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We investigate magnetic nanostructures with balanced gain and loss and show that such configu-
rations can result in a new type of dynamics for magnetization. Using the simplest possible set-up
consisting of two coupled ferromagnetic films, one with loss and another one with a balanced amount
of gain, we demonstrate the existence of an exceptional point where both the eigenfrequencies and
eigenvectors become degenerate. This point corresponds to a particular value of gain and loss pa-
rameter α = αc. For α < αc the frequency spectrum is real, indicating stable dynamics, while for
α > αc it is complex, signaling unstable dynamics which is, however, stabilized by nonlinearity.

PACS numbers: 11.30.Er, 76.50.+g, 05.45.Xt,

I. INTRODUCTION

Spin dynamics in synthetic magnetic nanostructures
has attracted increasing attention during the last years1,
because of the interesting fundamental physics involved
and also due to its important practical applications: mag-
netic storage and information processing2,3, sensing4,
and creation of tunable high frequency oscillators5 are
some of the areas that have been benefited by this re-
search activity. An important step in this endeavor is
the realization of new magnetic nanodevice architectures
with additional degrees of freedom which permit better
control of magnetization dynamics.

Along the same lines, management of classical wave
propagation via synthetic structures has been proven to
be successful resulting in the creation of new materials
with unexpected properties. Examples of this success
include the realization of meta-materials which exhibit
phenomena like cloaking, negative index of refraction,
etc. The operation frequency for many of these propos-
als spans a wide range from optics6 and micro- waves7 to
acoustics8. Quite recently, a new type of synthetic struc-
tures which possesses spatio- temporal reflection symme-
try, or parity-time (PT ) symmetry, has emerged. These
structures are implemented using judicious manipulation
of loss and gain mechanisms9–21. Their spectra undergo a
transition from real to complex once the parameter that
controls the degree of gain and loss in the system reaches
a critical value22. The transition point shows the charac-
teristic features of an exceptional point (EP), where both
eigenfrequencies and normal modes coalesce. For values
of the gain and loss parameter which are smaller than the
critical value the eigenvectors of the equations of motion
are also eigenvectors of the PT operator while above the
critical value, they cease to be eigenvectors of the PT
operator. The former domain is termed the exact phase
while the latter is the broken phase. This terminology
is borrowed from the “PT -symmetric quantum mechan-
ics” community (see the review23). One should keep in
mind, though, that the systems studied in9–21 are purely

FIG. 1: Two coupled ferromagnetic films in the presence of
an external magnetic field which is along the z-axis. We dis-
tinguish between two geometries: (a) Out of plane geometry
(the z-axis is perpendicular to the films) and (b) In plane
geometry (the z-axis is parallel to the films).

classical, with loss and gain being introduced on a phe-
nomenological level, and as such they are quite different
from the PT -symmetric quantum systems envisaged by
Bender and collaborators23.

The resulting wave structures show several intriguing
features such as power oscillations9–13, non-reciprocity of
wave propagation14–16, unidirectional invisibility11,17–19

and coherent perfect absorbers and lasers20 etc. Ex-
perimental realizations have been reported in the frame-
work of optics10,11,16,17,21 and electronic circuitry12,15,18

while the applicability of these ideas has been theoreti-
cally demonstrated in Bose-Einstein Condenstates24 and
in acoustics25.

In this paper we propose a class of synthetic magnetic
nanostructures which utilize natural dissipation (loss)
mechanisms together with judiciously balanced ampli-
fication (gain) processes in order to control magnetiza-
tion dynamics. Amplification in such structures can be
achieved with the help of certain external factors such as
parametric driving or spin-transfer torque (see Sec. V),
while loss comes from coupling with the phonons or other
degrees of freedom. As a prototype system we consider
two ferromagnetic films (see Fig. 1), one with loss and the
other with equal amount of gain, coupled by an exchange
or by a dipole-dipole interaction. The magnetization dy-
namics is described in terms of two vector variables, the
macroscopic magnetic moments of each film, whose evo-
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lution is given by the non-linear Landau-Lifshitz-Gilbert
equations. We will demonstrate that despite the fact that
the system is non-hermitian, if the gain and loss parame-
ter is below a critical value, the macroscopic magnetic
moments precesses about the direction of an effective
magnetic field inside the sample without being amplified
or attenuated. Specifically, below a critical value of the
gain and loss parameter, the eigenmodes are real while
above this critical value, they become complex, leading
to dynamical instabilities that are limited only by non-
linear effects. The transition point is characterized by
an EP degeneracy. Our proposal reveals a new type of
steady state dynamics which can be useful for manipulat-
ing magnetization switching and potentially lead to new
device design. Moreover, the realization of EP degenera-
cies may be utilized for enhanced sensitivity in sensing
via frequency splitting.

