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We use quasiclassical methods of superconductivity to study the superconducting proximity effect
from a topological p-wave superconductor into a disordered quasi-one-dimensional metallic wire.
We demonstrate that the corresponding Eilenberger equations with disorder reduce to a closed non-
linear equation for the superconducting component of the matrix Green’s function. Remarkably,
this equation is formally equivalent to a classical mechanical system (i.e., Newton’s equations), with
the Green function corresponding to a coordinate of a fictitious particle and the coordinate along
the wire corresponding to time. This mapping allows us to obtain exact solutions in the disordered
nanowire in terms of elliptic functions. A surprising result that comes out of this solution is that the
p-wave superconductivity proximity-induced into the disordered metal remains long-range, decaying
as slowly as the conventional s-wave superconductivity. It is also shown that impurity scattering
leads to the appearance of a zero-energy peak.

I. INTRODUCTION

Superconducting heterostructures have attracted a lot
of attention recently as possible hosts of Majorana
fermions1–9. One of the important outstanding questions
in the studies of these heterostructures is the interplay
between topological superconductivity and disorder10–13.
Here we explore this issue focusing on the leakage of p-
wave superconductivity into a disordered metal. Näıvely,
it may not appear to be a particularly meaningful ques-
tion, because unconventional superconductivity is known
to be suppressed by disorder per Anderson’s theorem14.
However, Anderson’s theorem is only relevant to an in-
trinsic superconductor and has little to do with a leakage
of superconductivity.

The linearized Usadel equations are standard tools in
studies of proximity effects15,16. Their derivation, how-
ever, assumes that an anisotropic component of the su-
perconducting condensate’s wave-function is small com-
pared to the isotropic one, which is not the case in the
systems we are interested in. Here, we focus on the
more general Eilenberger equations17,18, which allow us
to straightforwardly model systems with complicated ge-
ometries, and varying degree of disorder. (In the con-
text of topological superconductivity, similar approach
has been used in Refs. 19–22.)

In this work, we consider an infinite quasi-one-
dimensional system (nanowire), at least part of which
is superconducting. To describe the electronic correla-
tions in the system we utilize the quasiclassical Green’s
function ĝ – a matrix in Nambu and spin space18. It is
obtained from the full microscopic Green’s function, and
faithfully captures the long length scale features of the
system23. In a one-dimensional model, ĝ depends on the
Matsubara frequency (ω), the center-of-mass coordinate
of the pair (x), and the direction of the momentum at
the Fermi points (ζ ≡ px/pF is +1/ − 1 for right/left

going particles). It obeys the Eilenberger equation16–18

ζvF∂xĝ = −[ωτ̂3, ĝ] + i[∆̂, ĝ]− 1

2τimp
[〈ĝ〉, ĝ]. (1)

Here τ̂ are the Pauli matrices in Nambu space. The ef-
fects of impurities enter the equation through the last
term, in which τimp is the mean time between collisions,
and 〈...〉 denotes an average over the Fermi surface (ac-
tually, two disconnected points in the one-dimensional
case). Since we are interested in wires in which super-
conductivity is induced by a proximity with a bulk super-
conductor, we treat ∆̂ as an external parameter, which,
furthermore, we assume constant throughout the wire.
This allows us to ignore self-consistency, and simplifies
the calculations.

The outline of this paper is as follows. In Sec. II and
Sec. III, we obtain exact solutions of Eq. (1) for s-wave
and p-wave order parameters respectively. In Sec. IV we
introduce an intuitive picture for the behavior of the solu-
tion by mapping the equations to the equation of motion
of a classical particle in an external force field. In Sec. V
we study superconducting correlations induced by prox-
imity in a metallic wire. In particular, we demonstrate
that the p-wave correlations can be surprisingly long-
ranged, even in the presence of disorder. We also show
that impurity scattering produces a zero-energy peak in
the density of states (DOS). We summarize the results
of our work in Sec VI. Although self-consistency is not
relevant for the experimental setup we are considering, in
the Appendix we provide for completeness the solutions
of the fully self-consistent Eilenberger equations for both
s-wave and p-wave quasi-one-dimensional superconduc-
tors.
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II. THE S-WAVE CASE

We decompose ĝ in Nambu space using the Pauli ma-
trices τi: ĝ = −ig1τ̂1 + g2τ̂2 + g3τ̂3. The off-diagonal
scalar functions g1 and g2 describe the superconducting
particle-particle correlations, whereas the diagonal com-
ponent g3 contains the particle-hole correlations. These
functions have to satisfy the normalization condition
−g21 + g22 + g23 = 1.

