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In a single-component Ginzburg-Landau model which possesses thermodynamically stable vortex
excitations, the zero-field superconducting phase transition is second order even when fluctuations
are included. Beyond the mean-field approximation the transition is described in terms of prolifer-
ation of vortex loops. Here we determine the order of the superconducting transition in an effective
3D vortex-loop model for the recently proposed multi-band type-1.5 superconductors. The vortex
interaction is non-monotonic, i.e., exponentially screened and attractive at large separations, and
short-range repulsive. We show that the details of the vortex interaction, despite its short-range
nature, can lead to very different properties of the superconducting transition than found in type-1
and type-2 systems. Namely, the type-1.5 regime with non-monotonic intervortex interaction can
have a first-order vortex-driven phase transition not found in the single-band case.

PACS numbers: 64.60.A-, 74.25.-q, 64.60.De

I. INTRODUCTION

The order of the zero-field superconducting transi-
tion has been studied in many works in the usual
single-component type-1 and type-2 superconductors.
Halperin, Lubensky and Ma established that in extreme
type-1 superconductors the gauge field fluctuations ren-
der the superconducting phase transition first order.1,2 In
the opposite limit of extreme type-2 systems, Dasgupta
and Halperin3 demonstrated that the superconducting
transition is continuous and in the universality class of
the inverted-3DXY model. The different nature of the
superconducting phase transition in this limit is revealed
by a duality mapping,3–5 which demonstrates that the
phase transition is driven by proliferation of vortex loop
fluctuations.

While the extreme type-1 and type-2 limiting cases
are well investigated, the value of Ginzburg-Landau pa-
rameter κ = λ/ξ at which the phase transition changes
from second to first order is much harder to establish.
The attempted analytical approaches6 are based on ap-
proximations that are unfortunately not controllable, in
contrast to the well controllable duality mapping in the
London limit.3–5 The most reliable information to date
comes from numerical simulations. The largest Monte
Carlo simulations performed so far7,8 claim that the tri-
critical κtri = (0.76± 0.04) /

√
2 is slightly smaller than

the critical κc = 1/
√

2, which separates the type-1 regime
with thermodynamically unstable vortices and the type-2
regime with thermodynamically stable vortices. In these
works it is claimed that even in the weakly type-1 regime
where the vortex interaction is purely attractive and vor-
tices are not thermodynamically stable, the phase tran-
sition can be continuous.9

Recently it has been proposed that in multicomponent
superconductors there is a new regime that falls outside
the type-1/type-2 classification. Such materials are de-
scribed by theories with multiple superconducting com-

ponents, e.g., by Ginzburg-Landau theory of the form

F =
∑
a=1,2

1

2
|(i∇−eA)ψa|2 +V (|ψa|, θ1−θ2)+

(∇×A)2

2

(1)
where ψa = |ψa|eiθa are superconducting components, V
is a collection of potential terms, and A is the vector
potential. Such systems have multiple coherence lengths
ξa. For detailed discussion of the definitions of coher-
ence lengths in the presence of inter-component coupling,
see Ref. 10. In type-1.5 regimes some of the coherence
lengths are larger and some are smaller than the mag-
netic field penetration length λ.10–12 The different coher-
ence lengths can originate from the existence of different
superconducting gaps in different bands,13 or supercon-
ducting states breaking multiple symmetries.14,15

In what follows we focus on the two-band case. It has
been shown that thermodynamically stable double-core
vortices exist in the regime where ξ1 <

√
2λ < ξ2. In 2D

such vortices asymptotically have an interaction of the
form10–12

V (r) ∼ m2K0 (r/λ)− q21K0 (r/ξ1)− q22K0 (r/ξ2) (2)

where m, q1, q2 are system dependent coefficients, and K0

is a modified Bessel function. The first term in Eq. (2)
with range λ originating from the magnetic and current-
current interaction is repulsive for two vortices with like
vorticity and attractive otherwise. The second and third
terms are attractive with range ξL = max {ξ1, ξ2}, and
originate from core-core interaction for vortices with two
co-centered overlapping cores in the two superconduct-
ing components. Consequently in type-1.5 regime with
ξL > λ the interaction is short-range repulsive due to the
first term, while at the longer range it is exponentially
screened and attractive due to the core-core attraction.
We will refer to the core-core attraction as intermediate-
range attractive to emphasize that all interactions here
are exponentially screened. In contrast to the type-1
regime, type-1.5 systems have thermodynamically sta-
ble vortex excitations, while in contrast to the type-2
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regime the intermediate-range intervortex forces are at-
tractive. Therefore the nature of the superconducting
phase transition in the type-1.5 systems cannot be de-
duced from known cases of single-component supercon-
ductors. Currently the problems of type-1.5 supercon-
ductivity is a subject of intense experimental research on
materials where vortex clusters were observed.16–21