The structure of the paper is as follows. In the next
section II we present the mathematical model that de-
scribes our system. It consists of two coupled nonlinear
Landau-Lifshitz-Gilbert (LLG) equations. In section III
we investigate the out-of-plane geometry. In subsection
III.A we analyze the eigenfrequencies and the eigenmodes
of the linearized LLG equations for different values of the
gain and loss parameter. The dynamics generated by the
PT -symmetric LLG equations and its comparison to the
results from the linearized LLG equations are discussed
in subsection III.B. In section IV we analyze an in-plane
(magnetization) geometry. Finally in section V we dis-
cuss two different physical mechanisms which allow us to
incorporate and manage gain in a magnetic nanostruc-
ture. Our conclusions are given in section VI.

II. MATHEMATICAL MODELING

We consider two ferromagnetic films n = 1, 2 separated
by a non-magnetic layer. The two geometries that we will
consider here are shown in Fig. 1. In Fig. 1a, we assume

a uniform external magnetic field ~Hext perpendicular to
the plane of the films (out of plane geometry) while in
Fig. 1b the external field is parallel to the films (in-
plane geometry). The magnetization within each film is

uniform and is represented by a magnetic vector ~Mn=1,2.
When the magnetic configuration is away from equilib-
rium the magnetization precesses around the instanta-

neous local effective field ~Hn. The latter is generally a

complicated function of ~Mn and the external magnetic

field ~Hext. For the cases shown in Fig. 1 we have

~Hn = ~Hext − 4πN̂ ~Mn (1)

where the demagnetizing tensor N̂ takes the simple form
N̂i,j = δi,3δj,3 for the out of plane geometry and N̂i,j =
δi,1δj,1 for the in-plane geometry (i, j = 1, 2, 3 indicates
the x̂, ŷ, ẑ directions respectively).

The time-evolution of the magnetization dynamics for
this coupled system can be described by a pair of coupled

modified Landau-Lifshitz-Gilbert (LLG):

∂ ~M1

∂t
= −γ ~M1 × ~H1 − γK ~M1 × ~M2 +

α∣∣∣ ~M1

∣∣∣ ~M1 ×
∂ ~M1

∂t

∂ ~M2

∂t
= −γ ~M2 × ~H2 − γK ~M2 × ~M1 −

α∣∣∣ ~M2

∣∣∣ ~M2 ×
∂ ~M2

∂t
(2)

where γ is the gyromagnetic ratio. The first term on the
right-hand sides of Eqs. (2) describes the interaction of

the magnetization ~Mn of each layer with the correspond-

ing local field ~Hn. The second term represents the cou-
pling between the two ferromagnetic layers. We assume
ferromagnetic coupling i.e. K > 0. The last term of the
first equation describes dissipation processes and can be
introduced in the original LLG equations by assuming
that an effective local friction is pushing the magnetic

moment ~M1 towards the direction of the effective mag-
netic field acting on that moment. It was introduced by
Gilbert in order to describe dissipation and can be shown
to be equivalent to the term that was proposed originally
by Landau and Lifshitz for the same purpose1. The pa-
rameter α is the Gilbert damping term. The last term of
the second equation is similar but the sign is reversed, re-
flecting the possibility of amplification mechanisms. We
discuss experimentally realizable ways to achieve ”gain”
at the last section V of this paper.

For α = 0, Eqs. (2) are invariant with respect to the

interchange ~M1 ↔ ~M2. Notice that this interchange im-

plies also an interchange of ~H1 ↔ ~H2 via Eq. (1). We
refer to this symmetry as the “parity” (P) symmetry.
When α 6= 0 the parity symmetry of our system is de-
stroyed. However, Eqns. (2) are still invariant under a
combined parity P and time reversal T operations. The
latter corresponds to a time inversion t → −t together
with a simultaneous change of the sign of all pseudovec-

tors i.e. ~Mn → − ~Mn and ~Hn → − ~Hn. This definition of
the time reversal operation is necessary when magnetic
fields, which break the time reversibility in a Hermitian
manner, are present. Finally we note that all terms in
Eqs. (2) conserve the length of the magnetization vectors
~Mn. This can be easily seen by taking the inner product

of each of the above equations with the respective ~Mn.