In the case of an s-wave superconductor, ∆̂ is a spin-
singlet and, ignoring the spin indices, it can be written as
∆0iτ2 – this is equivalent to choosing the order parameter
to be purely real. We ignore self consistency and assume
that ∆ is constant in space. The function g2 is in the
same channel as ∆̂, and thus encodes the s-wave pairing
correlations. The g1 function has more interesting origin
– it describes the p-wave, odd-frequency superconduct-
ing correlations, induced by boundaries or other inho-
mogeneities, and disappearing in bulk uniform supercon-
ductors 24–27. The component g1 is odd in momentum,
therefore its Fermi surface average vanishes identically
〈g1〉 = 0. The components g2 and g3 are even in mo-
mentum, therefore 〈g2〉 = g2 and 〈g3〉 = g3 are satisfied.
With these considerations, Eq. 1 can be now written as
a set of three coupled first order differential equations for
the scalar functions gi:

ζvF∂xg1 = −2ωg2 + 2∆g3, (2a)

ζvF∂xg2 = −2ωg1 −
1

τimp
g1g3, (2b)

ζvF∂xg3 = 2∆g1 +
1

τimp
g1g2. (2c)

To be integrable this system of equations has to have
two constants of integration. The norm of ĝ, which is
−g21 + g22 + g3 = 1 is one of them. We have identified
another constant Cs, given by

Cs = g21/(2τimp) + 2∆g2 + 2ωg3, (3)

and obeying ∂xCs = 0. Note that the value of Cs can be
fixed using the appropriate boundary conditions. Using
it we can reduce the system given by Eq. (2) to a single
second order differential equation for g1:

v2F∂
2
xg1 =

(
4ω2 + 4∆2 +

Cs
τimp

)
g1 −

1

2τimp
g31 . (4)

Let us note several interesting limits for this equation.
The τimp → ∞ is the clean superconductor limit, which
was considered in Refs. 24 and 25. The τimp → 0 is the
strong disorder limit, in which Eq. (4) leads to results
equivalent to those obtained by the Usadel equations16.
Finally, ∆ → 0 is the normal metal limit where non
trivial (proximity) solutions follow from superconducting
boundary conditions.

The bulk superconducting energy ∆0 is a convenient
energy scale for the system. Even in a normal metal,

where ∆ = 0, non-trivial solutions can appear because of
proximity with a superconductor. In this case we can still
use ∆0, the bulk gap parameter value in the neighboring
superconductor as a convenient energy scale. To stream-
line the notation we denote the coefficient from Eq. (4) by
αs = ω2 + ∆2 +Cs/(4τimp), and normalize Cs and αs by

the superconducting energy ∆0, to get C̃s = Cs/∆0 and
α̃s = αs/∆

2
0. We also introduce dimensionless coordinate

x̃ = x/ξ0 (where ξ0 ≡ vF /∆0 is the superconducting
coherence length), and dimensionless disorder strength
β = 1/(2∆0τimp). With these substitutions we can write
Eq. (4) as

∂2x̃g1 = 4α̃sg1 − 2β2g31 . (5)

We can solve Eq. (5) without explicit reference to
the other components of ĝ (they do appear through the
boundary conditions, of course). The solution is implic-
itly given as an integral:∫ g1(x̃2)

g1(x̃1)

dg1

±
[
4α̃sg21 − β2g41 + 2Ẽs

]1/2 = ζx̃2 − ζx̃1. (6)