Similarly to the single-component case, in two-band
systems it is difficult to advance analytically in a con-
trollable way away from extremely type-2 regimes, in
particular using duality arguments. Nonetheless one can
identify a limit in the type-1.5 regime where certain sim-
plifying assumptions can be made. That is, consider
a two-band superconductor with relatively strong inter-
band coupling made of a strongly type-2 component and
a type-1 component with a much lower ground state den-
sity. This condition implies that vortex excitations are
expected to drive the phase transition. Yet in contrast to
type-2 superconductors, the vortices will feature a small
attractive tail in the interaction. In a regime with rela-
tively strong interband coupling, vortices can be approx-
imated as objects with no fluctuating internal structure,
and, under certain conditions, multibody forces between
type-1.5 vortices can be neglected.22 Then the composite
vortices can be seen as charged point particles interacting
via a sum of screened Coulomb potential terms.

In this paper we study the 3D vortex-loop driven finite-
temperature superconducting phase transition in zero
field for a model of a type-1.5 superconductor. The main
task is to investigate the order of the superconducting
transition. We propose an effective model for composite
vortices with a non-monotonic length scale dependence
of the vortex interaction. We study this model by classi-
cal finite-temperature Monte Carlo (MC) simulation and
finite-size scaling methods in order to classify the order
of the transition. From the U(1) symmetry of the super-
conducting order parameter an inverted 3DXY transition
is the expected result for a system with thermodynam-
ically stable vortices, but instead we obtain first order
transitions in the cases involving a non-monotonic vor-
tex interaction that we tested. This result differs qualita-
tively from the single-band systems where the zero field
transition driven by thermodynamically stable vortices is
considered to be always continuous.

II. GENERALIZED EFFECTIVE VORTEX
LOOP MODEL

For the type-1.5 regime in the limit outlined above,
fluctuations near the phase transition can be expected
to be described by a generalized 3D vortex loop model
that we will now formulate. In a 3D system vortex lines
form closed loops, and on a lattice the vortex degrees
of freedom become directed integer link current variables
qσi , where σ = x̂, ŷ, ẑ are the unit lattice vectors connect-
ing the site i with its neighbor i + σ on a simple cubic
lattice with vertices i = 1, . . . , Ld. The numerical lat-

tice constant is set to unity. The functions K0(r/λ) in
Eq. (2) generalize to 3D Yukawa interactions, represented
on a lattice with periodic boundary conditions by lattice
Green’s functions

Yij = Y

(
|ri − rj |
λY

)
=
cY
Ld

∑
k

cos (k · (ri − rj))

6−
∑
σ 2 cos (kσ) + λ−2Y

(3)
where cY is a real coupling constant. The 3D counterpart
of Eq. (2) is then given by the vortex line Hamiltonian

H =
∑
i,j,σ

1

2
qσi Vijq

σ
j +

∑
i,j,σ

1

2
|qσi |Uij

∣∣qσj ∣∣ (4)

where both Uij and Vij shall have the form of Eq. (3).
The first term corresponds to m2K0 (r/λ) in Eq. (2) with
λV = λ in Eq. (3). Thus Vij mediates the screened
Coulomb interaction of the composite vortex lines as
obtained for a two-component 3D superconductor with
range set by the London penetration depth λ. The sec-
ond term corresponds to the slowest decaying density in-
teraction −q2LK0 (r/ξL) in Eq. (2), which is always at-
tractive (cU < 0) and of exactly the same form as Vij
with range λU = ξL. The faster decaying component
has been ignored meaning that its range and amplitude
are assumed to be sufficiently small. This model is highly
simplified and neglects amplitude fluctuations, additional
core-energy contributions, and core-core interactions be-
tween perpendicular line segments. While such effects
can in principle be included in the model to reach ac-
curate description of a given material, we here focus on
properties of the effective model and leave more detailed
investigations for future work.

