 1d with Fig. 1c

does show a remarkable similarity between the time dependency of that product and dG
dt

,

especially in the closest vicinity of the pulses, as consistent with Eq. (3) – implying that

this Equation can thus be used to understand some results of Figs. 1(a-d). In particular,

large pulses of Ġy require the polarization to be, simultaneously, significant in magnitude

and rapidly changed with time.

It is also important to realize that, in the hypothetical case of a FDW (of up and down

domains with polarization pointing along +z or −z, respectively) continuously moving along
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the x axis with a velocity v,
〈
Ṗz

〉
is directly proportional to v, as shown in the Supplemen-

tal Material [24] (note also that this Supplemental Material further shows that the time

derivative of the electrical toroidal moment is directly proportional to the product between

the polarization and a velocity for a more complex model). As a result, Eqs. (2) and (3)

imply that such motion should generate a magnetization lying along the y axis. This mag-

netization can naturally couple to an applied external magnetic field and, consequently, this

magnetic field can facilitate or complicate the reorientation of FDW or its motion along a

particular direction. As a result, Eqs. (2) and (3) provide a successful explanation for the

observation of Refs. [1–4], demonstrating the existence of a magnetization in, and/or effects

of applied magnetic fields on, the moving phase boundary and FDWs. Moreover, Ref. [4]

measured a magnetic moment of 10−12 Am2 in gadolinium molibdate, which corresponds to

a magnetization of 0.0125 A/m for the geometry used in Ref. [4] (that is l = 4 × 10−3 m,

d = 4× 10−4 m, and λ = 5× 10−5 m), which is about 600 times smaller than our predicted

value of 7 A/m associated with the peaks of Ġy seen in Fig. 1c. However, this value of

0.0125 A/m corresponds to a measured speed of the domain wall of 0.2 m/s [4] in gadolin-

ium molibdate. Choosing now a speed of 40 m/s for the domain wall motion (which is the

value recently measured for the nanosecond dynamics of ferroelectric domain walls in PZT

thin films in Ref. [35]) should thus make the magnetization increasing from 0.0125 A/m to

2.5 A/m – since the magnetization is directly proportional to the velocity in our model (via

the dependence of the time-derivative of the toroidal moment on velocity, see Eq. (16) of

the Supplemental Material). This latter number has thus the same order of magnitude than

our predicted value of 7 A/m, implying that our present predictions can be quantitatively

checked in thin films experiencing nanosecond dynamics (note also that the polarization of

PZT systems is larger than that of gadolinium molibdate. As a result, Eqs. (2) and (3) tell

us that the magnetization of PZT thin films should even be further enhanced with respect

to the estimated aforementioned value of 2.5 A/m).

Interestingly, another simple model detailed in the Supplemental Material implies that

electric dipoles “simply” changing in magnitude with time inside non-moving FDWs can also

create a magnetization, that is can give rise to non-zero dG
dt

(see Eq. (22) of the Supplemental

Material). In order to determine what are the precise microscopic origin(s) of dG
dt

, including

its pulses, found in our simulations and reported in Fig. 1c, we decided to depict in Fig. 2
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snapshots of the local electric dipoles in a given (x,z) plane at four different time points.

(a) (b)

(c) (d)

z

x

FIG. 2: (color online) Snapshots of the dipole patterns in a (x,z) plane at four different time

points: (a) 0.1 ns, (b) 0.3 ns, (c) 0.230 ns, and (d) 0.232 ns. The circled areas in Panels (c) and

(d) represent the area inside which the dipole pattern significantly changes within a small time

variation.

Figure 2 (a) corresponds to a time at which the macroscopic polarization and applied

electric fields are minima (namely, t = 0.1 ns). In that case, the dipolar pattern is similar to

the “nominal” (i.e., under no electric field) 180o stripe domains and thus also contains flux-

closure domains near the film surfaces [20]. The domains with up and down polarization are,

approximately, of the same width, and the FDW locates near the middle of the supercell.