Here, Ẽs is a constant of integration (in itself a function
of Cs), about which we will have more to say in Sec. IV.
Note that the Fermi index ζ = ±1 appears on the right
side of Eq. (6), therefore the function g1 is manifestly
odd in momentum. We determine the plus/minus sign
in front of the integrand by demanding consistency with
the boundary conditions and the integration path so that
the signs of both sides in Eq. (6) match. We will present
an intuitive way to understand this solution in Sec. IV
and show that only monotonic solutions are physically
acceptable. For a solution that starts from x̃ = 0, it is
convenient to recast the integral in Eq. (6) in terms of
the inverse elliptic function sn−1, which leads to

sn−1
(
g1(x̃′)

(ρ+s )1/2

∣∣∣∣ρ+sρ−s
) ∣∣∣∣x̃

0

= ±ζβx̃[−ρ−s ]1/2, (7a)

ρ±s =
1

β2

(
2αs ±

[
4α2

s + 2Ẽsβ
2
]1/2)

. (7b)

where x̃′ is a dummy variable.
Once we have g1(x), we can straightforwardly obtain

the other components by using the constant of integra-
tion Cs and the system in Eq. (2), to get

g2(x) =
∆̃
(
C̃s − βg21(x)

)
− ω̃ζ∂x̃g1(x)

2
(
ω̃2 + ∆̃2

) , (8a)

g3(x) =
ω̃
(
C̃s − βg21(x)

)
+ ζ∆̃∂x̃g1(x)

2
(
ω̃2 + ∆̃2

) . (8b)

III. THE P -WAVE CASE

In the case of a p-wave wire we consider spinless
fermions. As in the previous section, we decompose ĝ
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using the Pauli matrices τ̂i. The order parameter can be
written as ζ∆0iτ2, and we again assume that ∆ is a con-
stant in space. The difference from the s-wave case arises
from the fact that now g2 is p-wave, and g1 contains the
secondary s-wave (odd-frequency) correlations27–29.

The components of ĝ again obey three coupled differ-
ential equations, which differ from the s-wave case, due
to the Fermi surface averaging in the last term of Eq.
(1). In the p-wave case the order parameter has a p-wave
symmetry, therefore we get 〈g1〉 = g1, 〈g2〉 = 0. Note
that 〈g3〉 = g3 applies (particle-hole correlations are s-
wave-like). With these we have

ζvF∂xg1 = −2ωg2 + 2ζ∆g3 −
1

τimp
g2g3, (9a)

ζvF∂xg2 = −2ωg1, (9b)

ζvF∂xg3 = 2ζ∆g1 −
1

τimp
g1g2. (9c)

In the clean case, these equations are linear and easily
solved21,24,25. Impurities introduce nonlinear coupling,
proportional to 1/τimp. Nevertheless, as we demonstrate,
these equations can be treated analytically. The next
several steps closely follow the discussion in the preceding
section. We have again identified a constant Cp obeying
∂xCp = 0. It is given by

Cp = −g22/(2τimp) + 2ζ∆g2 + 2ωg3. (10)

Using it we can derive from the system in Eqs. (9) a single
second-order equation for g2 :

v2F∂
2
xg2 = −2ζ∆Cp + 4αpg2 −

3ζ∆

τimp
g22 +

g32
2τ2imp

, (11)

where for convenience we have introduced αp = ω2+∆2+
Cp/(4τimp). Notice the difference with Eq. (4), which is
for g1.

Again, we use the energy scale ∆0 (see Sec. II for
more explanation) to introduce normalized coordinate
x̃ = x/ξ0 (where ξ0 ≡ vF /∆0), dimensionless disorder
strength β = 1/(2∆0τimp), and normalize Cp and αp as

C̃p = Cp/∆0 and α̃p = αp/∆
2
0. With these substitutions

Eq. (11) becomes

∂2x̃g2 = −2ζ∆̃C̃p + 4α̃pg2 − 6ζβ∆̃g22 + 2β2g32 . (12)

Now we integrate the equation Eq. (12), which can
be done without any explicit reference to the other two
components:∫ g2(x̃2)

g2(x̃1)

dg2[
−4ζ∆̃C̃pg2 + 4α̃pg22 − 4ζ∆̃g32 + β2g42 + 2Ẽp

]1/2
= ±ζ(x̃2 − x̃1) (13)

The Fermi momentum appears on the right hand side
of equation Eq. (13) and g2 is odd in momentum, as it

should. We determine the plus/minus sign of the integral
in Eq. (13) in order to be consistent with the boundary
conditions and the integration path.

