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Motivated by a recent experiment in which zero-bias peaks have been observed in scanning tunneling mi-
croscopy (STM) experiments performed on chains of magnetic atoms on a superconductor, we show, by gener-
alizing earlier work, that a multichannel ferromagnetic wire deposited on a spin-orbit coupled superconducting
substrate can realize a non-trivial chiral topological superconducting state with Majorana bound states localized
at the wire ends. The non-trivial topological state occurs for generic parameters requiring no fine tuning, at
least for very large exchange spin splitting in the wire. We theoretically obtain the signatures which appear in
the presence of an arbitrary number of Majorana modes in multi-wire systems incorporating the role of finite
temperature, finite potential barrier at the STM tip, and finite wire length. These signatures are presented in
terms of spatial profiles of STM differential conductance which clearly reveal zero energy Majorana end modes
and the prediction of a multiple Majorana based fractional Josephson effect. A substantial part of this work
is devoted to a detailed critical comparison between our theory and the recent STM experiment claiming the
observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. The conclusion of this
detailed comparison is that although the experimental observations are not manifestly inconsistent with our
theoretical findings, the very small topological superconducting gap and the very high temperature of the exper-
iment make it impossible to decisively verify the existence of a localized Majorana zero mode, as the spectral
weight of the Majorana mode is necessarily spread over a very broad energy regime exceeding the size of the
gap. Such an extremely broad (and extremely weak) conductance peak could easily arise from any sub-gap
states existing in the rather complex system studied experimentally and may or may not have anything to do
with a putative Majorana zero mode as discussed in the first half of our paper. Thus, although the experimental
findings are indeed consistent with a highly broadened and weakened Majorana zero bias peak, much lower
experimental temperatures (and/or much larger experimental topological superconducting gaps) are necessary
for any definitive conclusion.

I. INTRODUCTION

In contrast to ordinary charged Dirac fermions (e.g. elec-
trons, positrons) which come in oppositely charged parti-
cle anti-particle pairs, Majorana fermions are their own anti-
particles1,2. Although Majorana fermions, which are a spe-
cial kind of neutral Dirac fermions, were first predicted in
the context of high energy physics1 (specifically, as a hypo-
thetical model for neutrinos, which may or may not be Ma-
jorana fermions), a condensed matter analog of them has re-
cently been proposed to exist as localized zero-energy quasi-
particles bound to order parameter defects in topologically
ordered systems3,4. In low dimensional systems (d ≤ 2),
these localized defect-bound zero-energy Majorana quasipar-
ticles obey exotic non-Abelian quantum statistics3–5 (and are
therefore not any kind of Dirac fermions at all). Due to
their non-Abelian braiding statistics and non-local topologi-
cal nature, these zero-energy Majorana bound states (MBS)
can be used as the building blocks of a fault-tolerant quan-
tum computer4,6. Recently, realistic materials such as chiral
p-wave superconductors e.g., strontium ruthenate7, topologi-
cal insulator-superconductor interfaces8, fermionic cold atom
gases9,10, spin-orbit coupled semiconducting thin films11–13

and nanowires13–15 in proximity to conventional supercon-
ductors, all realizing an analog of topological spinless p-
wave superconductors3,4, have been proposed as hosts for
MBS. Recent experimental observations in semiconductor-
superconductor heterostructures16–21 seem to support the pres-
ence of MBS in condensed matter systems, although any con-
clusive evidence for non-Abelian statistics is still lacking22.

In concurrent formal theoretical developments, recent
work23–26 established that the quadratic Hamiltonians de-
scribing gapped topological insulators and topological su-
perconductors (TS) can be classified into ten distinct topo-
logical symmetry classes, and that each is characterized
by a topological invariant counting the number of topo-
logically protected edge modes. According to this clas-
sification, the experimentally investigated semiconductor-
superconductor heterostructures11–21 belong to the topological
class D in which MBS are protected by the superconducting
particle-hole (PH) symmetry. Additionally, one-dimensional
topological superconductors belonging to the time reversal
class DIII27–36 and BDI37–42 have recently been proposed.
DIII topological superconductivity is indexed by a Z2 topo-
logical invariant indicating the presence or absence of a Ma-
jorana Kramers pair, while in BDI topological supercon-
ductivity, for instance as recently proposed43 in the context
of putative spin-triplet ferromagnetic superconductors such
as the organic superconductors and lithium purple bronze
(Li0.9Mo6O17), a Z invariant counts the number of MBS.

Very recent experimental work44 suggests that atomic scale
ferromagnetic Fe nanowires on the [110] surface of super-
conducting Pb may support Majorana modes and topologi-
cal superconductivity. The theoretical prediction that prox-
imity induced superconductivity in ferromagnetic (or half-
metallic – a half-metal is a perfect ferromagnet with com-
plete spin-polarization at the Fermi level) wires might lead
to a topological superconducting phase with the associated lo-
calized Majorana zero energy modes was made some years
ago by several groups45–48. There was even an experimen-
tal report of the observation of long-range superconducting
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proximity effect through a ferromagnetic nanowire49. Very
recently, two theoretical papers50,51 have predicted the pos-
sible existence of topological superconductivity in ferromag-
netic nanowires lying on superconducting substrates using
Shiba chain50 and a one-dimensional nanowire51 model, re-
spectively, closely mimicking the experimental system (i.e.
Fe atoms on superconducting Pb) studied in Ref. 44. Ex-
tensive recent theoretical work by different groups has sug-
gested several different mechanisms which could lead to
MBS-carrying TS in magnetic nanowires placed on supercon-
ducting substrates. The earliest such mechanisms52–54 mod-
eled the nanowire as a chain of magnetic impurities in a spin-
spiral phase. The spin-spiral, following previous work55, is
used to mimic an effective spin-orbit coupling that would in
turn lead to an effective triplet pairing superconducting prox-
imity effect from the singlet superconducting substrate, ex-
actly as in the existing semiconductor nanowire models of
topological superconductivity13–15. The magnetic impurities
were suggested to generate an array of Yu-Shiba-Rusinov56

bound states in the superconductor. The combined effect of
the superconductivity and spin-texture leads to an effective
Kitaev chain model4 that can support Majorana bound states
under appropriate conditions52–54. However, the theoretical
plausibility of creating such a spin-spiral phase57,58 was de-
bated, and it was shown that such spin spirals are unstable to-
ward the formation of purely ferromagnetic or antiferromag-
netic phases59.

The absence of a spin-spiral in the experimental system
has led to the conjecture of an alternative mechanism involv-
ing the strong spin-orbit coupling of the Pb superconduct-
ing substrate itself contributing to topological superconduc-
tivity in the magnetic nanowire59. The basic model, which
has been studied in this context by several authors44,50,51, pro-
poses that only the spin-triplet component of Cooper pair-
ing, if any, may be proximity-induced in a ferromagnetic wire
from a spin-orbit coupled superconductor. This mechanism
has previously been proposed as an approach to topologi-
cal superconductivity46 and also been invoked48 to explain
the long-range proximity-effect observed through ferromag-
netic nanowires49. The mechanism of triplet proximity ef-
fect on a ferromagnetic wire arising from a spin-orbit cou-
pled superconducting substrate has been studied in detail by
three of us recently and shown to potentially support MBS-
carrying topological superconductivity in the BDI chiral sym-
metry class51. Such a symmetry would suggest unsplit Majo-
rana modes whenever the effective chemical potential in the
ferromagnetic wire is positive.

In this context it is useful, particularly for later discus-
sion of the experimental results44, to briefly review two re-
alistic theoretical models for topological superconductivity,
and Majorana bound states, in one-dimensional (or quasi-one-
dimensional) ferromagnetic nanowires (Fe in Ref. 44) lying
on a two-dimensional surface of an underlying bulk supercon-
ductor (Pb in Ref. 44). One model, which we refer to as the
Shiba model (or Shiba chain model), discussed in Refs. 53
and 50 respectively for the helical and the ferromagnetic mag-
netic order in the wire, describes the magnetic atoms (Fe in
Ref. 44) as essentially independent quenched classical mag-

netic impurities with little direct inter-atomic hopping along
the chain, i.e. the one-dimensional band width of the chain
is basically zero (or equivalently, vanishing inter-atomic hop-
ping amplitude t). The other model, which we refer to as the
nanowire (or simply, the wire) model, introduced in Ref. 51
for the ferromagnetic order in the magnetic chain, describes
the ferromagnetic chain as strongly directly tunnel-coupled
along the chain with considerable inter-atom hopping lead-
ing to one-dimensional bands of fairly large band-widths (or
equivalently, large inter-atomic hopping amplitude t). These
two models have been recently introduced and studied in the
context of a ferromagnetic chain on a superconductor (i.e. the
experimental system of Ref. 44) in Refs. 50 and 51 respec-
tively. The accompanying band structure calculations for the
Fe chain on Pb presented in the experimental work44 indi-
cate that the hoping term on the chain t is of the order of
eV whereas the superconducting gap in Pb is of course of
the order of meV . Given the large ratio between the hop-
ping and superconducting parameters, as quoted in Ref. 44,
the system can be modeled within the nanowire model. As
we discuss later in this work, this fundamental inconsistency
between different aspects of the results presented in Ref. 44
remains unresolved with the reported induced topological gap
being 10−4eV and the observed strong lattice-level, < 5 nm,
localization of the Majorana mode requiring an estimated su-
perconducting gap of ∼ 1eV . This basic incompatible di-
chotomy must be resolved (see below for a discussion of a
recent work [60] in this context) before the observations of
Ref. 44 can be considered to be evidence for the existence of
localized MBS in the Fe/Pb hybrid system.

A possible resolution of this apparent paradox, i.e. that
of a very small proximity induced superconducting gap
in the nanowire and a very small associated coherence
length giving rise to strongly localized Majorana edge
modes, has very recently been proposed in Ref. 60 by
Peng et al. using a zero-temperature theory of a heli-
cal magnetic chain on a superconducting substrate. The
basic idea, originally studied in Refs. 61,62, for 2D het-
erostructures made of semiconductor/superconductor61 or
topological-insulator/superconductor62 sandwich systems, is
that the presence of the superconducting substrate could sub-
stantially renormalize the parameters of the effective induced
superconductivity, leading to a situation where the effective
parameters determining the proximity superconductivity are
radically different from those applying to an isolated p-wave
superconducting system (i.e. without any substrate). In partic-
ular, Peng et al. explicitly show60, by using a minimal mean-
field-theoretical model of a linear helical chain of Anderson
magnetic adatom impurities on a bulk superconductor, that
a strong velocity renormalization in the wire induced by the
substrate could lead to a small Majorana localization length
in spite of the wire having a small induced superconducting
gap. If this physics is indeed operational in the experimental
system of Ref. 44, then the lowering of temperature should
show considerable sharpening of the zero-bias peak in future
experiments even if the induced gap itself remains small. Our
interest in the current work is, however, a theoretical modeling
of the high-temperature situation (with the induced gap be-
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ing comparable to the temperature) as studied in Ref. 44, and
the precise Majorana localization itself is not particularly im-
portant for considering the high-temperature situation as we
show in the finite-temperature results presented in this paper.
One issue directly resolved by Peng et al.60 is that the fer-
romagnetic nanowire model considered in this work and the
Shiba model are not separated by any quantum phase tran-
sition – they are two extreme aspects of the same underly-
ing crossover physics akin to the BCS-BEC crossover in su-
perfluidity/superconductivity with the appropriateness of each
description being determined by underlying experimental pa-
rameters. We mention, however, that the key parameter under-
lying the strong Majorana localization established in Ref. 60
is the strength of the tunneling between the substrate and the
adatom chain, and experimentally there is no information on
how strong this tunneling is. When this tunneling is weak
(strong), the ferromagnetic wire (Shiba chain) model applies.
In the current work, we primarily follow the ferromagnetic
nanowire model since this is the description used in Ref. 44
itself to describe the data, although we specifically show (see
Figs. 18 and 19) that at the high experimental temperatures
used in Ref. 44, the tunneling conductance measured experi-
mentally would look very similar in either the ferromagnetic
or the Shiba model, and the physics of strong Majorana local-
ization would become relevant only if the experimental tem-
perature is lowered to well below (less than half at least) the
induced superconducting gap in the nanowire.