This yields ~Mn
∂ ~Mn

∂t = 1
2
∂ ~M2

n

∂t = 0, indicating that
∣∣∣ ~Mn

∣∣∣
are constants of motion.

Below, we first analyze the parametric evolution of the
eigenfrequencies and normal modes associated with small
oscillations around the equilibrium configuration as the
gain and loss parameter α increases. To this end, we
separate the magnetization of each film into its equilib-
rium value which is assumed to be the same for both
films, ~M

(0)
n = ~M (0), and its oscillating part ~mn i.e.

~Mn = ~M (0) + ~mn where |~mn| �
∣∣∣ ~M (0)

∣∣∣. Furthermore,

the external magnetic field can be decomposed into its

constant value ~H
(0)
ext and a time-dependent part ~hext i.e.

~Hext = ~H
(0)
ext + ~hext. In the next section III we focus on
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the out of plane geometry (see Fig. 1a) while at section
IV we briefly discuss the in-plane geometry (see Fig. 1b).

III. OUT OF PLANE GEOMETRY

A. Linearized LLG Equations and Parametric
Evolution of its Normal Modes

For the out of plane geometry we recall the relation (1)

which allows us to connect the external field ~Hext to the
local internal field ~Hn. Linearizing Eq. (2) with respect

to ~mn and, furthermore, setting ~hext = 0 we obtain the
following linear set of equations

∂ ~m1

∂t
= (ωH + ωK)ẑ × ~m1 − ωK ẑ × ~m2 + αẑ × ∂ ~m1

∂t
∂ ~m2

∂t
= (ωH + ωK)ẑ × ~m2 − ωK ẑ × ~m1 − αẑ ×

∂ ~m2

∂t
(3)

where ωK = γK
∣∣∣ ~M0

∣∣∣ and ωH = γ
∣∣∣ ~H0

∣∣∣. Here
∣∣∣ ~H0

∣∣∣ =∣∣∣ ~H(0)
ext

∣∣∣ − 4π
∣∣∣ ~M0

∣∣∣ is the constant internal magnetic field

which is assumed to be the same for both films.
Assuming a harmonic time-dependence for the magne-

tization ~mn(t) = ~mn exp(−iωt), we have

−iω ~m1 = (ωH + ωK − iαω)ẑ × ~m1 − ωK ẑ × ~m2

−iω ~m2 = (ωH + ωK + iαω)ẑ × ~m2 − ωK ẑ × ~m1 (4)

Note that, although formally ~m1 and ~m2 are three-
dimensional vectors, only the transverse (x, y) compo-
nents appear in a non-trivial manner. The longitudi-
nal components m1z and m2z are zero in the linear
approximation, as follows from Eqs. (4). This is a
straightforward consequence of the already mentioned

constraint of the strictly conserved length of vectors ~M1

and ~M2. Thus, the magnetic vectors have only two inde-
pendent components and, if the transverse components
are known, the longitudinal component can be found
from the constraint. When ~m1 is treated in the linear
approximation, then m1z = −m2

1/2| ~M (0)| (and similarly
for m2z). In subsection IIIB, where the exact nonlinear
dynamics is treated, we use spherical coordinates which
makes it manifestly clear that there are only two indepen-
dent degrees of freedom (two angles) for each magnetic
moment.

The analysis of Eq. (4) can be simplified by using the
“center of mass” coordinates of the system. We define
~∆ ≡ ~m1− ~m2 and ~µ ≡ ~m1 + ~m2. Then Eqs. (4) take the
following form:[
(1 + α2)ω2 − (ωH + 2ωK)2

]
~∆ + 2iαω(ωH + ωK)~µ = 0

2iαω(ωH + ωK)~∆ +
[
(1 + α2)ω2 − ω2

H

]
~µ = 0(5)

which allows us to decouple the x and y components of

the center of mass coordinates ~∆, ~µ. Thus the original

FIG. 2: (Up) Parametric evolution of the eigen-frequencies
of a PT -symmetric ferromagnetic dimer shown in Fig. 1a.
The parameters used are such that ωK = 0.4ωH . (Down)
The same but now for the magnitude of the ratio between
the y-components of the normal modes and their associated
phase difference. The same behaviour holds also for the x-
components.

set of four coupled equations reduces to two uncoupled
sets for the x and y components respectively.