In this paper, we are interested in the behavior of the
solution in a disordered normal metal next to a supercon-
ductor, so we consider the special case ∆ = 0, and recast
the integral in Eq. (13) in terms of the inverse elliptic
function sn−1 to get Eq. (14):

sn−1
(
g2(x̃′)

(ρ+p )1/2

∣∣∣∣ρ+pρ−p
) ∣∣∣∣x̃

0

= ±ζβx̃
ξ0

[ρ−p ]1/2, (14a)

ρ±p =
1

β2

(
−2αp ±

[
4α2

p − 2Ẽpβ
2
]1/2)

. (14b)

Once we have g2(x), we can obtain g1(x) and g3(x) by
using the constant of integration Cp and the system in
Eq. (9), to get

g1(x) =
−ζ∂x̃g2(x)

2ω̃
, (15a)

g3(x) =
C̃p + βg2(x)2 − 2ζ∆̃g2(x)

2ω̃
. (15b)

IV. CLASSICAL PARTICLE ANALOGY

There is a surprising but intuitive way to understand
the results from the previous two sections. We can think
of Eq. 6 as an equation of motion of a classical particle
with coordinate g1, in an external force field. In this in-
terpretation the normalized position ζx̃ takes the role of
the dynamical time of this classical particle. The Hamil-
tonian of the classical particle is given by the following
equation:

Hs[g1] =
1

2
(∂x̃g1)2 − 2α̃sg

2
1 +

β2

2
g41 . (16)

This Hamiltonian describes a particle in a double well
potential Vs[g1] = −2α̃sg

2
1 + β2g41/2, as shown in Fig. 1.

We denote the conserved energy of this Hamiltonian as
Ẽs. We can furnish the solution to the “equation of mo-
tion” by inverting the integral in equation Eq.(6) that
sums up to the elapsed time ζx̃2 − ζx̃1 between initial
and final coordinates g1(x̃1) and g2(x̃2), respectively.

The double well potential Vs[g1], allows non-monotonic
solutions. However, the classical turning points of this
potential scale as ±(ωτimp) at high frequency, and for
both ω → ∞ or τimp → ∞ the non-monotonic motion
has unbounded amplitude, hence these solutions are not
physical. Therefore we will only consider the monotonic
solutions. If we denote the poles of the integrand as ρ±s
then we can conveniently write the integral in Eq. (6)
with monotonic integration path that starts from the
point g1(x̃ = 0), in terms of the inverse Jacobi elliptic
function sn−1 as in equation Eq. (7).
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FIG. 1. The potential landscape of a classical particle with
motion describing the Green’s function, for a normal metallic
segment, in contact with a superconductor. Depending on the
superconductor (s or p-wave) potential is either Vs or Vp. In
the clean limit both converge to V clean.

In a similar manner, we can interpret Eq. (12) as the
equation of motion of a classical particle with coordinate
g2, moving in an external potential. The Hamiltonian of
this classical particle is given in Eq. (17)

Hp[g2] =
1

2
(∂x̃g2)2 + 2ζ∆̃C̃pg2 + 2α̃pg

2
2 − 2ζ∆̃g32 +

β2

2
g42 .

(17)

The Hamiltonian given by equation Eq. (17) de-
scribes the particle in a double well potential Vp[g2] =

2ζ∆̃C̃pg2 + 2α̃pg
2
2−2ζ∆̃g32 +β2g42/2. We denote the con-

served energy of this Hamiltonian as Ẽp. We can again
find the solution to the “equation of motion” by invert-
ing the integral in equation Eq.(6) that sums up to the
elapsed time ζx̃2 − ζx̃1 between initial and final coordi-
nates g2(x̃1) and g2(x̃2), respectively.

In the special case of interest, where we are solving
the equations in a disordered metal, ∆ = 0, therefore the
potential Vp[g2], shown in Fig. 1, permits only monotonic
solutions (given in Eq. (14)).