We emphasize again that the Shiba and nanowire models
are two extreme and complementary aspects of the same un-
derlying physics (i.e. the physics of a linear array of ferromag-
netic magnetic atoms lying on a 2D or 3D superconducting
substrate with strong spin-orbit coupling in the environment –
a 1D magnetic chain on a 2D or 3D superconducting substrate
in the presence of strong spin-orbit coupling), and there is no
phase transition between the two situations. Indeed the mod-
els can be understood as two limiting cases where the weak
(strong) hopping between d-band orbitals corresponds to the
Shiba (nanowire) regime60. With our main interest in the cur-
rent work being the role of temperature (compared with the
induced superconducting gap in the wire), it should not mat-
ter which model is used, although the nature of the Majorana
mode localization scales are very different in the two models60

depending on the crossover parameter given by the tunneling
hybridization scale between the superconductor and the mag-
netic chain. An extremely important physical parameter in
the experiment of Ref. 44 is the very high experimental tem-
perature (T ∼ 1.2K) which is comparable to the estimated
induced topological superconducting gap (∆ ∼ .12 meV )
extracted in Ref. 44. The fact that kbT ∼ ∆ in the experi-
ment makes any discussion of a precise zero-energy Majorana
mode quite meaningless because at such high temperatures,
the Majorana response will be broadened over the whole sub-
gap regime (or perhaps even above the gap) with the Majorana
signal indistinguishable from any ordinary fermionic subgap
state. We also point out that the experiment of Ref. 44 does
not actually observe any obvious superconducting gap in the
ferromagnetic nanowire, and the evidence for the existence of
any topological gap is indirect. In fact, the instrumental en-

ergy resolution in Ref. 44 is also of the order of the topologi-
cal gap and the temperature, making any discussion of possi-
ble weak subgap features as representing anything definitive
somewhat premature. Given that the experiments in Ref. 44
are carried out at temperatures equal to the induced super-
conducting gap using an experimental instrumental resolu-
tion also comparable to the gap, we believe that any subgap
features would manifest very broad and very weak differen-
tial tunneling conductance peak consistent with the observa-
tions, and only a lowering of the temperature in future exper-
iments can distinguish possible zero-bias Majorana features
from fermionic subgap features.

Our goal in the current paper is a detailed numerical mod-
eling of temperature effects in the ferromagnetic nanowire-
superconductor hybrid system in the presence of strong spin-
orbit coupling in order to provide qualitative (and semiquanti-
tative) insight into the physics of the system studied in Ref. 44.
The current work is an extension of Ref. 51 carried out in
the context of the putative experimental MBS observation
claimed in Ref. 44 in order to provide a detailed critical com-
parison between theory and experiment, which is necessary
since the rather strong claim of a direct observation of Ma-
jorana modes must be thoroughly validated from all possible
perspectives. It may be useful in this context to emphasize
that the recent spurt in the experimental MBS activity, includ-
ing both the earlier work on semiconductor (InSb and InAs)
nanowires16–21 and the very recent work on Fe nanowires44, is
completely dependent on theoretical predictions and analyses
for its validation since the observations themselves involving
tiny zero-bias tunneling conductance peaks at low tempera-
tures in rather complex hybrid systems are remarkably unre-
markable, becoming noteworthy only because theories specif-
ically predicted that such zero-bias tunneling peaks should ex-
ist in these specific hybrid structures as MBS signatures. In
particular, Ref. 13 not only predicted the existence of the Ma-
jorana bound states in semiconductor-superconductor hybrid
structures, specifically laying out the type of structures (and
the materials) experiments should use, but also carried out re-
alistic calculations showing that the resulting MBS-induced
zero-bias tunneling peaks should have a small height (because
of finite temperatures, tunnel barrier heights, and wire lengths)
compared to the expected quantized value63 associated with
the perfect Andreev reflection anticipated for MBS. This early
paper13 also specifically suggested the use of STM in order to
look for topological zero energy Majorana excitations in hy-
brid systems as has eventually been accomplished in Ref. 44
following the later suggestion in Ref. 52 of using an STM cou-
pled specifically with a magnetic chain on a superconductor.

While topological superconductivity in the chiral symmetry
class has been established for ferromagnetic wires with a sin-
gle spatial orbital per atom, the number of Majorana modes
arising from such a model is limited to two. On the other
hand, the band-structure calculation for the experimentally re-
alistic system44 suggests that the number of channels in the
wire can be significantly enhanced by the presence of mul-
tiple orbitals per atom and multiple atoms along the diame-
ter of the chain. In this work, we consider a multichannel
generalization of the FM heterostructure and its topological
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properties starting from the nanowire model of Ref. 51. Non-
trivial zero-bias phenomena appear across a broad range of
parameters in contrast to the fine tuning necessary for a non-
trivial topological phase in class D11–15 or DIII systems27–36.
Within this framework, manipulating the system width (i.e.
coupling parallel magnetic chains) enhances or reduces the
zero-bias conductance peak (ZBCP) height accordingly. Ma-
nipulation of the zero-bias conductivity tuned by the width
of the magnetic chain would be a direct signature of the chi-
ral class BDI topological superconductors. Additionally, we
calculate spatially resolved scanning tunneling conductance
profiles including effects of finite temperature and finite size
of the wire (as well as the finite tunnel barrier effects) which
are experimentally accessible by STM. Finally, we show that
the fractional Josephson effect maintains its 4π periodicity
in phases supporting multiple spatially overlapping MBS and
comment on how the Josephson current may be enhanced in
the presence of Majorana multiplets4,14 for a definitive con-
clusion regarding the existence of MBS in the ferromagnetic
nanowire system of Ref. 44.

It may be useful to point out the connection between MBS
in much-studied semiconductor nanowire systems with that in
the new platform of interest in Ref. 44 involving ferromag-
netic nanowires. Although it may appear at first sight that the
two systems are completely distinct, from a theoretical per-
spective the MBS in the ferromagnetic wires are described by
essentially the same theory as developed earlier for the semi-
conductor nanowires in Refs. 13–15, provided that one is in
the nanowire limit of large inter-atomic hopping along the
chain (and not in the Shiba limit), and that one is in the limit of
the spin splitting (induced in the semiconductor case by an ex-
ternal magnetic field or by a proximate exchange splitting) be-
ing very large (much larger than the other energy scales in the
problem including the spin-orbit coupling energy, the Fermi
energy, and the superconducting gap in the ferromagnetic wire
case). In this large spin-splitting limit, the semiconductor sys-
tem is also essentially an effective “half-metallic ferromag-
net” exactly as the Fe wire studied in Ref. 44 is claimed to
be. In the semiconductor nanowire case also, the topological
superconducting phase will be generic in this very large spin-
splitting limit since the chemical potential would by definition
be in the single spin polarized subband, with the supercon-
ducting gap being smaller than the spin splitting. Thus, the
distinction made between semiconductor nanowires and mag-
netic nanowires with respect to topological superconductivity
is a distinction without much difference, since one can take
the existing theory for the semiconductor nanowire and ob-
tain all the necessary formula for the ferromagnetic wire case
by assuming the spin-splitting to be by far the largest energy
scale. (We provide the details on this connection to the semi-
conductor nanowire system in Appendix A). We emphasize,
however, the obvious fact that although the ferromagnetic wire
case can be thought to be a limiting situation (i.e. very large
spin-splitting limit) of the semiconducting nanowire Majo-
rana theory, the two experimental systems (namely, the semi-
conductor nanowire in the presence of an external magnetic
field inducing spin-splitting and the ferromagnetic nanowire
with its spontaneous exchange-driven spin-splitting) are, of

course, completely different physical platforms from an ex-
perimental perspective utilizing totally different materials and
measurement techniques. The emergence of this ferromag-
netic nanowire platform44, in addition to the already existing
semiconductor nanowire platforms16–21, is therefore an excit-
ing new development in the search for MBS and topological
quantum computation.

II. EXPERIMENTAL SETUP AND THEORETICAL
MODEL

Taken very close to a sample surface, an STM can be used
as an electrode to measure transport properties (Fig. 1). A
movable scanning point contact tunneling experiment is po-
tentially very useful in investigating the edge character of Ma-
jorana zero modes since the STM is particularly well-suited
in measuring the local density of states. This idea, origi-
nally proposed in Ref. 13, is rather impressively implemented
in the highly demanding spin-polarized STM measurements
presented in Ref. 44. Provided the electrical contact is good
between the ferromagnet (Fe nanowire) and the supercon-
ducting substrate (Pb), Cooper pairs will leak into the fer-
romagnet, thereby proximity inducing superconductivity in
the nanowire. We model a finite quantum wire with dimen-
sions Ly � Lx ≡ L by considering a Nx × Ny site square
lattice with unit spacing. The effective Hamiltonian for the
topological superconductor, within the pure nanowire limit, is
HTS = Ht +HS=0

∆ +HS=1
∆ +HZ where

Ht =
∑
〈ij〉σ

t
[
c†iσcjσ + H.c.

]
−
∑
jσ

µjc
†
jσcjσ

HS=0
∆ =

∑
j

∆sc
†
j↑c
†
j↓ + H.c

HS=1
∆ =

∑
jσ

i∆p(c
†
j↑c
†
j+1↑ − c

†
j↓c
†
j+1↓) + H.c

HZ =
∑
jσσ′

c†jσ(V · σ)σσ′cjσ′

(1)

Here c†j is the electronic creation operator for site j, 〈ij〉 in-
dicates nearest neighbor sites, σ = (σx, σy, σz) is the vector
of Pauli matrices, t is the hopping amplitude in the nanowire,
and µ is the chemical potential. The superconducting pair-
ing is a mixture of singlet and triplet terms. For the triplet
pair potential term we have taken a Cooper pairing with spin
projection Sx = 0, which is the familiar equal-spin-pairing
∆↓↓ = −∆↑↑. The Zeeman spin-splitting due to an internal
magnetization in the ferromagnet is M is V = gµBM =
(Vx, Vy, Vz) where g and µB are the Lande g-factor and Bohr
magneton respectively. We note that our effective Hamilto-
nian, as given in Eq. 1, describes the TS phase of the fer-
romagnetic nanowire assuming that the degrees of freedom
of the underlying superconducting substrate (Pb in Ref. 44)
have been integrated away with Eq. 1 now describing only the
electrons in the Fe magnetic wire. We refer to Ref. 51 for
the details on how to obtain Eq. 1 which is our starting point
in the current work. We note that in this context our effective
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FIG. 1. (Color online) a) Schematic diagram of the proposed
heterostructure involving a series of ferromagnetic quantum wires
(gray), with large intrinsic magnetization M, deposited on top of
a spin-orbit coupled s-wave superconductor such as Pb (blue sub-
strate). Spin singlet and triplet pairing potentials are proximity in-
duced in the FM wires due to the strong spin orbit coupling and inter-
orbital mixing in the superconductor. A STM probe, at coordinate
x, measures the spatial dependence of the differential conductance
along the longitudinal axis.

model, derived from Ref. 51 which should be consulted for the
details, describes only the ferromagnetic nanowire, hiding all
information about the underlying superconducting substrate
with the parameters for the spin-orbit coupling, the bulk su-
perconducting gap of the substrate, the hopping amplitude of
Cooper pairs between the substrate and the nanowire induc-
ing the singlet and triplet proximity effect, etc. being implic-
itly contained in the induced superconducting pair potentials
∆s and ∆p, which we use as phenomenological parameters to
be obtained from the experimental measurements themselves.
Our goal here is to obtain the phenomenological consequences
of the minimal topological nanowire model (i.e. Eq. 1) for the
ferromagnet/superconductor hybrid system to make observ-
able predictions and to carry out comparison with the existing
data. We also ignore all nonessential complications such as
the number of orbitals per Fe atom and the effective width of
the wire, and so on which can be absorbed in the multichan-
nel generalization we consider below (i.e. the W-parameter
denoting the number of active wire channels as described be-
low). Our goal here is to utilize the minimal model and work
out its implications in great details. Our Eq. 1 serves as the
minimal model for the experimental system of Ref. 44 in the
current work.

Throughout this work we fix all of our parameters rela-
tive to the hopping integral t in the nanowire. To begin and
to establish our general results, we use ∆s = ∆p = t/10,
V = Vz = 2.0t, L = 100 while W (the number of transverse
channels) and the chemical potential µ are allowed to vary.
For simplicity and numerical convenience, we will choose
∆s = ∆p. Choosing two such values ∆s = ∆p = 0.1t
and ∆s = ∆p = 0.01t (both of which are orders of magni-
tude larger than reported in Ref. 44 assuming t ∼ 2 eV as
given in Ref. 44) will allow us to estimate the order of mag-
nitude of parameters such as the Majorana decay length (see

Fig. 5). We will present our numerical results for a few val-
ues of L,∆, and T including T = 0 results (for the sake of
comparison). A discussion concerning experimentally realis-
tic parameters and their effect on the measured tunneling con-
ductance is left to a later section. We note that this choice of
generic parameters incorporates the half-metallic character of
the ferromagnetic wire since only one spin subband is occu-
pied for a large range of chemical potential values keeping the
system in the topological phase without any additional fine-
tuning of parameters. Solving Eq. 1 directly numerically we
find zero energy Majorana states which are localized at each
end of the wire. The evolution of the low energy spectrum as
a function of the chemical potential, as well as a function of
the number of zero energy modes, is presented in the bottom
panel of Fig. 2. To understand how Eq. 1 realizes an integer
number of Majorana zero modes we analyze the topological
properties of this model in the next section.

III. TOPOLOGICAL PROPERTIES AND QUANTUM
PHASE TRANSITIONS

According to the Altland-Zirnbauer classification
scheme23, free fermion systems are characterized by
their dimensionality as well as by the presence and the sign of
anti-unitary symmetries. There are ten topological classes in
total and five of them are non-trivial (i.e. a non-trivial topo-
logical invariant can be defined) for a given dimension. The
two anti-unitary symmetries used are time-reversal symmetry
(TRS) and particle-hole symmetry (PHS), with the latter often
being referred to as the charge conjugation symmetry. Denot-
ing the TRS and the PHS operators by Θ and Ξ respectively,
the anti-unitary symmetries are present when the following
reality conditions are satisfied: ΘHΘ−1 = UΘH

∗U†Θ = +H

and ΞHΞ−1 = UΞH
∗U†Ξ = −H . Here UΘ,Ξ denote the

unitary part of the TR and PH operators. A system is chiral
invariant (or sublattice symmetric) when both TR and PH
are present and is given by the unitary operator S = Θ · Ξ.
The classification triplet (T,C, S) = (Θ2,Ξ2,S2) is used to
index each symmetry class, where TR and PH operators can
square to ±1 and the chiral operator is restricted to S2 = +1.
We write O2 = 0 if an operator is not present.