For a weak attractive part |cU | � cV and ξL ≤ λ,
Eq. (4) is similar to a type-2 superconductor, and from
the U(1) symmetry of the model it is expected that the
transition from the ordered low-temperature phase to
the disordered high-temperature phase is a second order
phase transition belonging to the inverted 3DXY univer-
sality class. However for a general choice of parameters
in Eq. (4) such an a priori assertion is not possible. The
order of the transition must in general be determined by
simulations or by other means.

Next we discuss the choice of parameter values. The
possible parameter choices are restricted by a stability
criterion in order to represent a valid description for
multicomponent superconductors. That is, the coeffi-
cients cV < 0 < cU and the ranges λ, ξL in Eq. (4)
must be chosen such that the lowest energy state is
the vortex free state with all the qσi = 0. At the
parameters we will consider the minimum of the vor-
tex interaction comes from the attraction energy be-
tween nearest neighbor link variables with opposite
sign. A candidate low energy state is thus given by a
Néel-type stacked loop configuration on a cubic lattice
such as qz (r) = (−1)

x+y+z
, qy (r) = −qz (r) , qx (r) =

0. The energy of the stacked state can be calcu-
lated from the Hamiltonian in Fourier space, H =
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1
2Ld

∑
σ,k

[
Ṽ (k)|q̃σ(k)|2 + Ũ(k)|Q̃σ(k)|2

]
, where Qσ(r) =

|qσ(r)|, which gives E = Ld[Ṽ (π, π, π) + Ũ(0, 0, 0)] =
Ld[cV /(12 + λ−2) + cUξ

2
L]. The boundary of stable pa-

rameters is identified by setting this energy to zero to
make the stacked state degenerate with the vortex-free
vacuum state. The parameters used in the model must
thus satisfy

cV
12 + λ−2

+ cUξ
2
L > 0 (5)

To investigate the different types of behavior of the
model in Eq. (4) we focus on several different parame-
ter regimes:

1. Screened repulsive parameters (SR): ξL = λ =
0.5, cV = 41, cU = −2.5. The attractive coefficient cU is
small compared to cV yielding a net repulsive interaction
between vortex segments with equal vorticity, thus rep-
resenting a two-band type-2 superconductor. The transi-
tion in this model is therefore expected to belong to the
inverted-3DXY universality class, which will be verified
below.

2. Nonmonotonic parameters (NM): ξL = 1, λ =
0.5, cV = 41, cU = −2.5. The range ξL of the attrac-
tive part has been increased compared to the SR case
yielding an effectively non-monotonic interaction with a
net repulsion at short length scales and a net attraction
at intermediate length scales between equal vorticities.
For these values of ξL, λ, cU , the choice cV = 41 is within
the stability requirement cV > 40 given by Eq. (5). This
regime gives a simplified effective model for vortex loops
in type-1.5 superconductors.

3-4. Screened repulsive parameters with enhanced at-
traction (SR10, SR1024999): λ = ξL = 0.5, cV = 41 and
cU = −10,−10.24999, respectively, which are close to
the minimum allowed value −10.25 set by Eq. (5). For
the SR1024999 parameters the vortex free state and the
staggered configuration are almost degenerate in energy.
In ordinary superconductors the energy of such vortex
configurations contain contributions from non-pairwise
forces, which are not present in our model. In this pa-
rameter regime the model is not representative for cur-
rently known ordinary superconductors and has mainly
theoretical interest.

III. CALCULATED QUANTITIES AND
SCALING ARGUMENTS

Destruction of superconductivity in systems with ther-
modynamically stable vortices is associated with prolif-
eration of vortex loop fluctuations. For finite λ we can
assume an ensemble where number fluctuations of the
vortex lines are included at finite energy cost. The prolif-
eration of vortex loops at the phase transition is signaled
by fluctuations in the winding numbers

Wσ =
1

L

∑
i

qσi (6)

The singular behavior at a second order phase transition
is described by the finite size scaling ansatz

〈W 2
σ 〉 = W̃ 2(L1/νt) (7)

where W̃ 2 is a scaling function, L is the system size, t =
T/Tc−1, and ν is the correlation length critical exponent.
This means that curves of MC simulation data of 〈W 2