The eigenvalues and the normal modes can be found
by solving the 2 × 2 secular equation for one of these
components. The eigenfrequencies are given by:

ω1,2 =
ωH + ωK ±

√
ω2
K − α2ωH(ωH + 2ωK)

1 + α2
(6)

The limiting case of α = 0 results in two eigenfrequencies:
(a) ω1 = ωH associated with the “soft” mode (frequency

approaches zero when
∣∣∣ ~H0

∣∣∣ → 0), with ~m1 = ~m2 and

(b) ω2 = ωH + 2ωK associated with the ”hard” mode,
with ~m1 = −~m2. As the gain and loss parameter α
increases the two eigenfrequencies approach one another
(see Fig. 2) and at some critical value α = αcr they
coalesce and bifurcate into the complex plane. Using Eq.
(6) we calculate the critical frequency ωcr and the critical
value of gain and loss parameter to be

αcr =
ωK√

ωH(ωH + 2ωK)
, ωcr =

ωH(ωH + 2ωK)

ωH + ωK
(7)

Near the phase transition point αcr, the eigenfrequen-
cies display the characteristic behavior of an exceptional
point |ω| ∝

√
α− αcr. This behavior can be exploited in

sensing technologies since it enhances the sensitivity of
frequency splitting detection (for an optics proposal see
Ref26).

Next we evaluate the normal modes of the ferromag-

netic dimer. Using Eqs. (5,6) we first evaluate ~∆, ~µ and
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from there extract the original variables ~mn. This yields
m

(l)
1x

m
(l)
1y

m
(l)
2x

m
(l)
2y

 =


α(ωH+ωK)±i

√
ω2

K
−α2ωH(ωH+2ωK)

(1+iα)ωK

i
(
α(ωH+ωK)±i

√
ω2

K
−α2ωH(ωH+2ωK)

)
(1+iα)ωK

−i
1


(8)

where the sub-indexes x, y refer to the x, y components
of the magnetization vectors and the super-index l = 1, 2
refers to the normal mode corresponding to +,− signs at
the rhs of Eq. (8) respectively. PT -symmetry consider-
ations require that in the exact phase, in contrast to the
broken one, these vectors are also eigenvectors of the PT -
operator. In other words, the ratio of the magnitudes of

the relevant components R
(l)
x ≡

∣∣∣∣m(l)
1x

m
(l)
2x

∣∣∣∣ ;R(l)
y ≡

∣∣∣∣m(l)
1y

m
(l)
2y

∣∣∣∣ in

the exact phase is unity indicating that the magnitude
of the magnetization eigenvectors is the same in both
the loss and the gain side of the dimer. As α becomes
larger than αcr the magnitude of the magnetization in
the loss and in the gain sides become unequal indicat-
ing that the magnetization eigenmodes reside either on
the gain or the lossy side of the dimer. This behavior
can be seen nicely in Fig. 2b where we are plotting

R
(l=1,2)
y as well as the relative phase difference ∆ψ

(l=1,2)
y

between the y components of the l = 1, 2 modes. We see
that for α = 0 the phase difference assumes the values

∆ψ
(l=1)
y = 0 and ∆ψ

(l=2)
y = π indicating a symmetric

(~m1 = ~m2 corresponding to the soft mode) and anti-
symmetric (~m1 = −~m2 corresponding to the hard mode)
combinations. At α = αcr we have a degeneracy of the
eigenvectors.

B. Nonlinear Time Evolution

The PT -symmetric nature of the dimer is also encoded
in the time evolution of the magnetization vectors and the
realization of new types of steady-states. The precession
dynamics is better represented in spherical coordinates
i.e. switching to the angular variables Θ1,2 and Φ1,2

Mnx = M0 sin(Θn) cos(Φn);

Mny = M0 sin(Θn) sin(Φn);

Mnz = M0 cos(Θn) (9)

These variables are particularly convenient for studying
the dynamics because they unveil the fact that there are
only two (and not three) independent dynamical vari-
ables for each magnetic moment. Specifically we concen-
trate on the temporal evolution of the polar angles Θn(t),
with respect to the direction of the internal magnetic

fields ~Hn (z-direction). These polar angles are related to
the z-components of the magnetic moments. The dynam-
ics of the transverse components is less interesting (just
a rapid precession) and it is encoded in the azimuthal
angle Φn.