Invariants are generally formulated in terms of the bulk
Hamiltonian’s topology, so we now look at a strictly 1D ver-
sion of HTS . Fourier transforming Eq. 1 with a single spa-
tial channel (i.e. no transverse hopping), the momentum
space Bogoliubov-de Gennes (BdG) Hamiltonian becomes
H =

∑
k Ψ†kH(k)Ψk where

H(k) = (−2t cos(k)− µ)σ0τz (2)
+ [∆sσ0 + ∆p sin(k)d · σ] τx

+ V · στ0.

Here k ≡ kx is the one-dimensional crystal momentum
and Ψk = (ck↑, ck↓, c

†
−k↓,−c

†
−k↑)

T is our four component
Nambu spinor which acts on the particle-hole (τ ) and spin
spaces (σ). In our calculations we use d = (1, 0, 0),V =
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FIG. 2. (Color online) Comparison of the topological properties of
the class D spin-orbit coupled semiconducting nanowire (red) and
our ferromagnetic system (blue). In panel (a) an externally applied
magnetic field induces a Zeeman splitting between the originally de-
generate spin bands. This system is topological non-trivial if an odd
number of bands is occupied and Cooper pairs are supplied by a
nearby superconductor. When the Fermi energy lies in the shaded
region, the class D Z2 invariant non-trivial and a single Majorana
bound state emerges at each end. b) Normal state band structure for
a multichannel ferromagnetic wire (see Fig. 1). In the presence of
proximity induced p-wave pairing, the FM is promoted to the topo-
logical class BDI, which is characterized by a non-trivial Z invariant
for a generic band occupancy. Additionally, the large intrinsic mag-
netization provides a broad non-trivial parameter regime in which a
non-trivial topological state persists even if the chiral symmetry is
broken, say, by a second Zeeman field perpendicular to the magne-
tization (BDI→ D). In this case, the shaded regions with an odd Z
invariant remain non-trivial while the others become trivial. (c) Low
energy quasiparticle spectrum as a function of the chemical potential
in the ferromagnetic wire. As µ increases, the number of Majorana
zero modes at each end of the FM wire increases by one following
each gap closing.

(0, 1, 0) but leave d,V in Eq. 3 to highlight the generic prop-
erties of the various symmetry classes. Given our choice of
basis, the anti-unitary TR and PH operators have the matrix
structure Θ = iσyτ0K and Ξ = σyτyK where K is the com-
plex conjugation operator.

In momentum space, the reality conditions for Bloch
Hamiltonians are64

ΘH(k)Θ−1 = +H(−k) (3)
ΞH(k)Ξ−1 = −H(−k).

PH symmetry emerges from the BCS mean-field theory and
is intrinsic to all BdG Hamiltonians, so in the absence of
any additional symmetries (T,C, S) = (0, 1, 0). This triplet
corresponds to the topological class D, which is charac-
terized by a Z2 topological invariant in d = 1. Recall,

Z2 ≡ Z/2Z is the cyclic quotient group with two ele-
ments {0, 1}. The topological invariant for class D sys-
tems is given by Kitaev’s Majorana number, which is de-
fined as4 M = sgn

[
Pf(Ã(0))Pf(Ã(π))

]
where Ã is the

momentum space Hamiltonian written in a skew symmet-
ric form, determines when the system is topologically non-
trivial. The MBS-carrying spin-orbit coupled semiconductor-
superconductor heterostructure proposal11–15 belongs to the
topological class D for the most general types of spin-orbit
coupling. However, the specific models studied in the original
proposals11–15 assumed that the spin-orbit direction was per-
pendicular to the Zeeman coupling. These models are there-
fore in a more restricted BDI class that will be discussed fur-
ther at the end of this section because of its relevance to the
ferromagnetic wire model. In this system, a Zeeman field
splits degenerate spin-orbit coupled bands. The goal of this
splitting is to remove a single Fermi surface thus rendering
the system effectively spinless. Typically, the Zeeman split-
ting is small compared to the bandwidth, resulting in a small
non-trivial topological parameter range (see Fig. 2). In this
case, the difficult task of fine tuning the chemical potential,
by using gate electrodes for example16–21, may be necessary
to achieve a non-trivial topological state if the chemical po-
tential lies near half filling for a subband. As emphasized
at the end of the Introduction, however, we are free to take
the very large spin-splitting (i.e. very large Vz) limit of the
semiconductor model (although this would not be a particu-
larly physically relevant model for semiconductors per se, it
is a perfectly allowed theoretical limit), which then coincides
with the current ferromagnetic wire situation of interest to the
experimental system in Ref. 44 (see Appendix A for the de-
tails).

If Zeeman splitting is absent in Eq. 3, then the first real-
ity condition from Eq. 3 is satisfied. Using Θ = iσyτ0K we
see that T = −1 so a class DIII TR invariant system is char-
acterized by the triplet (T,C, S) = (−1, 1, 1). Class DIII is
characterized by a Z2 topological index which is related to a
Kramers polarization65 similar to the way the class D invariant
is related to the electric polarization of the wire64. If H be-
longs to this class, any hybridization between time-reversed
Majorana zero modes is forbidden by Kramers degeneracy,
and each end of the wire hosts a perfectly degenerate Majo-
rana Kramers pair.

In addition to the two classes discussed above, supercon-
ducting systems can belong to the topological class BDI. Note
that there exists the chiral operator S = d̂ · στy which anti-
commutes with the Hamiltonian in Eq. 3; note in the TR in-
variant case the chiral operator is SDIII = σ0τy . This unitary
chiral operator must be a product of two anti-unitary opera-
tors, one of which is Ξ. By simple algebra, one can show
that our missing operator is O = (d̂ · ŷ + i(d̂ × ŷ) · σ)K
so that O2 = 1 (i.e. T = +1) and that H(k) satisfies
OH(k)O−1 = +H(−k). We continue to call this operator
O, even though it leads to the same reality condition as Θ,
in order to distinguish it from the usual time reversal sym-
metry. A crucial difference between classes BDI and D/DIII
is that the former is characterized by an integer Z invariant.



7

Because the invariant can take any integer value, multiple
spatially overlapping MBS can coexist in contrast to class D
systems where localized zero-energy anyonic MBS hybridize
into conventional finite-energy fermionic quasiparticle states.
As illustrated in Fig. 2 panel (b), a BDI chiral system is non-
trivial for a generic parameter range. We numerically diago-
nalize and plot the low energy quasiparticle spectrum forHTS

as a function of the chemical potential in Fig2 panel (c). The
Majorana occupancy grows when µ increases and successive
higher energy bands are occupied. Therefore for any generic
chemical potential one expects a non-trivial topological state
with end-localized zero energy MBS.

Composing the two reality conditions in Eq. 3 we see
that the chiral operator satisfies {S, H(k)} = 0. This anti-
commutation relation implies that in the eigenbasis of S the
Hamiltonian is off-diagonal,

H ′(k) =

(
0 A(k)

A†(k) 0

)
. (4)

Here we have used U to represent the unitary transformation
matrix between the original and the chiral basis. For a sin-
gle channel A(k) is a 2× 2 complex Hermitian matrix whose
determinant D(k) ≡ Det(A(k)) is generally complex. Obvi-
ously the complex phase exp[iθ(k)] = D(k)/|D(k)| lies on
the unit circle and we have established a mapping from the
Brillouin zone (S1 in 1D) to U(1) . The fundamental group
π1(U(1)) = Z is well defined here so that we may write the
topological winding invariant as37,

W =
1

2π

∫ 2π

0

argD(k)dk. (5)

The integerW counts the number of times the complex argu-
ment θ(k) winds about the origin in the complex plane and
is invariant under smooth deformations. In other words, W
can change only if the winding curveD(k) passes through the
origin. However, by looking at the from of Eq. 4 we know
that the k-point where D(k) vanishes constitutes a gap clos-
ing with a concomitant topological quantum phase transition.
Note that the DIII chiral operator is odd under time-reversal
symmetry, {SDIII ,Θ} = 0 which implies that the end modes
with chiral charge +1 are compensated by an equal number of
modes with charge −1. Therefore, while this procedure may
be mathematically well defined, it is trivial in the sense that
the net DIII chiral topological charge always vanishes.

The winding number defined in Eq. 5 can also be used
to calculate the chiral topological invariant for multichannel
wires66. The quasi-one-dimensional Hamiltonian used in this
procedure is one in which a Fourier transform has been per-
formed along the longitudinal x-direction, but not along the
y-direction. Using l, l′ ∈ [0,W ] to indicate the y-coordinate,
we write HTS =

∑
kll′ Ψ†kl(H(k)δl,l′ + H⊥l,l′)Ψkl′ where

H⊥l,l′ = −tσ0τz(δl,l′+1 + δl,l′−1). We use the procedure out-
lined above, whereA(k) is now a 2W ×2W dimensional ma-
trix and multiple Bloch bands can now be mapped to U(1) by
the determinant function. The result is sketched in Fig. 2 panel
(b). As the chemical potential increases and higher bands are
filled, the gap closing occurs in the spectrum of HTS and

the corresponding topological invariantW increases by unity.
We emphasize that when the chemical potential is in the low-
est spin-split band (Fig. 2), the topological phase is generi-
cally present in this half-metallic FM situation since the spin-
splitting is much larger than the induced superconducting gap.
We shall now discuss the experimental signatures which are a
consequence of our model.

IV. SCANNING TUNNELING DIFFERENTIAL
CONDUCTANCE

Consider an STM brought close to the surface of the multi-
channel FM wire described by Eq. 1 (see Fig. 1) . The STM
tip weakly couples to FM wire orbitals through a small hop-
ping integral HSTM =

∑
σ t
′(c†sσdsσ + H.c.). Here d annihi-

lates electrons at the STM tip which we take to be three sites
wide and centered the x-coordinate s = (x− 1, x, x+ 1). We
will parametrize the tunneling barrier at the STM tip (which
determines the size of the zero bias tunneling peak at finite
temperatures13,63) by the single parameter t′ for simplicity–
typically t′ � t in the STM set up of Ref. 44. A poten-
tial difference V is now applied between STM and drain (i.e.
the grounded superconductor on which the FM has been de-
posited). We will now set up a scattering matrix formalism
to calculate the differential conductance through the FM wire,
in order to experimentally detect the MBS. Within this ap-
proach we model the STM, which is the first scattering lead,
as a normal metal electron reservoir biased at a variable elec-
trochemical potential µN + eV measured relative to the su-
perconducting Fermi energy. Our quasi-one-dimensional FM
wire (Eq. 1) acts as the scattering region and the second lead
is the grounded electron drain which is held at chemical po-
tential µN . We adopt a BTK perspective67 in assuming that
equilibrium Fermi distribution functions determine the incom-
ing quasiparticle occupancy levels. Here, ψin = (ψSin, ψ

D
in)T

are plane waves originating deep within the semi-infinite lead
STM and drain leads which are described by the Fermi func-
tions f(E − eV ) and f(E) respectively. Note, in general
ψS,(D) is an N(M) component spinor given N(M) occupied
channels in the STM (drain) lead. For a quantum coherent
process we can relate the outgoing modes to the incoming
modes by the scattering matrix ψout = Ŝψin where

Ŝ =

(
r t′

t r′

)
. (6)

Here r is a 4N × 4N matrix consisting of complex reflection
coefficients between all the occupied incoming STM chan-
nels. Likewise r′ is the reflection matrix for the drain and
t, t′ are the transmission coefficient matrices connecting the
two leads. (Note that we use the same notations t, t′ to de-
note the transmission matrix elements for the leads as what
were used to define the tunneling amplitudes in defining the
basic Hamiltonian, but there is no scope for any confusion
here since the transmission matrix elements t, t′ only appear
in Eq. 6 above in defining the Ŝ-matrix and in our numerical
work and nowhere else in the text below.)
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In the presence of a proximity induced superconducting
gap, single electrons cannot tunnel from the STM to the FM
for low bias-voltages V � ∆. As a result, all of the flowing
current in the subgap regime is generated through the Andreev
reflection process in which excess Cooper pairs are created
and simultaneously the incident electrons are converted into
holes. The reflection matrix can be written as

r =

(
ree reh
rhe rhh

)
. (7)

where ree (reh) refers to the normal (Andreev) reflection sub-
matrix. At low bias voltages the differential conductance, pro-
portional to the transmission probability at a given energy E,
is expressed in terms of the STM reflection matrices as68

dI(V )

dV
=
e2

h

[
N − Tr(r†eeree) + Tr(r†ehreh)

]
E=V

. (8)

We generate the scattering coefficients numerically using the
Kwant69 numerical package.