σ 〉 vs
temperature T for different system sizes L will intersect
at T = Tc. The derivative scales as ∂〈W 2

σ 〉/∂T ∼ L1/ν

at the transition. For the 3DXY universality class the
critical exponent for the correlation length is ν ≈ 0.671
and for the heat capacity α = 2− dν ≈ −0.015.23

In the vicinity of a first order transition the two dif-
ferent phases coexist, the correlation length is finite, and
scaling given by Eq. (7) is not fulfilled. Precisely at Tc the
system is equally probable to be in either of the phases.
In simulations the internal energy histogram P (e), where
e = H/Ld is the energy density, shows a double peak
structure centered around the two characteristic internal
energy values H1, H2. The free energy barrier given by
∆FL = (1/β) log [Pmax/Pmin] increases with system size
and behaves asymptotically as Ld−1.24 For a second or-
der transition the double peak structure disappears in
the thermodynamic limit.

The presence of a double peak structure in the energy
histogram is not enough to distinguish between a first and
a second order transition. For a first order transition it
is also required that the latent heat ∆H = H1−H2 does
not vanish in the thermodynamic limit. The latent heat
contributes to the heat capacity

cL (T ) =
〈(H − 〈H〉)2〉

T 2Ld
(8)

A double peak structure in P (e) leads to a heat capac-
ity maximum at the transition with a leading size de-
pendence given by c∗L ∼ Ld(∆e)2 ∼ Ld, correspond-
ing to a delta-function singularity at Tc for L → ∞.
This is equivalent to an energy peak separation given by
∆e ∼ (c∗L/L

d)1/2 > 0. On the contrary, if the transition
is continuous the scaling form cL(T ) ≈ a(t, L)t−α+b(t) ≈
Lα/ν ã

(
L1/νt

)
+ b(t) holds. This implies that the max-

imum c∗L grows slower upon increasing the system size
than in case of a first order transition as long as dν > 1,
and to a histogram with a single energy peak. In the
data analysis below we sometimes find it useful to plot
the rescaled heat capacity cL/L

d which for increasing sys-
tem size should approach a constant maximum for a first
order transition and a decreasing maximum for a 3DXY
transition. To reduce the influence of the analytic term
it can be beneficial to consider the third moment25

M3 = 〈H − 〈H〉〉3 ∼ ∂

∂T

(
T 2LdcL

)
(9)

This quantity exhibits two extrema around Tc whose dif-

ference ∆M3 scales as ∼ L 1+α
ν for continuous and ∼ L2d

for discontinuous transitions. The size dependence of c∗L
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and ∆M3 at a first order transition corresponds to effec-
tive exponents α = 1, ν = 1/d.

In addition a method by Challa, Landau, and Binder26

which does not rely on a precision determination of the
energy histogram can be used to determine the order of
a transition. The reduced fourth order energy cumulant
for system size L is

VL = 1− 〈H4〉
3〈H2〉2

(10)

For both discontinuous and continuous transitions this
quantity approaches the trivial limit V ∗∞ = 2/3 for
T 6= Tc. For finite-size systems a minimum VL < V ∗∞ is
obtained at the transition. For second order transitions
this minimum converges towards V ∗∞ for L → ∞, while
for first order transitions the minimum approaches a non-
trivial value V∞ < V ∗∞ with a correction term ∼ L−d.

IV. MONTE CARLO METHODS

Our MC simulations use a hybrid scheme combining
worm and exchange methods that performs well both
at first and second order phase transitions. The clas-
sical worm algorithm27 constructs closed vortex loop
fluctuations in terms of closed random walk trajecto-
ries, and gives efficient simulation performance at a sec-
ond order phase transition by minimizing critical slowing
down of the dynamics. In addition the replica exchange
algorithm28 is used in order to reduce the autocorrelation
time and the risk of getting stuck in metastable states,
which reduces hysteresis at first order transitions. In
our simulations we use 8-80 parallel threads. Prior to
each production run the system was equilibrated for 215

sweeps for the SR parameters, for at least 217 sweeps
for the NM and SR1024999 parameter sets, and for 216

sweeps for the SR10 set. A MC sweep is taken to be 3Ld

link variable updating attempts. Equally many sweeps
were done to compute averages. The MC trajectories
were then further analyzed using the multi-histogram
reweighting technique.29 Error bars are obtained via
reweighting of different bootstrap realizations of the same
MC trajectory. As a consistency check we also performed
parallelized Wang-Landau simulations30,31 for the NM
case in a finite energy window determined by the energy
expectation value of the MC simulations. In the WL
simulations the MC moves used are two types of closed
loops, formed as attempts to insert closed elementary pla-
quette loops or as straight lines that close on themselves
by the periodic boundary conditions. Consistent results
between between the different methods were obtained.