FIG. 3: Time dependence of the polar angle Θ1(t) associ-
ated with the magnetization vector of lossy film. The ini-
tial conditions in all cases are Θ1(t = 0) = 0 = Φ1(t = 0)
and Θ2(t = 0) = 0.05,Φ2(t = 0) = π/2 while ωK = 0.4ωH .
The results of the exact dynamics Eq. (2) are indicated with
red circles while the dynamics generated by the linearized
Eqs (3) are indicated with a black line. (a) Exact phase
for α = 0.85αcr; (b) Dynamics at the exceptional point i.e.
α = αcr; (c) Broken phase with α = 1.1αcr. Time is measured
in units of inverse ωH .

In the case of a single film, where only dissipative
mechanisms are taken into account, Θn decreases due
to energy losses so that the magnetization vectors align
with the ẑ-direction. Conversely, in the presence of am-
plification mechanisms only, the magnetization of a single
film is driven away from the ẑ-direction.

In the case of PT -symmetric configurations, where a
dissipative and an amplified film are coupled together,
the resulting dynamics depends on the value of the gain
and loss parameter α. Below we present exact numerical
solutions of Eqs. (2), for various cases.

When α < αcr (exact phase, see Fig. 3a and Fig.
4a), despite the fact that the dimer is non-Hermitian, the
polar angles Θn oscillate around the initial misalignment
from the ẑ-axis without being amplified or attenuated,
indicating the existence of a new type of steady state. In
this domain the linearized equations (3) describe well the
exact dynamics (2).

In the broken phase α > αcr (see Fig. 3c and Fig.
4c), the evolution generated by the linearized equations
(3) indicates an exponential growth of Θn (black lines in
Figs. 3c and 4c) which is associated with the fact that
the eigenfrequencies are acquiring an imaginary part. In
other words, in this domain, the linear solution is un-
stable and the linear approximation is inadequate to de-
scribe the dynamics. This exponential growth is eventu-
ally suppressed by non-linear effects which are inherent
in the original LLG equations (2). A (numerically exact)
solution of the nonlinear problem, for Θ1 as a function
of time, is shown in Fig. 3c by red circles (a similar be-
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FIG. 4: Time dependence of the polar angle Θ2(t) associated
with the magnetization vector of “gain” film. The initial con-
ditions and parameters are the same as the one used in Fig.
3. Time is measured in units of inverse ωH .

havior is observed for Θ2; see Fig. 4c). This solution
corresponds to the initial conditions Θ1(t = 0) = 0 =
Φ1(t = 0),Θ2(t = 0) = 0.05, and Φ2(t = 0) = π/2 and
it is periodic in time. We have checked that the period
slightly depends on the choice of the initial conditions.
In all cases, however, we find a stable periodic solution
with no sign of any ”run away” effects.

Similar behavior is observed at the transition point
corresponding to α = αcr, with the alteration that the
linearized equations (3) lead to a linear growth of the
polar angles Θn (see Fig. 3b and Fig. 4b). This be-
havior is a consequence of the EP degeneracy which re-
sults in defective eigenmodes. The particular solution
in Fig. 3b and Fig. 4b correspond to the initial con-
ditions Θ1(t = 0) = 0 = Φ1(t = 0) and Θ2(t = 0) =
0.05,Φ2(t = 0) = π/2. We conclude therefore that the
linear approximation, which is applicable only in the case
for which Θn � 1, fails to describe the actual dynamics
when α = αcr.

Finally, we point out that we have checked numeri-
cally that the behavior of the angular variables Θ1,2 as
discussed above and shown in Figs. 3,4 is typical and it
is qualitatively the same for other choices of initial con-
ditions.