A. Results

We know from the topological properties discussion in
Sec. III that MBS appear as soon as any FM bands, within
a normal state picture, become occupied. Setting V = 0 and
using Eq. 8 we see a peak in the zero-bias conductance, quan-
tized in units of 2e2/h, abruptly appearing at the critical value
of the chemical potential when the first band becomes occu-
pied (µ ≈ −0.7t) as shown in panel (a) of Fig. 3. As µ in-
creases, higher sub-bands are filled while the Majorana oc-
cupancy increases, and each MBS contributes its own factor
of 2e2/h to the total zero-bias differential conductance. The
zero-bias peak is a direct probe of the Majorana occupancy
as the plot for W = 6 in Fig. 3 (a) clearly mirrors the the
zero-energy excitation spectrum given in Fig. 2. In realistic
experiments, because of disorder and electrical contact com-
plications, it is difficult to increase the chemical potential uni-
formly across an entire sample in order to induce a topological
phase transition. It is for this reason that we instead propose
manipulating the system width, i.e. tightly packing parallel
magnetic atomic chains, as an experimental test of the chiral
topological state. Fig. 3 panel (a) illustrates the zero-bias sig-
nal behavior for various values of W . Samples with different
widths are expected to have a similar chemical potential, but
the strength of the zero-bias peak at that µ should increase (red
dashed line for example) as a function of W . It is also impor-
tant to note that while finite temperature effects generally sup-
press the ZBCP height (as seen below), this effect is uniform
and transitioning from W = 2 to W = 4 at µ corresponding
to the dashed line, would still double the zero-bias signal. The
observation of such jumps in the ZBCP height with increas-
ing the number of wires or channels will be a strong indication
that the ZBCP is indeed arising from the localized MBS in the
ferromagnetic wires in the BDI class.

Typical differential conductance profiles over finite voltage
range are presented in Fig. 3 panel (b). The green, red and blue
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FIG. 3. (Color online) (a) The zero-bias differential conductance as
a function of chemical potential µ for various wire widths W using
a topological gap ∆ = 0.1t and a nanowire length of L = 200
sites. Since each Majorana modes contributes a factor of 2e2/h to
the zero-bias signal, this measurement directly probes the number of
Majorana states present. For a given geometry the maximum possi-
ble conductance is Gmax = 4We2/h (not shown here). (b) Rep-
resentative dI/dV curves from parameter regimes with an integer
topological invariant |W | = (0, 1, 2) are given by the green, blue
and red curves respectively. Inset shows the quantized peak height
for the blue (2e2/h) and red (4e2/h) curves. (c) Finite temperature
thermally broadens the zero-bias conductance peak width, thereby
reducing the peak height to well below the quantized value of 2e2/h.
(d) Weak STM - FM nanowire coupling, i.e. small t′, in conjunction
with finite temperature (T = 0.05t) further reduces the peak height.
Note that the abscissa corresponds to an energy range much larger
than the topological gap given by ∆ = 0.1t.

lines are dI/dV profiles generated for µ values corresponding
to topologically distinct phases indexed by an integer winding
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invariant |W | = (0, 1, 2). A superconducting gap devoid of
subgap states (V ≤ .1t) is characteristic of the trivial regime
(green curve) while a quantized zero-bias signal appears in the
non-trivial regimes.

The conductance at finite temperature T is given by

dI(V, T )

dV
=

∫ ∞
−∞

dV ′
dI(V ′, T = 0)

dV ′
d

dV
f(V, T ), (9)

where f(E, V, T ) = (exp [(E − µ− eV )/T ] + 1)−1 is the
fermi function. In this paper all zero temperature results
will be assumed to be smeared by an infinitesimal tempera-
ture T = 10−5t. The finite temperature is crucial to avoid
anomalies that depend on exponentially small coupling be-
tween Majorana modes which must exist in any finite length
system no matter how long the wire is. As seen from previous
calculations70 the zero-bias conductance vanishes at strictly
zero temperature even for a topological system. However,
this anomaly reduces to the usual result of a quantized con-
ductance at temperature T larger than the exponentially small
Majorana splitting energy, but smaller than the tunneling en-
ergy between the Majorana mode and the lead. Strictly speak-
ing, the tunnel coupling t′ between the STM tip and the Fe
nanowire is unknown in the experiment of Ref. 44 except that
it is known to be very small. On the other hand, the exper-
imental temperature in Ref. 44 is very high, > 1K, so the
condition t′ > T is probably not satisfied in Ref. 44. For-
tunately, this does not cause any qualitative problem in the
theoretical analyses where most of the experimental param-
eters, except for the temperature, are not precisely known.
Thermally smeared differential conductance curves are plot-
ted in Fig. 3 panel (c) for various temperatures. Similar to
the zero-bias phenomena observed in recent semiconductor
experiments, where the peaks are generally an order of mag-
nitude smaller than 2e2/h16–18,20,21, thermal effects smear our
zero-bias peaks to well below its quantized value as was al-
ready pointed out in Ref. 13. Furthermore, the very weak cou-
pling between the STM and the ferromagnetic nanowire, i.e.
t′ � t, in conjunction with finite temperature further reduces
the ZBCP height. Choosing a temperature of T = 0.02t we
illustrate this phenomena in Fig. 3 panel (d).

By varying the STM coordinate x, we now simulate the
tunneling spectra which would result from spatially sweeping
the STM probe across the length of the sample, which has
recently been experimentally achieved44. MBS are localized
at each end of the wire, and we expect the ZBCP to vanish
as the STM reaches the wire midpoint. Fig. 4 a (b) shows
the zero (finite) temperature differential conductance spatial
profile. The signal due to tunneling into quasiparticle states
above the superconducting gap remains approximately con-
stant as the probe position varies, in contrast to the zero-bias
signal which disappears in the bulk. A zero-bias spatial pro-
file displayed in Fig. 4 (c) illustrates the exponential decay of
the zero modes away from the edges as well as the end local-
ization scaling with the characteristic length ξ (see discussion
in next section, Fig. 5). The features shown in Figs. 3 and
4 are generally consistent with the experimental findings in
Ref. 44, providing some level of confidence that the experi-
mentally observed ZBCP may indeed be arising from MBS-
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FIG. 4. (Color online) Spatially resolved differential conductance
profiles from the left edge to the middle of the nanowire. We use a
topological pair potential ∆ = 0.1t and the length of the nanowire
is L = 200 sites. Panel a) shows the zero temperature signal, while
panel b) illustrates the effect of thermal smearing by a temperature
smaller than the topological gap (T = ∆/10 = 0.01t). Note that
for panels a,b) the energy is swept across the range −3∆ to 3∆ and
that the color scales in the top panels differ by an order of magnitude.
Additionally panel c) highlights the spatial structure of the zero-bias
signal for various temperatures. See discussion below Eq. 9 for a
note regarding the T = 0 result.

related physics (although the model parameters used in these
figures are not realistic representations of the Fe/Pb system
used in Ref. 44). It is interesting to note that the very high tem-
perature (T ∼ ∆) used in the experiment of Ref. 44 along with
the very small tunnel coupling (t′) to the STM tip not only
leads to a very strong suppression of the ZBCP strength from
its quantized Majorana value of 2e2/h, but also suppresses the
range of x values (indicating how far from the x = 0 end point
of the wire) over which the Majorana effectively ‘resides’ as
observed in the STM conductance measurement. The fact that



10

the experimental Majorana observation seems to be localized
near the wire end could just be a feature of the very high ex-
perimental temperatures. Thus, it is imperative that additional
experimental data is obtained with higher values of ∆/T (ei-
ther by increasing the effective topological superconducting
gap or by lowing the experimental temperature) before one
can reach a definitive conclusion regarding the existence or
not of Majorana fermions in the experiment of Ref. 44. We
note that the experimental values of ∆/T in Ref. 44 are much
lower than those used in Figs. 3 and 4, making it difficult,
if not impossible, to reach any conclusion about the possible
existence of Majorana fermions in the system.

In the next two sections, we provide a more detailed com-
parison between our numerical results and the experimental
data of Ref. 44.

V. EXPERIMENTAL IMPLICATIONS

Having established generic features of our model, we now
turn our attention to a comprehensive comparison with a re-
cent experiment44 which shares many, but unfortunately not
all, features with our theoretical results. Our focus here is
mainly on comparing the qualitative phenomenological prop-
erties of the experimentally observed ZBCP and our theoret-
ical results. In addition to analyzing the height and width
of the ZBCP as a function of temperature, wire length, and
the STM tunnel barrier, we will also closely examine the spa-
tial structure of the differential conductance profile, which can
be directly calculated from our STM simulation (see Fig. 4).
To begin with, we first recapitulate the system parameters as
quoted in Ref. 44 and then set up our numerical parameters
accordingly for comparison. The ferromagnetic splitting is
estimated to be J = 2.4 eV , which is much greater than
the estimated hopping parameter t = 1 eV (which in turn
is much larger than the superconducting gap ∼ 1 meV in the
substrate, thus allowing us to use the half-metallic ferromag-
netic nanowire model for the theoretical description). Addi-
tionally, the superconducting gap in the underlying substrate
is ∆s = 1.36 meV while the induced p-wave gap is estimated
to be ∆p = 100 µeV , although no direct nanowire supercon-
ducting gap with well-developed coherence peaks is visible at
all in the experimental data presented44. Measurements were
made on atomic chains between 5−15 nm in length at a tem-
perature T = 1.4K which corresponds to 100 µeV in energy
(roughly equal to the topological gap). We mention here that
these ferromagnetic nanowires are extremely short in length,
containing only 10-50 Fe atoms only – these wire lengths are
by far the shortest lengths in the problem, being even shorter
than the superconducting coherence length (∼ 80 nm) of Pb,
the substrate superconducting material. The topological co-
herence length in the Fe wire (∼ 1000 nm) is more than an
order of magnitude larger than the length of the wires them-
selves. The estimate for the coherence length in the Fe wire
obtained here assumes the induced topological superconduct-
ing gap to be 100 − 200 µeV as provided in Ref. 44. This
experimentally used parameter regime is obviously a non-
ideal regime for studying topological superconductivity since

the lowest energy scale is the topological gap in the system,
which is the same as the temperature of the system. Tempera-
ture would therefore be expected to suppress any signatures of
the topological gap, including the Majorana zero-mode, which
would merge with the bulk states.

To compare our results with the experiment we introduce
two parameter regimes, each characterized by different Ma-
jorana decay length scales, and then compare the results be-
tween the two regimes. In the large pairing regime we take the
magnitude of the superconducting pair potential to be ∆p =
0.1t while in the small pairing regime we use ∆p = 0.01t.
(To be clear, the system is always in a topological state and
this is not to be confused with the weak/strong pairing regimes
of Ref 3 which describe topologically non-trivial and trivial
phases.) In both cases we choose ∆s = ∆p and simplify our
notation by referring to this quantity simply as ∆ (keeping in
mind that ∆p is responsible for the topological properties). In
both parameter sets we use µ = −.65t, W = 2 and Vy = 2t.
We also typically choose very small values of t′(� t) to sim-
ulate the very large tunnel barriers occurring at the STM tip
contact with the nanowire. (Very small values of t′ are es-
sential for obtaining extremely weak zero-bias signals for the
Majorana modes as observed experimentally.)

In a finite system, the localized MBS wavefunctions expo-
nentially decay into the bulk with the characteristic supercon-
ducting coherence length ξ ∝ vF /∆, thus acquiring a finite
energy due to wavefunction overlap from the two end MBS on
two sides (true zero modes only occur in the L → ∞ limit).
Fig. 5 panels (a,b) show the Majorana amplitude |Ψ|2 on sys-
tems composed of L = 700, 100 sites in the large pairing
regime. The Majorana decay length is clearly much shorter
than the wire length for both cases, so zero-energy Majorana
bound states are localized at each end of the wire and with
|Ψ|2 being negligible near the midpoint. Panels (c,d) illus-
trate the wavefunction amplitude in the small pairing regime,
in which the Majorana decay length is comparable to the sys-
tem size for the L = 100 case. The end modes appear unaf-
fected in the L = 700 wire, however, the wavefunctions for
Majorana modes bound to opposite ends of the wire overlap
significantly in the L = 100 case, and as we discuss later, this
has important ramifications for the zero-bias signal. Note that
the small gap used in the small pairing regime (∆ = 0.01t) is
closer to the experimentally quoted parameters which would
indicate a minuscule value of ∆ = 10−4t (since the exper-
imental system has t ∼ 1eV and ∆ ∼ 100µeV ). We do
not use even smaller ∆ due to the prohibitive computational
resources which would be required; however, the physics is
generic and the topological pair potentials we have chosen are
already sufficiently small to illustrate our point. In fact, our
theory is strongly over-emphasizing the topological aspects of
the experimental systems– all topological signatures will be
weaker in the experiment compared with our results since the
induced gap is smaller in Ref. 44 than our chosen theoretical
value.