V. RESULTS

We start within the strong type-2 regime with model
parameters given by the SR set with a repulsive short-
range interaction. Figure 1 (A) shows MC results for the
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FIG. 1. (Color online) MC data for vortex loop winding num-
ber fluctuations. (A) SR data curves intersect at the critical
temperature Tc ≈ 1.386, with scaling corrections visible for
the smallest system sizes. Inset: Finite size scaling data col-
lapse for L = 20, 22, 24, 26 with ν = 0.671. (B) NM model.
The onset is steeper than for the SR model, which indicates
a first order transition. (C) SR10 model with cU = −10. (D)
SR1024999 model with cU = −10.24999. Inset: Maximum
of the winding number fluctuation derivative dW 2/dT for all
data sets. All curves have been normalized by the value ob-
tained for L = 8. The dashed blue line corresponds to a power
law ∼ L3 and the dotted line to ∼ L4.

winding number fluctuations. At a second order phase
transition data curves of the winding number fluctuations
vs temperature for different system sizes L must inter-
sect at the transition temperature according to Eq. (7).
Corrections to scaling produce deviations from the inter-
section point visible in the figure for the smallest system
sizes, but the biggest sizes intersect within error bars at a
single temperature that estimates Tc. The inset in Fig. 1
(A) shows a finite-size scaling collapse of MC data for the
four largest system sizes L = 20, 22, 24, 26 onto a single
curve representing the scaling function W̃ 2 in Eq. (7).
In the scaling collapse the value ν = 0.671 of the 3DXY
model was used. This is consistent with a second order
phase transition in the inverted-3DXY universality class
as expected for short range repulsive interactions.

To investigate the effect of a non-monotonic vortex in-
teraction, MC data for W 2 for the NM parameter set is
shown in Fig. 1 (B). The data deviates clearly from 3DXY
scaling since the slope dW 2/dT at the transition is much
steeper than the 3DXY relation L1/0.671 found in (A).
This demonstrates that the transition of the NM model
is not of the 3DXY type, and it will become clear below
that it is instead first order. Panels (C-D) show data for
the repulsive SR10 and SR1024999 models, respectively.
The inset in (D) plots the maximum of dW 2/dT . Data
curves for the SR and SR10 models both show deviations
from a pure power law form for the system sizes stud-
ied here. The SR data indicates approach to the 3DXY
result L1/0.671 for large L but corrections to power-law
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FIG. 2. (Color online) MC data for the rescaled heat capacity
and M3. (A) cL/L

d vs T for L = 14 for a sequence of models
ranging from the SR model with ξL = 0.5 to the NM model
with ξL = 1. (B) Scaling of the maxima of cL vs L for the
different parameter sets. The dashed black line is a fit to
the form aLω + b with ω = −0.02 and the dotted blue line
is a pure power law with ω = d = 3. (C) Scaling of ∆M3

vs L normalized by the value at L = 10. The NM and SR
curves scale with the exponents expected for a first-order and
inverted-3DXY transition, respectively.

scaling are visible also for the largest lattice sizes. The
SR10 model data show a possible slow crossover towards
3DXY scaling, but the sizes are too small to decide. The
SR1024999 model is consistent with the size dependence
dW 2/dT ∼ L3, showing no tendency for a crossover
to 3DXY scaling for the range system sizes examined
here. For the NM model the data scales approximately
as ∼ L(d+1) = L4. This suggests that the assumption of
a universal scaling distribution for the winding number
fluctuations ∼ L0 at the transition does not hold and
indicates that the NM model has a first order transition.