V. P -WAVE WIRE WITH NORMAL SEGMENT

We now proceed to study the leakage of superconduc-
tivity in a metallic wire. We consider an infinite wire
extending along the x-axis with two segments that meet
at x = 0. The infinite segment on the left (x < 0) is
made of clean p-wave superconductor with order param-
eter ζ∆0. The segment on the right (x > 0) is made of a
diffusive normal metal (the order parameter is zero)30.

We want a solution that for x → −∞ reproduces the
mean field result for a uniform clean p-wave superconduc-
tor. Introducing the parameter B and the dimensionless
variables Ω̃ = Ω/∆0, ω̃ = ω/∆0, we can write such a

solution 21,31,34:

g1(x) = (1/ω̃)[1− Ω̃B] exp(2Ω̃x/ξ0), (18a)

g2(x) = ζ(1/Ω̃)
(

1− [1− Ω̃B] exp(2Ω̃x/ξ0)
)
, (18b)

g3(x) =
{

[1− Ω̃B]/(Ω̃ω̃)
}

exp(2Ω̃x/ξ0) + ω̃/Ω̃. (18c)

B has to be determined from the boundary conditions
at the junction (x = 0). For simplicity, we consider the
case of perfectly transparent boundary, which guarantees
the continuity of the Green’s functions at the junction 32.
(Note that Eqs. (18) were derived under the assumption
that the order parameter is constant in the clean p-wave
superconductor. For the purpose of comparison, we de-
scribe the self-consistent solutions for a clean, intrinsic,
p-wave superconductor in the appendix.)

Now we consider the diffuse normal segment with in-
finite length. Then, for x → ∞ we have g1 → 0, g2 → 0
and g3 → sgn(ω), and using the constant of integration

C̃p(x = 0) = C̃p(x → ∞) = 2|ω̃| we get a quadratic
equation, with one of the two solutions given as:

B =
1

β

[
−1 +

√
1 + 2β(Ω̃− ω̃)

]
. (19)

and we discard the other solution because it leads to a
non-monotonic solution. We can understand intuitively
the behavior of g2 by invoking the classical analogy. The
particle in potential Vp starts at “position” g2(0) = ζB,

with velocity ∂x̃g2(0) = −2ω̃ζg1(0) = −2ζ(1− Ω̃B), and
moves towards its unstable equilibrium point g1(+∞) =
0, gradually slowing down until ∂x̃g2(+∞) = 0, from

which we deduce Ẽp = 0. Indeed, it takes infinite amount
of time for the particle to reach the point g2 = 0, a fact
we see from the diverging integral in Eq. (13) for Ẽp = 0,
as g2 → 0.

For Ẽp = 0 the elliptic integral leads to inverse hyper-
bolic functions, and defining the dimensionless constant
κ = [1 + β2B2/(4α̃p)]

1/2, we can write the solution for
g2:

g2(x) =
ζB

cosh(x/ξ′) + κ sinh(x/ξ′)
. (20)

Here ξ′ = ξ0/(2α̃
1/2
p ) gives the effective decay length of

the solution (at T = 0). In physical units it is

ξ′ =
vF√

4ω2 + 2|ω/τimp|
. (21)

In the dirty limit we have ξ′ =
√
D/|ω|, where D is

the diffusion coefficient. Finally, in the clean limit g2
converges to ζB exp(−2|ω̃|x/ξ0), as expected 21.

The other two components of the Green’s function can
be derived from g2 using C̃p and the Eilenberger equa-
tions: g1 = −ζξ0∂xg2/(2ω̃) and g3 = sgn(ω̃) + βg22/(2ω̃).
As expected, impurities suppress g2 relative to g1. How-
ever, they both decay in the normal segment over the
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same length scale, given by Eq. (21). This decay is long-
range, and furthermore, with exactly the same length
scale obtained for the case of s-wave order parameter24,25.
Thus, the näıve expectation of strong suppression of the
p-wave correlations is misleading in this case. This is one
of the main points of our paper33, and it is also supported
by the fact that the same decay length scale appears also
in the case of an s-wave superconductor with magnetic
disorder26, which is known to be analogous in some ways
to a p-wave superconductor with potential disorder.