∆E, the MBS splitting, can be directly captured using
an effective Hamiltonian spanning the zero-energy Majorana
subspace, Heff = i(f/2)γLγR where f ∝ exp (−L/ξ). In
Fig. 5 panels (e,f) we numerically calculate ∆E as a func-
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FIG. 5. (Color online) Majorana wavefunctions for small (∆ =
0.01t), and large (∆ = 0.1t), pairing regimes as calculated for short
(L = 100) and long (L = 700) systems. For both lengths consid-
ered in the large pairing regime, i.e. panels a,b), the Majorana decay
length is much smaller than the system length (ξ � L) and the zero
energy excitations are heavily localized to the FM wire endpoints.
Panels c,d) illustrate how reducing the pair potential to ∆ = 0.01t
substantially increases the Majorana decay length (by an order of
magnitude) and while a 700 site system still hosts Majorana states,
considerable wavefunction overlap in the 100 site system hybridizes
the end modes into non-zero energy, conventional delocalized quasi-
particle states. Panels e,f) show the logarithm of the energy splitting
∆E between the two Majorana modes. As the wire length L in-
creases ∆E falls off exponentially. Majorana decay lengths of of
ξ ∼ 10 sites, in the large pairing regime, and ξ ∼ 99 sites, for the
small pairing regime, are extracted from the black linear fits in panels
e,f) respectively.

tion of length in order to determine the decay length. Plotted
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FIG. 6. (Color online) Zero-bias differential conductance peak height
(panels correspond to same parameter values as used in Fig. 5 panels
a-d), at one end of the wire (x = 0) as a function of STM-FM cou-
pling t′ and temperature T . When the Majorana decay length is sig-
nificantly shorter than L (i.e. panels a-c) a quantized zero-bias signal
of 2e2/h (dark red on logarithmic color scale) is seen for zero tem-
perature and t′ > 0.03t (note that the STM-FM coupling in Ref. 44
is expected to be smaller than this critical value of t′). The quantized
signal decays rapidly by introducing finite temperature or decreasing
t′. Panel d) No zero-bias signal is present near zero temperature (see
below Eq. 9 for details) due to Majorana hybridization which splits
the zero-bias peak into two separate finite bias signals. The cause of
this effect is finite temperature, which smears two finite-bias peaks
together for an effective zero bias signal (see to Fig. 9 for details).

on a logarithmic scale, the red circles represent the raw data
while the black linear regression has been fit to the data. Tak-
ing f = exp (−L/ξ) we extract coherence (or equivalently,
MBS localization) lengths of ξ = 10, 100 sites in the large and
small pairing regimes respectively. Note that the ‘beading’ on
top of the exponential decay is due to constructive and de-
structive interference between the MBS, and the length scale
of these oscillations goes as 1/kF

71.
Next, we consider the roles of STM-FM coupling t′ and

finite temperature T in the quantitative suppression of the
ZBCP strength in both parameter regimes. As we have already
noted in Fig.3 a small t′ reduces the ZBCP, which in conjunc-
tion with thermal smearing effects, significantly reduces the
zero-bias signal. As seen in Fig. 6 panels (a,b), the T = 0
zero-bias signal in the large pair potential regime, where both
wire lengths support MBS, saturates to the quantized value
of 2e2/h as t′ becomes large. Increasing temperature or de-
creasing t′ both monotonically reduces the magnitude of the
zero-bias signal, and similar behavior is found in panel (d)
(long wire in small pairing regime), which also hosts well de-
fined Majorana excitations. Interestingly, as seen in panel (b),
the short wire in the small pairing regime, i.e. one in which
MBS have hybridized due to the small wire length (ξ ∼ L),
displays a finite temperature zero-bias signal comparable in
magnitude to the finite temperature signal seen in the other
panels. Moving upward from the zero-temperature x-axis to-
wards higher temperature, this signal grows until some critical
value, after which the zero-bias signal decays like in the other
panels. As discussed later in this section, the source of this
unusual zero-bias peak behavior increasing with temperature
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FIG. 7. (Color online) Differential conductance calculated using an
STM coordinate x = 0, L/4, , L/2 for a long wire L = 700 in
the small pairing regime (∆ = 0.01t) using an STM-FM coupling
t′ = 0.01t. Solid and dashed lines are at temperature T = 0, 0.01t
respectively, and green (red) lines correspond to a STM-FM coupling
of t′ = 0.01t (0.005t). Panel a) shows a clear zero-bias signature
which is visible at the wire endpoints for both zero and finite tem-
perature. The green dashed line (T = ∆) displays a peak height
(10−3e2/h ∼ 40nS) and width (∼ ∆) which are comparable to
the experimentally reported values. Panels b,c) The zero temperature
Majorana peak decays as the STM moves into the FM nanowire bulk.
The peak completely vanishes at the midpoint, and is not visible at
zero or finite temperature signal. Note that the energy scale for the
abscissa is much larger than the topological gap in these figures.

is thermal smearing between a pair of split Majorana states
near zero energy.

Having established that a strongly suppressed ZBCP is a
generic feature of the experimental parameter regime (i.e.
small t′, large T , and small topological gap), observable with
or without the existence of zero energy Majorana excitations,
we now analyze the spatial profile of the ZBCP, which can in
principle be used to distinguish between a signal originating
from zero energy or finite-energy split quasi-MBS. Focusing
on the small pairing parameter regime first, i.e., the param-
eters which are closer to those reported in Ref. 44, we plot
the differential conductance measured at three STM positions
x = 0, L/4, L/2 along a wire of length 700 sites (see Fig. 7).
In panel (a) the conductance is measured from the wire end-
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FIG. 8. (Color online) Differential conductance spatial profile as
a function of the STM coordinate x for a long wire L = 700 in
the small pairing regime (∆ = 0.01t) using an STM-FM coupling
t′ = 0.01t. Panels a,b) correspond to temperature T = 0, 0.01t
respectively, and we present the zero temperature data on a logarith-
mic scale for improved visibility. At zero temperature the spatially
localized Majorana mode (the localization length appears longer on
a logarithmic scale) resides within a well defined superconducting
gap which is not visible at finite temperature due to thermal smear-
ing effects. Note that the true spatial extent of the Majorana mode is
revealed by the finite temperature result which is plotted on a linear
scale and that the energy scale for the abscissa is much larger than
the topological gap in these plots.

point (i.e. x = 0) and we observe that finite bias quasipar-
ticle states are separated from the Majorana signal by a gap
which is comparable in magnitude to the pair potential (recall,
∆ = 0.01t). Note the zero-bias Majorana signal (green and
red solid lines are almost completely superimposed and there-
fore not discernible) is delta function shaped as a consequence
of the small coupling parameter t′. The dashed lines indicate
the signal at a finite temperature of T = ∆ = 0.01t, which is
the case in Ref. 44. The thermally broadened peak height for
the green dashed line is 10−3e2/h ≈ 40nS which is compara-
ble to that reported in the experiment. Additionally, the peak
width at half maxima is ∆, which is also consistent with ex-
perimental results. Panel (b) shows how by moving the STM
tip into the bulk of the wire (x = L/4) the zero-bias signal
drastically falls off, to the point where it is of the same order
of magnitude as the conventional background thermal quasi-
particle signal. Due to the large separation between the zero-
and finite-bias signals, a valley, centered around V = 0, ap-
pears in the thermally broadened conductance profile (dashed
line). Lastly, in panel (c) we see that, as expected, the Majo-
rana peak is completely absent at the wire midpoint x = L/2.
All these features appear to be qualitatively consistent with
the experimental data reported in Ref. 44.

A detailed spatial profile of the differential conductance
should reveal the highly localized Majorana wavefunction
from Fig. 5. In order to numerically reveal the localized nature
of these Majorana wavefunctions, we smoothly vary the STM
tip position x and plot the zero temperature differential con-
ductance at each point in Fig. 8 panel (a). Along most of the
wire, the spatially resolved dI/dV indicates a well formed
superconducting gap separating the single Majorana peak at
zero energy from the finite energy quasiparticles. Note that, in
this plot, the spatial extension of the Majorana wavefunction



13

−0.10 −0.05 0.00 0.05 0.10
V/t

10

20

30

40

x

−16.5

−15.0

−13.5

−12.0

−10.5

−9.0

−7.5

−6.0

−4.5
lo
g[
dI

/d
V
](
e2
/h

)

−0.08 −0.06 −0.04 −0.02 0.00 0.02 0.04 0.06 0.08
V/t

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006
dI

/d
V

(e
2 /
h

)

−0.10 −0.05 0.00 0.05 0.10
V/t

10

20

30

40
x

0.00004

0.00008

0.00012

0.00016

0.00020

0.00024

0.00028

0.00032

dI
/d
V
(e

2 /
h
)

a)

b) c)

FIG. 9. (Color online) When the ferromagnetic nanowire is short (i.e.
L ∼ ξ ) Majorana bounds states at opposite ends hybridize as their
wavefunctions overlap significantly in the bulk. Panel a) Using the
same parameters from the Fig. 8 except L = 100, we see that the
zero-bias Majorana signature splits into two distinct peaks centered
near V = ±0.01t. The green, red, and blue curves correspond to the
differential conductance calculated at x = 0, L/4, L/2 respectively,
and the solid (dashed) lines denote the zero (finite T = ∆ = 0.01t )
temperature. Panels b,c) Spatially resolved differential conductance
along the longitudinal axis for zero (on a log scale) and finite tem-
perature (linear scale). In panel c) we see that the split Majorana
conductance peaks are indiscernible at finite temperature due to ther-
mal smearing (signal at V ∼ 0). This finite temperature signal is
flanked on both sides by broadened conventional quasiparticle peaks.
Solid and dashed lines are used to indicate the STM position for the
dI/dV curves presented in panel a). Note that the energy scale for
the abscissa is much larger than the topological gap (∆ = 0.01t) in
these plots.

is exaggerated due to the logarithmic scale which has been
used to increase the visibility of the data. Panel (b) shows the
spatially resolved conductance at finite temperature (T = ∆),
which reveals the true spatial extent of the Majorana mode.
We pause to note that while the model parameters used here
are similar those quoted in the experiment, the localization
length seen in panel (b) is significantly larger than reported in
Ref. 44.

Since small pair potentials and short wire lengths are quoted
in Ref. 44, we now investigate the small pair potential regime
(∆ = 0.01t, ξ = 99) on the L = 100 system, i.e. parame-
ters which should be most applicable to the experiment. Re-
member that for these parameters the Majorana modes gen-
erally hybridize (see Fig. 5) and therefore the Majorana split-
ting should be visible. Using an STM-FM coupling strength
t′ = 0.01t, the green, red and blue solid lines in Fig. 9 panel
(a) show the differential conductance calculated at STM posi-
tions x = 0, L/4, L/2. We immediately note that, due to finite
size effects, the zero-bias signal has split into two peaks cen-
tered around V = 0, with an estimated energy splitting com-

parable to the gap energy (∆E = 0.01t). Also note, that while
the tunneling signal into these two finite energy quasiparticle
states may be the largest at x = 0, the signal persists well into
the bulk of the wire (x = L/4, L/2). At finite temperature
T = ∆, the splitting between the peaks is no longer visually
resolvable since temperature has thermally broadened the sig-
nal across a range greater than the original Majorana splitting
∆E (dashed green line). Panels (b,c) illustrate the differen-
tial conductance spatial profile for temperatures T = 0, 0.01t,
where again we have presented the zero temperature data on a
logarithmic plot. In these bottom panels we see that the split
quasi-Majorana modes are spatially extended across the entire
length of the wire. Green, red and dark blue solid and dashed
lines superimposed on the spatial profiles correspond to the
dI/dV curves presented in panel (a). Thus, in the context of
a small pairing potential present in a short wire, we see a fi-
nite temperate zero-bias signal extending into the bulk of the
wire, with no measurable decay. For reasons which remain
unclear at this stage, this theoretically expected splitting of
the Majorana mode and the associated spatial delocalization
of quasi-Majorana modes are again not observed in the exper-
iment, but, see the next section for a possible resolution of this
puzzle.

An additional problem in the interpretation of the experi-
mental data of Ref. 44 is the issue of disorder which should
very strongly suppress the induced p-wave superconductivity.
Given that the induced gap is 0.1 meV and the typical elec-
tronic energy scales in the ferromagnetic chain (i.e. hopping
energy, chemical potential, exchange energy) are all in the eV
range, one expects the slightest static fluctuations in the sys-
tem (e.g. 0.1 % variation in the locations of the Fe atoms
or the presence of any neighboring random impurities near
the chain) to completely destroy the topological superconduc-
tivity in the system since the p-wave pairing is not protected
against disorder by Anderson’s theorem72,73. One simple and
approximate way to estimate disorder effects here is to ask
about the amount of elastic scattering which would be neces-
sary to completely suppress the reported 100 µeV topological
gap in Ref. 44. Equating the reported p-wave gap to a disor-
der induced collisional level broadening of 100 µeV in the Fe
chain and using the band parameters estimated in Ref. 44 for
the system, it is easy to conclude that the electronic mean free
path along the Fe chain must be longer than 100nm for the
disordered system to manifest any topological gap (assuming
the clean system gap to be 100 µeV ). This is of course incon-
sistent with the observation of a topological gap in chains of
variable lengths between 5 nm and 15 nm as reported44 since
the wire length serves as a cut off for the maximum possible
mean free path in the system. One could of course assume
that the measured gap already incorporates the disorder effect
(starting from a much larger clean topological gap), but this
would imply very strong dependence of the measured topo-
logical gap on the wire length, not reported in Ref. 44.