Results for the heat capacity and energy histograms
are shown in Figs. 2-3. Figure 2 (A) shows the evolution
of MC data for the heat capacity cL for a sequence of pa-
rameter values in ξL = 0.5− 1 interpolating from the SR
to NM case for system size L = 14. The SR data curve
is smooth, while increasing ξL increases the peak height
and decreases the width. The NM curve peaks sharply at
the transition in agreement with a delta-function peak in
the heat capacity at a first order transition. The insets
Figs. 2 (B), (C) show the maximum value c∗L and the
difference ∆M3 vs L. For the SR model good agreement
is found with c∗L ∼ L2/ν−3 and ∆M3 ∼ L(3−dν)/ν with
ν = 0.671 as expected for the inverted-3DXY scenario. In
the NM case the heat capacity maxima scale as c∗L ∼ Ld
and ∆M3 ∼ L2d indicating a strong first order transition.
Neither of the SR10 and SR1024999 sets show any ten-
dency towards the same behavior, which suggests either
a slow approach to second order or to weak first order
transitions. In both SR10 and SR1024999 cases much
bigger system sizes are required for definite conclusions.

Figure 3 shows energy histograms at the transition
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FIG. 3. (Color online) (A) MC results for the energy his-
togram at the transition for the NM model. The probability
density P (e) exhibits a characteristic double-peak structure
with a monotonically growing barrier ∆P upon increasing
the system size. The dashed curves shown for L = 14, 16 are
results of Wang-Landau calculations. (B) The normalized la-
tent heat ∆e obtained from the maxima in (A) approaches
a nonzero value for L → ∞. (C) The free-energy barrier
determined in (A) grows with increasing system size which
indicates a strong first order transition.

temperature for the NM model and reveals a double-peak
structure. The results from the Worm and Wang-Landau
methods are similar, but the latter gives smoother data
curves in the region between the peaks. Figure 3 (B)
indicates that the latent heat saturates at a finite value
for large system sizes, and (C) shows that the free-energy
barrier grows with increasing system size. This indicates
that the NM model has a strong first order transition
which is our main result.

The transition in the models SR10 and SR1024999 is
more difficult to categorize. Energy histograms for the
SR10 model did not produce any double peaks for the
system sizes we explored. The heat capacity peak in
the inset in Fig. 2 increases significantly slower than a
∼ L3 law expected for a first order transition, and may
possibly approach 3DXY scaling for large systems for the
SR10 model. Both these results favor a second order
transition.

Figure 4 shows energy histogram data for the
SR1024999 model. (A) shows a double peak structure
in the histogram. (B) shows a free energy barrier grow-
ing slowly with increasing system size which is expected
at a first order transition. However, the heat capacity
maximum plotted in Fig. 2 (B) grows slower than a Ld

power law corresponding to a first order transition, indi-
cating that the width of the energy histogram ∆e → 0
for L → ∞. While this suggests a continuous transi-
tion, two further observations can be made. The scaling
deviation from first-order behavior could in principle be
attributed to finite size corrections as follows. The width
of the energy histogram in Fig. 4 (A) is related to the
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FIG. 4. (Color online) (A) Energy histogram of the
SR1024999 model at the phase transition. The tendency to-
wards double peak formation is much weaker than for the
NM case plotted in Fig. 3. (B) The free-energy barrier ∆F
increases slowly with system size. (C) Minimum value of the
energy cumulant VL vs system size L. The black line is the
asymptotic limit 2/3 expected for second order transitions.
Dashed curves are fits to the form VL = V∞ + a/Lb.

heat capacity data in Fig. 2 by ∆eL ∼ (L−dcL)1/2. A
finite size scaling ansatz ∆eL = ∆e∞+A/L+B/L2 with
fit parameters ∆e∞, A,B, gives a good fit to the data and
extrapolates to a finite peak width ∆e∞ ≈ 0.18 in the
large system limit, which is consistent with a first order
transition showing substantial finite size corrections. Al-
ternatively, a power law of the form ∆eL ∼ 1/Lp also fits
the data and gives p ≈ 0.7, which extrapolates to a single
delta peak histogram for L→∞. This corresponds to a
heat capacity maximum that varies with system size as
c∗L ∼ L1.6. However, as also seen in Figs. 2 (B) and (C),
this is far from the finite-size scaling behavior expected
at a 3DXY transition given by c∗L ≈ aL−0.02 + b.