FIG. 2. Contour plot of the DOS of an infinite wire. There
is moderate disorder (β = 1) in the normal segment (x > 0).
The solid yellow marks the regions that are beyond the plot
range (where N/N0 > 3.5). Notice the zero-energy peak in
the normal segment.

We can now obtain the DOS of the system from
Re[g3(ω → −iε + δ)]21. On Fig. 2 we show it for a
system with moderate disorder. Several things are ap-
parent from this plot. First, for low energies there is a
significant decrease in the DOS of the normal segment,
caused by the proximity effect; however, it is not a real
gap, since the DOS stays finite. This decrease is entirely
due to the impurities, which “trap” the superconducting
correlations close to the boundary (in the clean case the
DOS is constant for x > 0 21). The impurity-induced
term in g3 also has a divergence in the limit of small
frequencies (g3 ∼ 1/ω), which leads to an infinite peak
in the DOS (see Fig. 3). This zero-energy peak has the
same origin as the Majorana edge state (namely, the sign
change in the order parameter31,34,35). From Eq. (20),
we can see that the weight of the zero-energy peak has
a power-law decay ∼ (1 + βBx/ξ0)−2 into the metalic
segment.

As a side note, in the case of an s-wave supercon-
ductor, the solution of Eq. (4) is g1 = ζA[cosh(x/ξ′) +
κs sinh(x/ξ′)]−1, with A and κs that can be derived by
matching the solutions at the junction. However, unlike
the p-wave case, the g1 component at the boundary is
proportional to ω̃. This dependence on ω̃ changes the
behavior of the DOS. From g3 = sgn(ω̃) − β/(2ω̃)g21 , we

FIG. 3. DOS at the junction of infinite normal and supercon-
ducting segments. Three cases for the disorder in the normal
segment are plotted: weak (β = 0.1, blue), moderate (β = 1,
purple), and strong (β = 10, red). Notice the suppression of
DOS with the increase of disorder strength.

can see that the low frequency limit is finite, and there
is no zero energy peak in the s-wave case36.

If the normal segment has finite length L, we im-
pose the condition g2(L) = 0 (the p-wave component
is suppressed by boundary reflection). Then the so-
lution follows immediately from Eq. 14 as g2(x) =
ζ(ρ+p )1/2sn[β(ρ−p )1/2(x − L)/ξ0], with elliptic parameter

m = ρ+p /ρ
−
p . However, this expression has limited value,

since BL, which should be obtained from matching the
two solutions for g2 at x = 0, enters the expression
through the parameters ρ±p , and is difficult to find. For-
tunately, an approximate analytic form for BL can be ob-
tained. Numerical investigation suggests that BL can be
approximated by B[1 − exp(−2L/λB)], with λB = Bξ0
(it controls how quickly BL approaches to the infinite
wire limit). Once we have BL, we can write g2 in a form
that manifestly converges to that of the L = ∞ case37.
To save space, we shorten the common argument of ellip-
tic functions, β|ρ−p |1/2x/ξ0 as (.). The common elliptic

parameter of the elliptic functions is (ρ−p − ρ+p )/ρ−p , and
it lies in the interval [0, 1]. With these definition we get:

g2(x) = ζ
BLdn(.)− sn(.)cn(.)

√
|ρ+p |+B2

L

√
1 +B2

L/|ρ
−
p |

cn2(.)− (B2
L/|ρ

−
p |)sn2(.)

.

(22)
We can again obtain the two other components from g2
by using: g1 = −ζξ0∂xg2/(2ω̃) and g3 = (α̃p−ω̃2)/(βω̃)+
βg22/(2ω̃). Figure 4 shows the components g1, g2, g3 of the
quasiclassical matrix Green’s function ĝ, for varying dis-
order strengths, over a semi infinite wire with disordered
section. As L → ∞, the elliptic functions are replaced
by their hyperbolic counterparts, and we recover Eq. 20.
This convergence is exponential, so the wire is effectively
infinite when L/(Bξ0)� 1. Conversely, if L/(Bξ0)� 1,
g2(x) decays linearly in the normal metal. Again, it is
the impurity-induced contribution to g3 that is of most
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FIG. 4. Components of ĝ,(g1: blue, g2: purple, g3: red)
for a wire with infinite p-wave section and finite disordered
section of length L = 5ξ0. Top panel: weak disorder(β =
1/(2τimp∆0) = 0.1). Middle panel: moderate disorder (β =
1). And bottom panel: strong disorder (β = 10). The Mat-
subara frequency is set to ω = ∆0/2.