In the next section, we discuss in detail some possibili-
ties for the reconciliation of the experimental observations of
Ref. 44 with the theoretical Majorana interpretation. In par-
ticular, several specific ambiguities regarding the Majorana in-
terpretation of the experimental observations described in the
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FIG. 10. Evolution of the splitting of the Majorana conductance
peak, plotted across V = (−1.5∆, 1.5∆), for systems of length
L = 300(a), 200(b), 100(c). We have taken the pairing potential to
be ∆ = 0.01t and have calculated the conductance from the end of
the wire (STM positioned at x = 0 with an STM nanowire coupling
t′ = 0.01t). The solid (dashed) curves show the differential conduc-
tance at zero (finite) temperature. Because the three lengths used are
comparable to the superconducting coherence length (ξ = 100 sites),
the Majorana modes hybridize into finite energy quasiparticles with
energies ±∆E. This hybridization splits the ZBCP into two peaks
which are indiscernible at finite temperature due to thermal smearing
effects.

current section are shown to become less severe once certain
additional elements of physics, which might be playing a role
in the measurements of Ref. 44, are taken into account.

VI. COMPARISON WITH A RECENT EXPERIMENT

The most compelling qualitative features of the experimen-
tal STM results presented in Ref. 44, providing evidence for
zero-energy Majorana modes in Fe chains lying on supercon-
ducting Pb substrates, are the existence of a (weak and broad)
zero-bias differential tunneling conductance peak spatially lo-
calized near the ends of the chains which seems to disappear
as the STM tip probes the middle regions of the chains away
from the ends. This observation of a zero-bias peak seem-
ingly spatially localized at the wire ends while being a neces-
sary signature for Majorana modes as pointed out a long time
ago63 is, however, not sufficient (see the next section for the
chiral fractional Josephson effect which could serve as a suf-
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FIG. 11. Evolution of the splitting of the Majorana conductance
peak, plotted across V = (−1.5∆, 1.5∆), for systems of length
L = 300(a), 200(b), 100(c). Here we use a smaller pairing po-
tential of ∆ = 0.005t and have again calculated the conductance
from the end of the wire (STM positioned at x = 0 with an STM
nanowire coupling t′ = 0.01t). The solid (dashed) curves show
the differential conductance at zero (finite) temperature. Because the
three lengths used are comparable to the superconducting coherence
length (ξ = 200 sites), the Majorana modes hybridize into finite en-
ergy quasiparticles with energies ±∆E. Again, this hybridization
splits the ZBCP into two peaks (distinct at zero temperature) which
are indiscernible at finite temperature due to thermal smearing ef-
fects.

ficient condition).
The puzzling features of the experimental observation44 are

many: (i) the lack of any obvious superconducting gap mani-
festing in the STM data on the Fe nanowire although a striking
gap, in precise quantitative agreement with the BCS theory,
shows up for the Pb substrate itself; (ii) the observed zero-bias
peak is minuscule, being reduced by a factor of 10−3 to 10−4

from the canonical 2e2/h zero-bias conductance associated
with the perfect Andreev reflection from the Majorana mode;
(iii) the zero-bias peak is exceptionally broad, being compa-
rable to the estimated topological superconducting gap in the
nanowire; (iv) the experimental temperature is comparable to
the estimated topological superconducting gap which makes
it very difficult, if not impossible, to discuss features associ-
ated with Majorana modes; (v) the very small topological gap
implies very long coherence length, and consequently, long
Majorana localization length (ξ ∼ ∆−1), which makes the
experimental observation of the spatial localization of the Ma-
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FIG. 12. Differential conductance tunneling spectrum, plotted across
V = (−1.5∆, 1.5∆), for systems of length L = 700. The weakly
coupled (t′ = 0.01t) STM is positioned at at x = 0 and we use a pair
potential of ∆ = 0.01t (corresponding coherence length ξ = 100
sites) and ∆ = 0.005t (ξ = 200 sites) in panels (a,b) respectively.
The solid (dashed) curves show the differential conductance at zero
(finite) temperature. Since the system length is greater (L� ξ) than
the superconducting coherence length no peak splitting is observed.

jorana modes to atomic sharpness (<∼ 0.5 nm) very puzzling
to say the least since given that the experimental coherence
length is ξ ∼ 100 nm; (vi) the observed strong particle-hole
asymmetry is puzzling since the Majorana mode and the sub-
gap BdG spectrum should obey-particle hole symmetry; (vii)
given the small topological gap and the consequent long su-
perconducting coherence length in the nanowire, it is unclear
why (and how) the Majorana modes could be at zero energy
since there should be considerable hybridization between the
two end Majorana modes leading to split quasi-Majorana sub-
gap modes away from zero energy; (viii) connected with the
last item, the long coherence length (ξ > 15 nm) and the short
lengths of the nanowire (5 − 15 nm) used in the experiment
imply that considerable Majorana splitting oscillations should
manifest themselves in the experiment (since the coherence
length is greater than the wire length), which are, however, not
seen; (ix) no obvious Majorana peak (even split peaks) is seen
in the very short (< 5 nm) wires; (x) the STM gap signature
for superconductivity which manifests itself strikingly in the
Pb substrate itself away from the nanowire, disappears com-
pletely on the nanowire without any obvious signature for the
Shiba subgap states in the Pb superconducting gap as should
be expected for Fe, a magnetic impurity, on Pb, an ordinary
s-wave superconductor (unless, of course, the weak peaks be-
ing identified as Majorana modes are really the subgap Shiba
states induced by Fe in Pb).

Some of the problems with the Majorana interpretation of
the data in Ref. 44 have already been mentioned in the earlier
sections of this paper, but we summarize all of them tougher
right in the beginning of this section because we will provide
detailed numerical results in this section establishing that, in
spite of all these problems the observations in Ref. 44 are not

inconsistent with the Majorana interpretation, but any defini-
tive conclusion would necessitate much lower measurement
temperatures and much higher instrumental resolution, as well
as a system exhibiting a more definitive topological gap.

First, the high measurement temperature (kBT >∼ ∆p) sup-
presses and broadens all features associated with any induced
superconducting gap and all associated subgap features (Ma-
jorana or non-Majorana), thus making it difficult to observe
any Majorana energy splitting oscillations since the features
are simply too weak. To make this point explicit, we show in
Figs. 10-12 our calculated STM tunneling spectra on the su-
perconducting ferromagnetic nanowire at the wire end (x = 0)
for three different temperatures (T = 0,∆/2,∆) , two dif-
ferent topological gap values (∆ = 0.01t, 0.005t), and four
different wire lengths (L = 700, 300, 200, 100) with a typi-
cal coherence lengths being ξ1 = 100 (for ∆ = 0.01t) and
ξ2 = 200 (for ∆ = 0.005t). We have chosen the tempera-
ture, the topological gap, the wire length and the STM tun-
nel barrier strength at the tip (t′ = 0.01t) to be qualitatively
consistent with the experimental results, and, by construction,
the voltage bias region (±1.5∆) chosen along the abscissa fo-
cuses entirely on the possible Majorana physics in the topo-
logical gap of the ferromagnetic wire. We note that since our
model has, by construction, no subgap states other than the
Majorana zero modes (which may very well be split due to
hybridization in the finite wire), any subgap structure mani-
festing itself in our results, by definition, arises from the Ma-
jorana fermions. The most prominent feature of Figs. 10-12 is
that, although the T = 0 Majorana peaks are sharp and may
manifest energy splitting (the magnitude of the splitting de-
creases with increasing wire length) as expected theoretically,
the finite temperature differential conductance at x = 0 for all
four wire lengths shows very broad features (with the broad-
ening being comparable to or even larger than the topological
gap itself) with a weak smooth peak at zero energy. For the
smallest gap (∆ = 0.005t in Fig. 11) and for the shorter wires
(L = 100, 200), the peak is actually asymmetric and in fact
goes out of the gap region (see Fig. 11) due to the Majorana
overlap. These features are all consistent with the experiment
where a very weak and very broad zero bias peak is seen only
in the longer wires (at the wire ends), and for shorter wires,
the peak is not observed.

To understand the absence of any split Majorana peaks or
Majorana oscillations away from the ends of the Fe wire in
the experiment, we show in Figs. 13-15 the calculated Majo-
rana conductance peaks around the spatial location x = L/4
for L = 100, 200, 300, 700 again for T = 0,∆/2,∆ and for
∆ = 0.01t and 0.005t. The interesting (and somewhat sur-
prising) point to note is that essentially no Majorana peaks or
oscillations are discernible around x = L/4 (i.e. Figs. 13-
15) for finite temperature although the T = 0 situation does
reflect split peaks. In fact, all traces of Majorana modes,
have disappeared completely around x = L/4 in the finite
temperature results in agreement with the experimental find-
ing, although the superconducting coherence length (ξ ≈ L,
certainly ξ > L/4) is long enough that one would expect
(as found at T = 0) signatures of Majorana oscillations at
x = L/4. Again, the high experimental temperature com-
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FIG. 13. Evolution of the splitting of the Majorana conductance peak, plotted across V = (−1.5∆, 1.5∆), for systems of length L =
300(left column), 200(middle column), 100(right column). We have taken the pairing potential to be ∆ = 0.01t and the weakly coupled
(t′ = 0.01t) STM is now positioned away from the system edge at x = L/4 for panels (a-c), at x = L/4 + 2 for panels (d-f), and at
x = L/4 + 3 for panels (g-i). The solid (dashed) curves show the differential conductance at zero (finite) temperature. Because the three
lengths used are comparable to the superconducting coherence length (ξ = 100 sites), the Majorana modes hybridize into finite energy
quasiparticles with energies ±∆E. This hybridization splits the ZBCP into two peaks which are indiscernible at finite temperature due to
thermal smearing.
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FIG. 14. Evolution of the splitting of the Majorana conductance peak, plotted across V = (−1.5∆, 1.5∆), for systems of length L =
300(left column), 200(middle column), 100(right column). We have taken the pairing potential to be ∆ = 0.005t and the weakly coupled
(t′ = 0.01t) STM positioned at x = L/4 for panels (a-c), at x = L/4 + 2 for panels (d-f), and at x = L/4 + 3 for panels (g-i). The
solid (dashed) curves show the differential conductance at zero (finite) temperature. Because the three lengths used are comparable to the
superconducting coherence length (ξ = 200 sites), the Majorana modes hybridize into finite energy quasiparticles with energies ±∆E. This
hybridization splits the ZBCP into two peaks which are indiscernible at finite temperature due to thermal smearing.

pared with the induced superconducting gap in the nanowire
is responsible for the suppression of Majorana oscillations.

Finally in Figs. 16 and 17 we show color plots for the
spatial profiles of the differential conductance calculated at
T = 0 (Fig. 16) and ∆ (Fig. 17) respectively, for three differ-
ent wire lengths (L = 50, 100, 700) and one value of the gap
(∆ = 0.01t). Results are shown only for finite segments of
the wires near the ends, establishing what is already apparent
from Figs. 10-15: (i) the conductance is mostly localized at
the wire ends at the finite temperatures of the experiments, and
(ii) in shorter wires (L = 50) the Majorana peak is pushed out
of the gap due to strong hybridization making it impossible to
observe. Both of these findings are consistent with experiment
as emphasized already.

We note that there is an additional element of physics, be-

yond the the scope of the current work, which may lead to fur-
ther spatial localization of the Majorana modes as observed in
the experimental system studied in Ref. 44. This is the effec-
tive system dimensionally of the experimental setup, which
has been assumed to be almost purely one-dimensional in the
current work with all substrate degrees of freedom associated
with Pb being integrated away. Wa have focused on the one-
dimensional ferromagnetic nanowire with the only role of the
substrate being the inducement of topological superconductiv-
ity in the wire through the proximity effect. If the full three-
dimensional nature of the problem is taken into account, then
the Majorana localization (or hybridization) goes effectively
as e−r/ξ/

√
kF r (2D) or e−r/ξ/(kF r) (3D) instead of falling

off purely exponentially e−r/ξ (1D)60,74,75. We note that
Ref. 60 explicitly illustrates how the Majorana decay length
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FIG. 15. Differential conductance tunneling spectrum, plotted across
V = (−1.5∆, 1.5∆), for systems of length L = 700. The weakly
coupled (t′ = 0.01t) STM is positioned at at x = L/4 and we
use a pair potential of ∆ = 0.01t (corresponding coherence length
ξ = 100 sites) and ∆ = 0.005t (ξ = 200 sites) in panels (a,b)
respectively. The solid (dashed) curves show the differential conduc-
tance at zero (finite) temperature. The system length is much greater
(L � ξ) than the superconducting coherence length and no Majo-
rana splitting is observed.

exceeds the chain length in the limit of weak hybridization
between the host superconductor and magnetic impurities (i.e.
the nanowire limit), while if the hybridization is strong (Shiba
limit) the modified superconducting band structure indicates a
strong renormalization of the Fermi velocity vF which modi-
fies the Majorana coherence length (recall ξ ∼ vF /∆). Obvi-
ously a rigorous inclusion of this enhanced localization effect
(because of the denominator) is well beyond the scope of the
current effective 1D theory, but we could incorporate the de-
nominator approximately by multiplying the Majorana over-
lap term by (kF r)

−1 (2D) or (kF r)
−2 (3D) compared with

our calculated 1D result. It is obvious that such a modification,
which effectively takes us from the ferromagnetic nanowire
model to the Shiba chain model in an approximate manner,
leads to enhanced Majorana mode localization (see Fig. 18) at
the wire ends because of the 1/r (or 1/r2) factor. On the other
hand, this should not modify the temperature dependence (see
Fig. 19) as long as the induced topological superconducting
gap is comparable to the temperature as appears to be the case
in Ref. 44. We emphasize that the physics of strong Majorana
localization discussed in Ref. 60 is qualitatively included in
Figs. 18 and 19.