As shown in Fig. 2a, the flux-closure near the surfaces and the occurrence of up and down

domains naturally lead to rotating dipoles inside the system, which therefore generates a

significant electrical toroidal moment along the y axis. Figure 2(b) corresponds to t = 0.3

ns, that is to a time at which the macroscopic polarization is the largest (as a result of

the maximum possible value of the applied electric field). One can see that, here, the “up”
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domain has become much wider than the “down” domain, resulting in the motion of the

FDW along the x axis with respect to the first case. Note also that the flux-closure domains

near the surface have shrunk, when going from Fig. 2a to Fig. 2b, which further contributes

to the significant decrease of the toroidal moment between 0.1 and 0.3 ns (see Fig. 1b).

We numerically found that the dipolar patterns of Fig. 2a and Fig. 2b do not evolve too

much for time intervals around 0.1 ns and 0.3 ns, respectively (and for the time points

derived by adding to 0.1 ns or 0.3 ns 0.4× n ns, where n is an integer number), since these

time intervals correspond to the extrema of the electric field and, thus, to vanishing time

derivatives of these fields. This explains why the time derivative of the electric toroidal

moment is relatively small in these time intervals (see Fig 1c and its inset). For these time

points, it is, in fact, the small variation of the magnitude of electric dipoles, rather than

the motion of the FDW, that is responsible for the evolution of the polarization with time

and, thus, leading to the small change in Ġy. On the other hand, comparing Figs 2c and

2d (corresponding to t = 0.230 and t = 0.232 ns, respectively) reveals that the dipolar

pattern rapidly evolves with time, for the time intervals being around those associated with

the pulses of dG
dt

. For instance, the width of the down polarization domain abruptly shrinks

from 10 to 8 lattice parameters in the middle of the down domain, between 0.230 and 0.232

ns, which, thus results in a fast increase of 〈Pz〉 – therefore explaining the negative pulse

seen in Ġy around 0.232 ns, according to Eq. (3). In other words, a sudden evolution of

the morphology of the domain structure (via the move of the FDW) is found here to be the

origin of the pulses of dG
dt

, and is, thus, also predicted to generate pulses of magnetization,

according to Eq. (2) (relating the time derivative of the electrical toroidal moment and

magnetization) [36].

Let us further indicate that we also numerically check (not shown here) how various

physical parameters can affect the results reported here. For instance, we investigated a

60 × 4 × 20 supercell, i.e. that is twice larger along the x-axis than the one studied in the

manuscript. Such elongation results in the occurrence of four (rather than two) alternating

up and down domains within this supercell, but has merely no effect on the results shown in

Fig. 1. Similarly, we also find qualitatively similar results to those shown in Fig. 1, including

the occurrence of pulses in the time derivative of the electrical toroidal moment, when: (i)

investigating a 20×4×8 supercell, which corresponds to a film’s thickness (along the z-axis)

being 2.5 times smaller than the one investigated here, with this film being the subject of
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the electric field E(t) = [3.0 − 2.0 × sin(2πνt)] × 107 V/m, where ν = 2.5 GHz; and (ii)

changing the frequency of the applied ac field from 2.5 GHz to 5.0 GHz, for our studied

30 × 4 × 20 supercell. The magnitude of the pulses of the time derivative of the electrical

toroidal moment (and thus of the pulses in magnetization) does depend on these parameters.

For instance, increasing the field frequency enhances the magnitude of these pulses, while

decreasing the thickness of the film, and, simultaneously, decreasing the strength of the

electric field (in order to avoid full poling of the sample), reduces the magnitude of these

pulses.

Let us now compare our results with previously proposed theories related to ME effect

associated with dynamics of FDW [4, 5]. First of all, one can note that Eqs. (2) and (3) do

not require the motion of a polarized medium existing between the up and down domains

to explain such results, in contrast to Ref. [5], and that such polarized medium is not found

in our present simulations of ultra thin films. Regarding the fundamental assumption of

Ref. [4] about a closed loop of the electric current density located near the FDW, we also

found it to be invalid in our studied systems. As revealed in the Supplemental Material

[24], such current density rather mostly posseses lines oriented along the +z (respectively,

−z) direction and located near the FDW, for the time intervals corresponding to a negative

(respectively, positive) pulse of the electric toroidal moment.