interest. After analytic continuation we can write the
zero-energy limit as

g3(x) =
1

π
δ(ε)M(x). (23)

Here,M(x) describes the x-dependent weight of the zero
energy mode, and can be extracted from Eq. (22):

M(x) =
αp
β

+
β

2

BL −
√

αp

2β2

(
1 + β2B2

2αp

)
sin(.) cos(.)

cos2(.)− β2B2

2αp
sin2(.)

2

.

(24)
It is monotonically decreasing function, and its values at
the ends of the wire are M(0) = 1 − BL and M(L) =
M(0)−βB2

L/2 respectively. Figure 5 showsM(x) in the
normal section with length L = 5ξ0, for various disorder
strengths. As can be seen, it becomes peaked closer to
x = 0 as the disorder in the normal section increases. On
the other hand, for weak disorder, [M(0)−M(L)]/(L/ξ0)
is small, so the zero-energy peak is delocalized over the
entire normal segment.

VI. CONCLUSION

We presented a quasiclassical description of a quasi-
one-dimensional superconductor. The appropriate Eilen-
berger equations of the system were solved exactly. Sur-
prisingly, we discovered that this problem can be mapped
to a one-dimensional classical particle moving in an ex-
ternal potential. In view of the recent interest in super-
conducting heterostructures, we studied the proximity ef-
fects in a normal segment, attached to a clean p-wave
wire. We discovered that despite the presence of impuri-
ties, the proximity-induced superconducting correlations

FIG. 5. The weight of the zero energy mode M(x) in a normal
section with length L = 5ξ0 for three disorder strengths (blue:
β = 0.1, purple: β = 1, red: β = 10).

are long-range. We also found that impurity scattering
leads to the appearance of a delocalized zero-energy peak.
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Appendix: Self-consistent solutions of the
Eilenberger Equations in a clean quasi 1-D

superconductor

The Green’s function solutions we presented in
Eq. (18) are derived under the assumption that the order
parameter is constant and equal to ζ∆0 in the clean seg-
ment of the wire. Indeed, a more accurate model should
take into account the suppression of the order parameter
near the junction with the dirty normal metal. However,
the precise way to treat a proximity p-wave superconduc-
tor depends on the experimental details of the system and
is beyond the scope of this work. Nevertheless, here, we
present the self-consistent exact solution to the quasiclas-
sical Green’s function in a clean superconductor for both
intrinsic s-wave and intrinsic p-wave cases. We also cal-
culate how to match these solutions at the junction with
a dirty metal for a comparison. We note that the self
consistent treatment does not alter the form of the solu-
tion in Eq. (20) or the decay length scale Eq. (21). The
only effect is the modification of the matching parameter
in Eq. (19).

The calculations presented here are special cases of an
approach developed to explain phase slips in clean super-
conducting wires (see Ref. 38 for more details).
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1. Solution for the p-wave case

We neglect the τ−1imp terms in Eq. (9) to obtain equa-
tions for clean p-wave superconductor. We assume ∆
is a function of x. We normalize the equations by in-
troducing bulk value of the order parameter (far from
the junction) ∆0 as an energy scale. Then ξ0 = vF /∆0

is the length scale and the normalized coordinate be-
comes x̃ = x/ξ0. Similarly, the normalized Matsubara
frequency and the normalized order parameter read as
ω̃ = ω/∆0 and ∆̃(x̃) = ∆(x/ξ0)/∆0 respectively. We

also define Ω =
√
ω2 + ∆2

0 and its normalized version

Ω̃ = Ω/∆0.
The normalized equations read as:

ζ∂x̃g1 = −2ω̃g2 + 2ζ∆̃g3, (A.1a)

ζ∂x̃g2 = −2ω̃g1, (A.1b)