In Figs. 18,19 we show such a comparison among the 1D,
2D, 3D cases which should only be taken in an approximately
qualitative sense. The Majorana splitting for the isolated 1D
system as well as the rescaled splittings in the 2D, 3D cases
are illustrated in Fig. 18. Since the coherence length for
the MBS at each end of the wire is rescaled, the wavefunc-
tion overlap in the bulk of the system is also reduced. This
manifests itself in a reduction of the energy splitting ∆E be-
tween the MBS as seen in Fig. 18. In panel (a,b) we have

used parameters which correspond to 1D coherence lengths
of ξ = 100, 200 sites and have plotted the energy splitting
across a range of wire lengths between just a few atoms and
L = 2ξ. The rescaled energy splittings, which are now com-
parable to the Fe adatom spacing itself (red and green lines in
Fig. 18), show a dramatically reduced energy splitting at wire
lengths which are actually smaller than the system size.

The results in Fig. 19 demonstrate the expected strong spa-
tial Majorana localization near the wire ends in spite of the
very small applicable topological gap (and the associated long
superconducting coherence length) in the nanowire. As al-
ready indicated by the results of Figs. 10-17 the very high
experimental temperatures (compared with the induced topo-
logical superconducting gap) used in Ref. 44 make it impos-
sible to observe any Majorana signatures away from the wire
ends even in the 1D model, and therefore, the relevance of the
higher dimensional models remains unclear at this stage al-
though these higher-dimensional models may explain Majo-
rana localization if it is observed for temperatures much lower
than the topological gap, a situation not yet achieved experi-
mentally. We emphasize that, although the 2D and 3D results
at zero temperature in Fig. 19 look very different from the cor-
responding 1D results at T = 0 and manifest strong MBS lo-
calization at the wire ends, the finite-temperature results for all
three cases look very similar and are qualitatively the same as
what is already shown in our Figs. 12-17. Thus, unless STM
measurements are carried out at temperatures much lower than
the topological gap, nothing conclusive can be stated about
the experimental situation with the existing data reported in
Ref. 44. The fact that our results in Fig. 19 look very simi-
lar to the earlier results presented here based on the pure 1D
ferromagnetic nanowire model establishes that at high tem-
peratures, the STM spectra in the two models are similar, and
only future low-temperature experiments can distinguish the
two situations.

We point out a particular feature of our results which is also
apparent in the experimental STM data. The sub-gap con-
ductance spectra often manifests strong particle-hole asym-
metry. This is a special feature of STM spectroscopy76 where
some non-equilibrium inelastic effect destroys the expected
particle-hole symmetry which is manifestly obvious in the
data of Ref. 44. In our numerical calculation, we simulate this
non-equilibrium inelastic scattering process by having an ex-
tremely weakly (� t′) coupled third lead in the system using
the Landauer-Buttiker scattering formalism.

To conclude this section, we have shown by presenting ex-
tensive numerical results for the calculated spatially resolved
differential conductance spectra for the strongly-coupled fer-
romagnetic nanowire under proximity-induced p-wave super-
conducting proximity effect that many apparent puzzling fea-
tures of the experimental data in Ref. 44 can be made consis-
tent with the existence of Majorana zero modes in the system
once the very high temperature (compared to the supercon-
ducting gap) and the very weak tunnel coupling of the STM
tip are included in the theory.
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FIG. 16. Spatially resolved differential conductance profiles for a systems of length L = 700, 100, 50 in panels (a,b,c) respectively. The
differential conductance is calculated at zero temperature (T = 0) with a topological gap of ∆ = 0.01t (the coherence length is ξ = 100
sites) and a weak STM-nanowire coupling is t′ = 0.01t. In panel (a) the nanowire is much longer than the coherence length which results in
a zero-bias signal, which rapidly decays into the bulk over a range of 2ξ = 100 sites, due to the localization associated with a Majorana end
mode. In contrast, the Majorana modes split to finite energy in panels (b,c) as a result of a short nanowire length (ξ >∼ L).
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FIG. 17. Spatially resolved differential conductance profiles for a systems of length L = 700, 100, 50 in panels (a,b,c) respectively. The
calculation is performed at a finite temperature (T = ∆), with a topological gap of ∆ = 0.01t (ξ = 100 sites), and with a weak STM-
nanowire coupling is t′ = 0.01t. At this temperature the zero-bias Majorana peak is thermally broadened across the entire width of the
topological gap but remains localized to the nanowire end. The hybridized Majorana peaks, appearing in shorter nanowires as seen in panels
(b,c), share the qualitative feature (with a true Majorana signal) that they are smeared across the entire gap at high temperature.

VII. CHIRAL FRACTIONAL JOSEPHSON EFFECT

We now turn our attention to another important signature
which would definitively confirm the presence of the topolog-
ical superconducting state, the fractional Josephson effect. A
Josephson junction (JJ) consists of two superconductors con-
nected by a weak link, normal metal or insulator for example.
Conventionally, the current passing through a JJ obeys the 2π
periodic current-phase Josephson relation, IJ = Ic sin(∆φ),
where ∆φ = φL−φR is the phase difference across the junc-
tion and Ic is the critical supercurrent. It has been predicted4,77

that spinless p-wave superconductors, when in a topologically
non-trivial phase, obey a 4π periodic current-phase relation
IJ ∝ sin(φ/2). Even if quasiparticle relaxation times are
shorter than the phase adjustment time, one expects to see
a peak in the current noise spectrum at half the Josephson
frequency78. The difference in periodicity is rooted in the fact
that only Cooper pairs can tunnel between conventional su-
perconductors, while single electron tunneling is enabled by
MBS, thus doubling the Josephson period from 2π to 4π in

the process.

Weakly coupling the two ends of a finite wire by a hop-
ping integral t′′ allows us to model a Josephson junction
(see Fig. 20). The Hamiltonian for our ring geometry is
H = HTS + HJ where HJ =

∑
σ t
′′(c†Nσc1σ + H.c.). Hy-

bridizing the two Majorana states by t′′ results in the forma-
tion of Andreev bound states (ABS) in the weak link junction.

Next, we wish to control the superconducting phase dif-
ference across our junction by penetrating the ring with a
magnetic flux Φ. Since we introduce a flux we must use
the phase which is invariant under a gauge transformations
A 7→ A+∇χ (χ is an arbitrary scalar function). This is given
by79 φ = ∆φ− 2π

Φ0

∫
A ·dl where the integration is performed

across the junction. The magnetic vector potential couples to
the momentum by p 7→ p − eA/c and we model this on a
lattice with the Peierls substitution t 7→ teie

∫
A.dl/~ where

the integral is taken along the two sites which t connects. The
Peierls phase factor is exactly half the gauge invariant phase
and the matrix elements connecting the ring junction become
t′′e±iφ/2 (Fig. 20) where the ± corresponds to counter- or
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FIG. 18. Majorana splitting energy ∆E (determined by exact di-
agonalization) as a function of the system length L, in d = 1, 2, 3
spatial dimensions. In panel (a) we use ∆ = 0.01t (i.e. the small
pairing regime with a coherence length of ξ = 100 sites) while in
panel (b) we choose an even smaller value of ∆ = 0.005t (with a
coherence length of ξ = 200 sites). The splitting in d = 2, 3, (red
and green lines), differs from the one-dimensional result by a factor
of 1/L and 1/L2 respectively, yielding a more pronounced decay as
length increases.

clockwise hopping across the junction.
At zero temperature the Josephson quasiparticle current is

IJ =
∑
n ∂En(φ)/∂φ, where n indicates the nth excited Bo-

goliubov state77 and the summation is taken over all states up
to the Fermi energy. Using this and the Josephson current-
phase relation, it is clear that the relevant quasiparticle ener-
gies obey a cosine like behavior with the same periodicity as
the current. Andreev bound states (ABS) are quasiparticles
bound to the junction and are responsible for the Josephson
current, in contrast with φ independent bulk states which do
not contribute to the Josephson current. Therefore, one can
deduce the periodicity of the Josephson current just by look-
ing at the φ dependence of the ABS spectrum (Fig. 20). A
topologically trivial junction is marked by an absence (gener-
ically any even number) of zero energy crossings as seen in
panel (b). In this regime each quasiparticle’s energy is 2π
periodic, the fermion parity is conserved, and the Josephson
relation is a conventional 2π periodic one. Upon entering the
topologically non-trivial regime, a single protected crossing
emerges at φ = π (an odd number of crossings will gener-
ally flip Fermion parity). Transitions between the positive and
negative energy subgap branches are forbidden by particle-
hole symmetry so that Fermion parity flips as φ evolves by
2π. During this process, a single electron is transferred across
the junction which is forbidden in parity conserving topolog-
ically trivial superconductors. Winding φ by another factor
of 2π recovers the spectrum and fermion parity, leading to
a 4π Josephson effect. Further increasing the chemical po-
tential causes more energetic sub-bands to become occupied

and the system transitions into topological phases character-
ized by topological indexW > 1. The ABS spectrum in this
regime contains |W| sets of protected zero energy crossings
at φ = π. In addition to PH symmetry, chiral symmetry now
forbids transitions between the different sets of ABS leading
to a robust 4π Josephson effect. The basic idea here is that
non-trivial JJ physics, indicating the existence of the fractional
Josephson effect associated with the existence of the MBS in
the system, can be tuned by varying W rather than µ. W
should in principle be easier to tune in the current system, due
to the experimental challenges associated with manipulating
chemical potential via an electrostatic gate potentials.

Although, as explained in section VI the current experimen-
tal results presented in Ref. 44 are indeed consistent with the
existence of Majorana zero modes in the nanowire, the exist-
ing observation of a weak and broad zero bias conductance
peak localized at the wire ends at best satisfies the necessary
condition for the Majorana modes. To make the Majorana
existence definitive, the observational of a tunable fractional
Josephson effect, as discussed in this section would be neces-
sary.

VIII. SUMMARY AND CONCLUSION

In this work, motivated by a recent experiment44 in which
STM zero-bias peaks have been observed from the edges of
chains of magnetic atoms deposited on superconducting Pb
substrates, we show that a multichannel ferromagnetic wire
deposited on a spin-orbit coupled superconducting substrate
can realize a non-trivial topological superconducting state
with one or more Majorana bound states localized at the wire
ends. We explain how the persistence of the zero-bias phe-
nomena for generic parameters44 as observed in the experi-
ments can be understood if the induced topological supercon-
ductivity is chiral in nature. To test this hypothesis, we de-
velop several experimental signatures which may verify the
existence of a topological superconducting state. When sev-
eral chains of magnetic atoms (such as Fe), or a multichan-
nel FM nanowire, are deposited onto a spin-orbit coupled su-
perconductor such as Pb, a mixture of spin-singlet and triplet
components are expected to be proximity induced46,48,50–53.
The induced topological superconductivity may generically
belong to the topological class BDI, which is characterized
by a Z topological invariant. In this case, by varying the wire
width – or equivalently by coupling parallel chains of mag-
netic atoms – one can increase or decrease the strength of
the zero-bias signal in a controlled manner. The width de-
pendence of the peak height is robust against finite temper-
ature effects, which reduce the peak height from the zero-
temperature quantized value. Observing this width depen-
dence of the ZBCP would establish the presence of a chiral
topological superconducting state. We also show that the 4π
fractional Josephson effect remains, even in the presence of
multiple spatially overlapping MBS, and can be used to reveal
the Majorana occupation number by tuning the width param-
eter of the coupled chains.

This work has been motivated by recent experiments44
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FIG. 19. Differential conductance spatial profiles for a system of length L = 100 and dimensions d = 1, 2, 3 are plotted in the left, middle, and
right columns respectively. In panels (a-f) we use a pairing potential of ∆ = 0.01t (ξ = 100) while in panels (h-l) use ∆ = 0.005t (ξ = 200).
The zero temperature results are given in panels (a-c, g-i) while we use a finite temperature T = ∆ in panels (d-f, j-l) and in both cases STM
- FM coupling is t′ = 0.01t. Because the system size is comparable to the coherence length (L ≤ ξ), the Majorana modes hybridize into
conventional quasiparticles, leading to a splitting of the ZBCP as seen in the T = 0 conductance. At finite temperature, this signal is smeared
across the entire voltage range of V = (−1.5∆, 1.5∆). The 2D (middle column) and 3D (right column) data differs from the nanowire data
by a pre factor (see text) of 1/x and 1/x2 respectively, which accounts for rapid decay of the modes into the 2D and 3D bulk respectively.

studying the conductance spectrum of a ferromagnetic wire
on a spin-orbit coupled superconductor. Our calculations re-
produce the qualitative features of the position and voltage de-
pendence of the conductance experiments. The low value of

the measured conductance in experiment can be attributed to
the small topological gap, the high tunnel barrier at the STM-
wire contact, and the high temperature.