Figure 4 (C) shows results for the minimum of the
energy cumulant VL. All data curves can be fitted to the
form VL = V∞ + aL−b. Data for the SR model quickly
converges towards the expected value V∞ = 2/3 for a
second order transition. A fit of the data for the SR10
model gives V∞ = 0.66 ± 0.01 which is consistent with
a second order transition. The corresponding fit for the
SR1024999 model gives a slightly lower asymptotic limit
V∞ = 0.64±0.01, but with a correction exponent b ≈ 1.9
rather than b = d = 3 expected for a strong first order
transition. The NM model gives a negative minimum
value of VL for all L consistent with a strong first order
transition (data not shown).

To further assess the importance of non-monotonicity
in the vortex interaction we implemented the following
modification of the NM model. The attractive poten-
tial Uij in Eq. (4) of the NM model was set to zero be-
yond a cutoff radius rc without altering the interaction
for r < rc. Taking the cutoff radius to rc = 3 gives a to-
tally repulsive interaction in all directions. The effect of
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FIG. 5. (Color online) Rescaled heat capacity for different
cutoff lengths of the NM model interaction. The NM model
without truncation (orange curve) has a first order transition
with a sharp peak in the heat capacity. The truncated model
with rc = 3 (blue, purple, red curves) has a monotonic inter-
action, and gives a rescaled heat capacity peak that decreases
with system size indicating a second order transition. For the
non-monotonic model with rc = 5 (black curve) first order
signatures reappear, i.e., a sharp heat capacity peak, and a
double-peaked energy histogram at the transition (inset).

truncating the interaction at different distances is demon-
strated in Fig. 5, which indicates that for rc = 3 the first
order behavior vanishes and the transition becomes sec-
ond order, presumably turning into a 3DXY transition as
for the SR case. The energy histograms in this case have
no double peak structure. If the cutoff radius is chosen
to rc = 5 the interaction becomes non-monotonic in all
directions. Then the first order signature reappears as
shown by the black curve and the double-peaked energy
histogram in the inset in Fig. 5. This indicates that the
first order mechanism found in the NM model is affected
by the non-monotonicity of the vortex interaction.

Taken together the results in Figs. 1, 2 and 5 suggest
dν > 1 for all models with a screened monotonic interac-
tion. This implies a collapse of the histogram in Fig. 4 to
a single peak in the thermodynamic limit, and thus sec-
ond order transitions for all SR models. However, given
the results presented in Fig. 4 and the fact that the ex-
ponents for the SR10 and SR1024999 data in Figs. 1 and
2 clearly deviate from the 3DXY values, weak first order
transitions in the thermodynamic limit cannot be com-
pletely ruled out. The model then would have weak first
order transitions also for parameters where the interac-
tion between vortices is fully repulsive. Again, in this
near degenerate regime the model does not correspond
to ordinary type-2 superconductors.
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VI. DISCUSSION

We present simulation results suggesting that in type-
1.5 superconductors there is a new mechanism that drives
the superconducting transition to become first order.
This however does not imply that the superconduct-
ing phase transition in type-1.5 material is generically
first order. We described the fluctuations by a gen-
eralized effective link-current model. To answer the
question in the general case requires much more com-
putationally demanding large-scale simulations of full
two-band Ginzburg-Landau models. It is conceivable
that fluctuation-induced enhancement of the repulsion
for some of the parameters of the model eliminates the
bare attractive interaction between vortices, which may
make the phase transition continuous for certain parame-
ter ranges in the type-1.5 regime. Among various scenar-
ios for realization of type-1.5 superconductivity, a spe-
cial reservation should be made for simple U(1) multi-
band materials. In that particular case, at the mean-field
level, the intervortex interaction depends on temperature
and a superconductor becomes either type-1 or type-2
in the limit T → Tc by standard mean-field symmetry-
based arguments.13 This is consistent with experiments
that study the temperature dependence of the vortex

attraction.32 Therefore for this particular kind of type-
1.5 materials for the phase transition to be first order, the
fluctuations should be strong enough so that the phase
transition takes place substantially below the mean-field
estimate of Tc. This means that the effects suggested
here are probably more likely to be observed in multi-
band type-1.5 superconductors with a relatively high Tc.
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