ζ∂x̃g3 = 2ζ∆̃g1. (A.1c)

These equations are supplemented by the self consis-
tency condition

∆

λ
= πT

∑
ωn

g2(ωn, x) (A.2)

The self consistent homogeneous solutions to these
equations are known as:

g
(0)
1 = 0, g

(0)
2 = ζ/Ω̃n, g

(0)
3 = ω̃n/Ω̃n (A.3)

Here, the subscript n counts the discrete Matsubara
frequencies of the system. To obtain the self-consistent
solutions, we observe that the following quantity is zero

ζ∆̃∂x̃g2 + ω̃∂x̃g3 = 0 (A.4)

Let us make the following ansatz:

g2(x̃) = ζ∆̃(x̃)/Ω̃ (A.5)

Now, we can integrate equation Eq. A.4 as

S = ∆̃2 + 2ω̃Ω̃g3 (A.6)

We calculate the value of S using the values of the
Green’s function at the far end of the wire, since the so-
lution converge to the equilibrium Green’s function given
in Eq. (A.3). This yields S = 1 + 2ω̃2.

Now, we obtain a closed equation in ∆̃ by differenti-
ating Eq. A.1b with respect to normalized position and
replacing g3 = (S − ∆̃2)/(2ω̃Ω̃). This yields:

∂2x̃∆̃ + 2∆̃− 2∆̃3 = 0 (A.7)

This differential equation can be interpreted as the
equation of motion for a classical particle in a Ginzburg-
Landau type potential given as ∆̃2− ∆̃4/2. The solution
that approaches the equilibrium value at minus infinity
is easily obtained up to an unknown shift x̃0:

∆̃ = − tanh(x̃− x̃0) (A.8)

We determine the solutions for the components of the
Green’s up to a shift x̃0 in the position argument as:

g1(x̃) =
1

2ω̃Ω̃

1

cosh(x̃− x̃0)2
, (A.9a)

g2(x̃) =
−ζ
Ω̃

tanh(x̃− x̃0), (A.9b)

g3(x̃) =
1

2ω̃Ω̃

1

cosh(x̃− x̃0)2
+
ω̃

Ω̃
(A.9c)

We determine the unknown parameter x̃0 by enforcing
the other boundary condition. In this problem we will
parametrize this unknown in terms of the value of ζg2
at the junction point Bsc = ζg2(0). Therefore we write

Ω̃Bsc = tanh(x̃0).

Here we write the values of the Green’s function com-
ponents at the junction point in terms of Bsc.

g1(0) =
1

2ω̃Ω̃

[
1− (Ω̃Bsc)

2
]
, (A.10a)

g2(0) = ζBsc, (A.10b)

g3(0) =
1

2ω̃Ω̃

[
1− (Ω̃Bsc)

2
]

+
ω̃

Ω̃
(A.10c)

2. Matching the solutions at x = 0

To determine Bsc, the self-consistent value of B in
Eq. (20), we evaluate the constant in Eq. (10) at differ-
ent points as Cp(0) = Cp(+∞) = 2|ω̃| by using (A.10c),
which yields a quadratic equation with solution:

Bsc =
Ω̃− |ω̃|√
Ω̃(Ω̃ + β)

(A.11)

The negative root of the quadratic does not satisfy the
condition g2∂x̃g2 < 0 that the monotonic function g2,
approaching zero at infinity, has to satisfy. Comparing
with Eq. (19), we see that the self-consistent solution to

the g2 is suppressed by a factor of ∼ 1/Ω̃.
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3. Solution for the s-wave case

It turns out that all the arguments for the p-wave case
apply here, except for that , the p-wave component is g1
rather than g2. Therefore the self consistent solution to
the Green’s function in an s-wave clean superconductor
is:

g1(x̃) =
ζ

2ω̃Ω̃

1

cosh(x̃− x̃0)2
, (A.12a)

g2(x̃) =
−1

Ω̃
tanh(x̃− x̃0), (A.12b)

g3(x̃) =
1

2ω̃Ω̃

1

cosh(x̃− x̃0)2
+
ω̃

Ω̃
(A.12c)
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