We show using a superconducting ferromagnetic topologi-



21

−0.3
−0.2
−0.1
0.0
0.1
0.2
0.3

E
/t

−0.2

−0.1

0.0

0.1

0.2

0 π/2 π 3π/2 2π

φ

−0.2

−0.1

0.0

0.1

0.2

E
/t

0 π/2 π 3π/2 2π

φ

−0.2

−0.1

0.0

0.1

0.2

eiφL∆ eiφR∆

a)

b) c)

d) e)

FIG. 20. a) Top view of ring geometry Josephson junction formed by
weakly coupling (t′′ = t/10) the two ends of a nanowire. The phase
difference across the junction is controlled by the magnetic flux, Φ,
threading the ring. b-e) Evolution of subgap Andreev bound states
as a function of the phase difference between two superconductors
in a Josephson junction setup. Zero energy crossings are absent in
the ABS spectrum in the topologically trivial regime as seen in panel
b). c) In the |W| = 1 phase, the ABS spectrum crosses zero energy
for the single value φ = π. Transitions between the subgap branches
are forbidden by particle-hole symmetry so that Fermion parity flips
as φ evolves by 2π. d,e) Spectra in a system indexed by topological
invariant |W| = 3, 5. There are |W| protected zero energy cross-
ings and chiral symmetry forbids transitions between different sets
of subgap branches.

cal nanowire model, that all the seemingly inconsistent fea-
tures of the experimental data (e.g. a very weak and very
broad zero bias peak arising only from the wire ends, absence
of any zero bias peak in the middle of the wire, absence of any
observed Majorana splitting oscillations, etc.) can be recon-
ciled once the very high experimental temperature (compara-
ble with the topological superconducting gap) is quantitatively
taken into account in the theory. Such a high temperature and
the extremely small topological gap basically make it impos-
sible to detect any Majorana features in the STM conductance
away from the wire ends since all such features are broad-
ened and weakened below the instrumental resolution (which
is also comparable to the experimental topological gap). The
experimental regime studied in Ref. 44 is highly non-ideal for
Majorana investigations since both the experimental temper-
ature and instrumental energy resolution are comparable to
the superconducting gap, and any subgap states (e.g. an An-
dreev bound state or Shiba state or some other fermionic sub-
gap state) would manifest behaviors very similar to the exper-
imental observations80. Basically, the broadening of all sub-
gap peaks would be large enough that nothing conclusive can
be stated definitively about their origin at such high tempera-
tures. The only way to obtain a more definitive conclusion is
to carry out STM spectroscopy at much lower temperatures (∼
one tenth the gap value) so that much sharper zero-bias peaks,
as well as Majorana oscillations, are observed as stronger ev-
idence for the existence of the Majorana zero modes. Since
our model has no subgap states other than the Majorana zero
modes by construction, we can conclude that the experimen-
tal observations are indeed superficially consistent with the
Majorana theory. This is, however, an important achieve-

ment since at first sight, the very long superconducting co-
herence length associated with the very small topological gap
appears to be prima facie inconsistent with the spatial localiza-
tion of the Majorana modes at the wire ends. We have shown
that, given the high temperature and poor experimental res-
olution (as well as extremely weak SM tunneling strength),
that Majorana features away from the wire ends (as well as
any Majorana energy splitting effects due to hybridization)
are simply not observable in the current experiment. We have
also shown that these same experimental limitations lead to
the non-manifestation of any Majorana-like features in short
wires as the split-Majorana zero modes are pushed essentially
above the topological gap where thy are unobservable. Only
going to temperatures much lower than the topological gap
values can decisively determine whether the observed weak
and broad zero bias peak has anything to do with Majorana
bound states or are arising from other subgap states present in
the system.

We mention before concluding that very recent theoretical
work has appeared in the literature60,75, after the original sub-
mission of our work, suggesting that the ferromagnetic Shiba
chain model50 rather than the ferromagnetic nanowire model51

might be the appropriate starting point for the physics underly-
ing the system studied in Ref. 44. Notably, Ref. 60 illustrates
that if this indeed the case, the Majorana decay length can
be strongly renormalized leading to general qualitative agree-
ment between theory and experiment at zero temperature. We
have, however, shown that the tunneling conductance at high
temperatures (comparable to the induced gap) is qualitatively
the same in both the ferromagnetic nanowire (weakly local-
ized Majorana) and the Shiba chain (strongly localized Ma-
jorana) model, and thus experiments at temperatures much
lower than the induced gap are necessary for any definitive
conclusion. If the Majorana modes are indeed strongly local-
ized, then the zero-bias peak should become very sharp at low
temperatures in long wires whereas clear Majorana splitting
should be observable for shorter chains. Such observations of
sharp zero-bias peaks (split peaks) for long (short) chains at
low temperature will be the definitive evidence for the exper-
imental observation of topological edge modes for Fe chains
on Pb substrates. However, a very recent work81 even sug-
gests that the observations of Ref. 44 can be simply explained
by the appearance of Shiba bound states (rather than Majorana
zero modes) in the system without any need to invoke any
topological superconductivity. We emphasize that (i) these
theoretical suggestions, while interesting, are not yet experi-
mentally validated, and (ii) temperature effects studied in our
work are not discussed at all in these works and, based on
our results shown in Fig. 19, we conclude that thermal effects
are similar in the Shiba chain model and the ferromagnetic
nanowire model as long as the induced gap remains compara-
ble to the experimental temperature. Only temperatures much
lower than the induced superconducting gap could distinguish
between the Shiba chain and the ferromagnetic nanowire mod-
els, and we hope that our results will encourage experiments
at much lower temperatures.

We conclude now with a succinct discussion (see the
Appendix) of the theoretical novelty of the ferromagnetic
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nanowire platform as compared with the semiconductor
nanowire platform studied extensively in the literature13–15.
One apparent important qualitative difference seems to be that
the semiconductor nanowire necessitates a fine-tuning of the
Zeeman splitting (or chemical potential) whereas the ferro-
magnetic platform manifests generic Majorana zero modes
without fine-tuning by virtue of its very large exchange-
induced spin splitting. It turns out, however (the details are
provided in the appendix), that the ferromagnetic nanowire is
simply a special limiting case of the semiconductor nanowire
Majorana problem with Vz � ∆, µ, where Vz , ∆ and µ
are the ferromagnetic exchange spin splitting in the nanowire
(or the external magnetic field induced Zeeman spin split-
ting in the semiconductor nanowire), the superconducting gap
and the chemical potential respectively. Since the condi-
tion Vz � ∆, µ is presumably satisfied in the experimen-
tal system of Ref. 44 according to the recent band structure
calculations75, the ferromagnetic nanowire platform is sim-
ply a special (and interesting) limit of the already well-studied
semiconductor nanowire case. We provide these details in the
appendix.

This work is supported by LPS-CMTC and JQI-NSF-PFC
at the University of Maryland and by AFOSR (FA9550-13-1-
0045) at Clemson University.

Appendix A: Connection to the semiconductor nanowire
platform

We show here that the topological properties of the FM
wire on an SC substrate in the presence of spin-orbit cou-
pling follow directly from those in the extensively studied
superconductor-semiconductor hybrid system in the limit of
very large spin splitting. Using Eq. (33) from Ref. 72 in the
semiconductor-superconductor system, we have for the clean-
limit quasiparticle gap ∆ in the topological superconducting
state:

∆ =

(
λ∆s

λ+ ∆s

)
αkF√

V 2
z + α2k2

F

, (A1)

where ∆ ≡ ∆p is the proximity induced topological gap (in
the Fe wire), ∆s is the s-wave pairing potential in the substrate
(Pb in our case), αkF ≡ Eso is the spin-orbit coupling re-
quired to induce p-wave proximity pairing from an s-wave SC
as originally discussed in Ref. 13, Vz ≡ J is the (exchange)
spin splitting in the Fe nanowire, and λ is the tunneling energy
coupling the substrate SC (Pb) and the nanowire (Fe), essen-
tial for inducing the proximity effect in the nanowire. We note
that it makes no difference in obtaining Eq. A1 whether the
spin-orbit coupling energy Eso(≡ αkF ) arises from the sub-
strate or the nanowire. The condition for the existence of the
topological phase (and the applicability of Eq. A1 describing
the effective p-wave topological gap in the nanowire) is the
following (c.f. Eq. (35) in Ref. 72):

V 2
z > ∆2 + µ2, (A2)

(i.e. J2 > ∆2 + µ2) where µ is the chemical potential in the
nanowire.

Restricting now to the FM nanowire on the SC substrate
of our interest here44, we consider the extremely large spin-
splitting situation given by

J ≡ Vz � ∆, µ, Eso (A3)

where we conclude that the topological condition is trivially
satisfied generically, without tuning of parameters (as long as
J is large enough for the Fe system to be a half-metal) as in
Eq. A2 since spin-splitting is by far the largest energy scale.
This leads to the immediate (and somewhat trivial) conclusion
that, as long as Eq. A3 is satisfied, the system is in the topolog-
ical phase with no fine-tuning necessary. This is assumed to
be the situation in Ref. 44 and in Ref. 75 (where detailed band
structure results for the experimental system are provided) as
already emphasized in Ref. 51

This generic existence of a topological phase in the ferro-
magnetic nanowire, however, comes with the heavy price of
a minuscule topological gap ∆p as is obvious by taking the
Vz(≡ J)� αkF (≡ Eso) limit in Eq. A1:

∆p ≈
(

λ∆s

λ+ ∆s

)(
Eso
J

)
. (A4)

Note that there are two terms in Eq. A4 (within the two
parenthesis) have different physical origins: the first term,
(λ∆s)(λ+∆s)

−1, is the proximity effect induced by the sub-
strate itself and the second term, Eso/J , is the topological
effect in the magnetic wire. Writing the first term as

∆0 = (λ∆s)(λ+ ∆s)
−1, (A5)

where ∆0 is essentially the s-wave pairing potential induced
in the wire by the substrate we obtain the useful relation:

∆p ≈ ∆0(Eso/J). (A6)

We note that Eq. A6 has recently been quoted in Ref. 75 as
a new result without the realization that this formula is sim-
ply a special limit of the earlier topological theories studied
in the context of semiconductor nanowire Majorana fermions.
Eq. A6 defines the operational equation for the topological in-
duced gap in the ferromagnetic nanowire, establishing clearly
that the ferromagnetic wire on a superconducting substrate is
not a new Majorana platform at all from the theoretical per-
spective, but is simply a large spin-splitting limit of the well-
studied topological semiconductor system. This point may not
have been emphasized in the recent publications44,51,75 on this
topic.

One immediate consequence of the large spin-splitting limit
is that that topological gap is suppressed by the factor J ,
which is the largest scale in the problem. Since ∆ ∼ meV
(at best) and Eso ∼ meV whereas J ∼ eV in the Pb-Fe
hybrid system, one gets an agreement with the experimental
findings in Ref. 44

∆p ∼ 100 µeV (at best) (A7)

Thus, a minuscule topological gap is the price one must
pay to have a generic topological phase in the ferromagnetic
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nanowire problem. We see no escape from this small gap co-
nundrum for the Fe on Pb topological platform.

Using the semiconductor nanowire analogy, we can also
estimate the effect of disorder on the topological gap. It is
known that although the disorder in the substrate supercon-
ductor has no effect on the topological gap (by virtue of An-
derson’s theorem) any disorder in the Fe wire itself has a pro-
found detrimental effect72,73 on the topological gap since p-
wave superconductivity is vulnerable to elastic scattering as
Anderson’s theorem does not apply in the topological wire it-
self.

Using the existing work in semiconductor nanowires72,73

we have (see Eq.(20) in Ref. 72) the following condition for
the requisite elastic disorder scattering time for topological
superconductivity to be possible in the hybrid system:

τ � J/(∆sEso). (A8)

This indicates that the system is highly susceptible to disor-
der in the large J limit (since J � ∆s, Eso, we conclude
that we must have τ∆s � 1, requiring very long scattering
times for the survival of topological superconductors) and we
can easily obtain a crude numerical estimate by equating the
induced topological gap ∆p with the disorder-induced level
broadening ~/2τ to write the condition for the survival of the
topological superconductivity in the Fe wire as:

τ � 2∆p

~
. (A9)

Converting the above condition to a minimum necessary mean
free path (l) in the Fe chain, by using ∆p ≈ 100 µeV as
quoted in Ref. 44 and from the known material parameters for
the Fe wire, we conclude that the following condition on the
Fe chain mean free path would be necessary for the observa-
tion of the Majorana zero modes:

l > 500 nm. (A10)

Since the nanowires used in Ref. 44 are shorter that this mini-
mum required mean free path (and by definition, a mean free
path cannot be longer than the system length), we conclude
that any Majorana zero mode would be strongly suppressed
by disorder effects in the Fe nanowire.

A simple way of appreciating the disorder problem in the
Fe/Pb system is to note that the reported topological gap (∼
100 µeV ) is ∼ 10−4t, where t is the typical hopping energy
in the Fe chain. This means that any fluctuation or error in t
arising, for example, from the expected lack of an absolutely
precise periodic arrangement of the Fe atoms along the chain
(or from environmental impurities and defects) must be well
below 1 part in 104 for a robust topological gap. This is a
rather demanding requirement.
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