IV. IN-PLANE GEOMETRY

For completeness of our study we also analyze the in-
plane geometry shown in Fig. 1b. Following the same
program as previously we can linearize the LLG equa-

tions (under the condition ~hext = 0) and study the dy-
namics of magnetization vectors ~mn. For this geome-
try the equations for ~mn differ from Eq. (3) by an
additional term ωMmnxŷ on the right hand side where

FIG. 5: In an in-plane geometry (Fig. 1b) for ωK = 0.4ωH

and ωM = 0.4ωH : (a) The parametric evolution of eigen-
frequencies versus the gain-loss parameter α; The temporal
evolution of Θ1(t) in the (b) exact phase with α = 0.85αcr;
(c) EP with α = αcr and (d) broken phase with α = 1.1αcr.
The initial condition and lines/symbols are the same as in
Fig. 3. Time is measured in units of inverse ωH . We have
used the same initial conditions as the one used in Fig. 3.

ωM = 4πγM0:

d~m1

dt
= (ωH + ωK)ẑ × ~m1 − ωK ẑ × ~m2 +

ωMm1xŷ + αẑ × d~m1

dt

d~m2

dt
= (ωH + ωK)ẑ × ~m2 − ωK ẑ × ~m1 +

ωMm2xŷ − αẑ × d~m2

dt (10)

These equations enable one to calculate the normal
modes of the system as well as the linear dynamics. We
have also obtained a solution of the full nonlinear prob-
lem for the in-plane geometry. Some representative re-
sults are reported in Fig. 5 showing a behavior qualita-
tively similar to that for the out of plane configuration.

V. REALIZATION OF GAIN IN
FERROMAGNETIC LAYERS

In this section we would like to point out two possi-
ble ways to achieve amplification (gain) of the magnetic
oscillations in ferromagnets.

A. Parametric driving

Let us first recall the phenomenon of the parametric
resonance of a harmonic oscillator27. Consider an oscil-
lator whose eigenfrequency is modulated in time so that
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FIG. 6: The temporal behavior of the magnetization m2
x+m2

y

of a dissipative (black line) and an amplified (red) ferromagnet
where gain is introduced via parametric driving. The driving
parameters in the last case are such that the amplification in-
crement has equal magnitude, but opposite sign, with respect
to the lossy ferromagnet. The dashed lines are drawn in order
to guide the eye and indicate that the ratios in these two cases
are the same. The time is measured in units of inverse ωH .

the equation of motion is

ẍ(t) + ω2
0 [1 + η cos(2ω0t)]x(t) = 0; (η � 1) (11)

The approximate solution of this equation is

x(t) = a(t) sin(ω0t) + b(t) cos(ω0t) (12)

where the slowly varying amplitudes a(t), b(t) grow ex-
ponentially with time, with an increment (ηω0/4) = λ�
ω0. Thus, the parametrically driven oscillator exhibits
an instability (gain). The equilibrium solution x(t) = 0
of Eq. (11) is unstable, i.e. an infinitesimal deviation
from equilibrium results in an exponential growth. This
growth, on top of rapid oscillations with frequency ω0,
can be modeled by the equation

ẍ(t)− 2λẋ(t) + ω2
0x(t) = 0. (13)

This exponential growth exp(λt), is eventually limited by
non-linear effects.

A similar phenomenon occurs for a magnetic moment
driven by an appropriate external magnetic field. Con-
sider the in-plane geometry with the external field

~Hext = [H
(0)
ext + hext(t)]ẑ (14)

in the ẑ-direction (in the plane of the film), where
the weak, time-dependent component can be written as

H
(0)
extηf(t). The geometry when the dc and ac external

fields are parallel to one another is known as longitudinal
(or parallel) pumping. Such pumping can lead to exci-
tation of spin waves, with a wavelength smaller than the

size of the sample28. We, however, are interested only in
the uniform magnetization of the entire sample.

Since ~hext is in the same direction as H
(0)
ext (which is also

in the direction of the equilibrium magnetization ~M0)
it cannot cause the ordinary precession of the magnetic
moment about the ẑ-direction. Rather, it can cause an
instability via a mechanism analogous to the parametric
driving of a harmonic oscillator (see Fig. 6). Indeed, ne-
glecting for the moment the losses, the linearized Landau-
Lifshitz equations read:

ṁx = −ωH [1 + ηf(t)]my

ṁy = ωH [1 + ηf(t)]mx + ωMmx
(15)

where ωH = γH0, ωM = 4πγM0. (Recall that in this

geometry the internal field H0 = H
(0)
ext). We do not pur-

sue the detail analysis of Eq. (15) but only notice that
for the case ωM � ωH the second of the Eqs. (15) re-
duces to ṁy = ωMmx which, after taking a time deriva-
tive and substituting ṁx from the first Eq. (15), yields
m̈y = −ωHωM [1 + ηf(t)]my. For f(t) = cos(2ω0t), with
ω0 =

√
ωHωM , this coincides with Eq. (11) for the para-

metrically driven oscillator. Thus a magnetic moment,
parametrically driven with an ac magnetic field, parallel
to the constant field Eq. (14), exhibits an instability, i.e.
an exponential growth of the precession angle Θ about
the ẑ-direction, limited only by nonlinearity. Such an
instability is modeled by reversing the sign of the atten-
uation term in the Landau-Lifshitz (Gilbert) equation.

Finally, the analysis can be extended to include a decay
term into the Landau-Lifshitz equations, in a way similar
to the inclusion of a weak friction into Eq. (11) for the
oscillator27 (see Fig. 6).

B. Spin transfer torque

A different mechanism for achieving amplification of
the magnetic moment precession is based on the spin
transfer phenomenon (see Ref.29 for a pedagogical re-
view). When spin-polarized electrons are scattered on a
ferro- magnetic layer, they generally transfer some angu-

lar momentum to the layer, thus inducing a torque ~N on

the magnetic moment ~M , see Fig. 7. (Spin polarization is
usually achieved by passing current through another fer-
romagnetic layer - a ”spin polarizer” - not shown in the
figure). Two conditions should be satisfied for the spin
transfer to take place: First, the scattering amplitudes
must be spin-dependent, i.e. be different for spin-up (par-

allel to ~M) and spin-down electrons (such difference is
provided by the exchange splitting between the minority
and majority spin-bands in the ferromagnet). Second,

polarization direction of the incident spins ~S, should not

be strictly parallel to the direction of ~M . The angular
momentum, transmitted to the ferro-magnetic layer by
the stream of polarized electrons, affects the dynamics of

the magnetic moment ~M . The effect is described by an
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FIG. 7: A beam of spin-polarized electrons impinges on a
ferro-magnetic layer (FM) with magnetic moment ~M .

FIG. 8: Spin-polarized electrons (up-pointing arrow) im-
pinges on the ferromagnetic layer and are reflected back
(down- pointing arrow). Spin angular momentum (but no
electric current!) is flowing into the layer, creating gain. The
red layer indicate the gain ferromagnet while the green layer
indicate the lossy ferromagnet.

amplification term in the Landau-Lifshitz equation. This
term has the same form as the damping term but with
an opposite sign (the resulting equation is referred to as
the Landau-Lifshitz-Gilbert-Slonczewski equation).

It is interesting to note that spin transfer can oc-
cur even in the case of total reflection, provided that
the reflection amplitudes for up and down-spins, rup =
exp(iφup) and rdown = exp(iφdown), have different
phases, see Eq. (14) in Ref.29. Although the ”trans-
mitted” wave in this case is purely evanescent, so that
no charge current can flow into the layer, the angu-
lar momentum transmitted to the layer is not zero29,30.
This might provide the most practical way for producing
gain in a PT -symmetric magnetic structure, see Fig. 8.
Again, as in Fig. 7, we do not show explicitly the set-up
which produces the spin-polarized current that impinges
on the lower film (gain) of our PT -symmetric device.
One can find the full set-up in Ref.30.

VI. CONCLUSIONS

In conclusion, we have introduced the notion of PT -
symmetry in magnetic nanostructures. Using two cou-
pled ferromagnetic layers, one with loss and another with
equal amount of gain, we demonstrated the emergence of
a new type of steady-state dynamics where the polar an-
gle, although not a constant of motion, is bounded and
neither attenuates (as in the case of losses) nor amplifies
(as in the case of gain). This non-Hermitian steady state
can be reached for values of the gain and loss parameter α
that are below a critical value αcr. At α = αcr the system
experiences an exceptional point degeneracy where both
eigenvalues and eigenvectors are simultaneously degener-
ate. It will be interesting to extend this study to the case
of spin waves (magnons) and investigate the possibility of
observing phenomena such as magnonic Coherent Perfect
Absorbers/Lasing, invisibility etc19,20.
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