In summary, this computational work predicts the existence of pulses of magnetization

when PZT ultra thin films undergo sudden changes of morphology of their nanodomain

structure, as a response to an ac electric field. Presently-developed simple models can explain

not only the occurrence of such pulses, but also puzzling dynamical magnetoelectric effects

that have been reported about 30 years ago [1–3]. We also numerically determine that electric

dipoles changing in time within non-moving domains can generate a magnetization too, but

of much weaker magnitude, and develop another simple model demonstrating that fact. We

are thus confident that the present results deepen the current knowledge of nano science,

domain walls, ultrafast dynamics, ME effects and electromagnetism [37]. Our presently

discovered effect of the occurrence of magnetization pulses may lead to the design of original

devices exploiting such striking dynamical ME effect.
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[17] L. Bellaiche, A. Garćıa and D. Vanderbilt, Phys. Rev. Lett. 84, 5427 (2000); Ferroelectrics

266, 41 (2002).

[18] I. Ponomareva, I. I. Naumov, I. Kornev, H. Fu, and L. Bellaiche, Phys. Rev. B 72, 140102(R)

(2005).

[19] I. I. Naumov and H. Fu, cond-mat/0505497 (2005).

11



[20] I. Kornev, H. Fu, and L. Bellaiche, Phys. Rev. Lett. 93, 196104 (2004).

[21] I. Ponomareva and L. Bellaiche, Phys. Rev. Lett. 101, 197602 (2008).

[22] C.V. Korff Schimsing et al, Phys. Rev. Lett. 98, 257601 (2007).

[23] E. Almahmoud, Y. Navtsenya, I. Kornev, H. Fu, and L. Bellaiche, Phys. Rev. B 70, 220102(R)

(2004).

[24] The Supplemental Materials (1) provide details about our numerical method ; (2) also derive

Eq. (3) from some simple models about moving ferroelectric domains; (3) further demonstrate

that magnetization can also be created when electric dipoles “only” change their magnitudes

within non-moving domains; and (4) report the computation of the electric current density in

our case.

[25] D. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press) 2001.

[26] W. G. Hoover, A. J. C. Ladd, and B. Moran, Phys. Rev. Lett. 48, 1818 (1982).

[27] D. J. Evans, J. Chem. Phys. 78, 3297 (1983).

[28] S. Prosandeev, I. Ponomareva, and L. Bellaiche, Phys. Rev. B 78, 052103 (2008).

[29] R. J. Meredith, Engineers’ Handbook of Industrial Microwave Heating (The Institution of

Engineering and Technology, United Kindom, 1998).

[30] S. Prosandeev and L. Bellaiche, Phys. Rev. B 77, 060101R (2008).

[31] Note that the MD data shown in Figs 1a and 1b are smoothed [33] with the use of polynomials

of the second order to extract the time derivatives of the polarization and toroidal moment.

[32] J. Grangle and G. M. Goodman, Proc. Roy. Soc. Lond. A 321,477 (1971).

[33] A. Savitzky, and M.J.E. Golay, Analytical Chemistry 36 1627 (1964).

[34] D.M. Evans, A. Schilling, Ashok Kumar, D. Sanchez, N. Ortega, M. Arredondo, R.S. Katiyar,

J.M. Gregg, and J.F. Scott, Nat. Comm 4, 1534 (2013).

[35] A. Grigoriev, D.-H. Do, D. M. Kim, C.-B. Eom, B. Adams, E. M. Dufresne, and P. G. Evans,

Phys. Rev. Lett. 96, 187601 (2006).

[36] Interestingly, we performed additional analysis for which the “horizontal” parts of the flux-

closure structure seen in Fig. 2 were excluded in the computation of the toroidal moment.

The resulting toroidal moment-versus-time function was basically found to be identical to the

one shown in Fig. 1b (because the horizontal parts of the flux closure of different neighboring

domains seen in Fig. 2 cancel each other in this computation). Such fact naturally implies

that our results are general in nature (i.e. they are not only valid for flux-closed structures)

12



and also explains why the simple 1800-domain-wall model documented in the Supplementary

material can reproduce well our numerical results.

[37] Let us note that the time derivative of the polarization can generate a curl of magnetization

according to laws of electromagnetism. Interestingly, in case of a homogeneous polarization,

one can show that the macroscopic average of such magnetization will vanish. On the other

hand and as shown in Ref. [14], a non-zero macroscopic magnetization can be created by a

non-zero time-derivative of the electrical toroidal moment (which is precisely the case for the

studied domain structure under ac electric field and which is associated with inhomogeneous

polarization field).
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