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Dynamic switching of the vortex circulation in magnetic nanodisks by fast rising magnetic field
pulse requires annihilation of the vortex core at the disk boundary and reforming a new vortex
with the opposite sense of circulation. Here we study the influence of pulse parameters on the
dynamics and efficiency of the vortex core annihilation in permalloy (Ni80Fe20) nanodisks. We use
magnetic transmission soft x-ray microscopy to experimentally determine a pulse rise time – pulse
amplitude phase diagram for vortex circulation switching and investigate the time-resolved evolu-
tion of magnetization in different regions of the phase diagram. The experimental phase diagram
is compared with an analytical model based on Thiele’s equation describing high amplitude vortex
core motion in a parabolic potential. We find that the analytical model is in a good agreement
with experimental data for a wide range of disk geometries. From the outputs of the analytical
model and in accordance with our experimental finding we determine the geometrical condition for
dynamic vortex core annihilation and pulse parameters needed for the most efficient and fastest
circulation switching. The comparison of our experimental results with micromagnetic simulations
show that the micromagnetic simulations of ‘ideal’ disks with diameters larger than ∼250 nm over-
estimate nonlinearities in susceptibility and eigenfrequency. This overestimation leads to the core
polarity switching near the disk boundary, which then in disagreement with experimental findings
prevents the core annihilation and circulation switching. We modify the micromagnetic simulations
by introducing the ‘boundary region’ of reduced magnetization to simulate the experimentally de-
termined susceptibility and in these modified micromagnetic simulations we are able to reproduce
the experimentally observed dynamic vortex core annihilation and circulation switching.

PACS numbers: 75.75.Jn, 75.70.Kw, 85.75.-d, 68.37.Yz

I. INTRODUCTION

Magnetic vortices are curling magnetization structures
formed in micro- and nanosized magnetic disks and
polygons1–5. They are known for having four distinct
magnetization configurations (vortex states) that can be
used for a multibit memory cell6,7. The vortex states are
defined by the polarity of the vortex core, pointing either
up (p = +1) or down (p = −1) and by the circulation
of the magnetization in the plane of the disk, curling ei-
ther counterclockwise (c = +1), or clockwise (c = −1).
The combination of the polarity and circulation defines
the chirality (handedness) of the vortex. The vortex state
can be controlled by applying a static out-of-plane (polar-
ity control8) or in-plane (circulation control9) magnetic
fields, although the amplitude of these fields can be quite
large. However, both the polarity and the circulation can
be switched more effectively by using fast-rising magnetic
fields10,11.

Selective switching of the circulation with applied
magnetic field requires expelling the vortex core out
of the disk and then reforming a new vortex with the
opposite sense of spin circulation. We have recently

demonstrated11, that this can be achieved by using a fast
rising in-plane magnetic field pulse that drives the vor-
tex core into far-from-equilibrium gyrotropic precession
and annihilates the vortex during the first half-period of
the precessional motion at the disk boundary. The re-
sulting circulation of a new vortex is controlled by a disk
asymmetry in the form of a thickness gradient and by
the direction of the magnetic field pulse. This approach
allows for a fast switching with the field amplitudes re-
duced by more than 50% when compared to the switching
using static fields.

The dynamics of a magnetic vortex confined in soft fer-
romagnetic nanodisks excited resonantly by an in-plane
alternating magnetic field or by a fast rising magnetic
field pulse can be described as a forced harmonic oscilla-
tor using Thiele’s equation of motion12,13. The resulting
magnetic response depends on the profile of the confining
magnetostatic potential. The potential can be described
either by parabolic terms14,15, or more precisely includ-
ing higher order terms in the energy expansion16–18.
Micromagnetic simulations predict significant contribu-
tion of higher order energy terms16,17 leading to a non-
linear increase of the eigenfrequency as a function of
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the vortex core position. However, the experimental
results obtained from eigenfrequency measurements at
high-amplitude rf-field excitations or low amplitude rf-
field excitations in a biasing field are often inconsistent
with the simulations, showing a decrease of the eigen-
frequency with an increasing amplitude19 or a pinning
dominated dependence on the eigenfrequency20,21. Only
recently, an experimental measurement of anharmonicity
of a potential well in a FeV single crystal disk showed
a ∼10% increase of the eigenfrequency for vortex core
displacements up to 0.4R, where R is the radius of the
disk18.
In this paper, we present an experimental and mod-

eling study of the process of dynamic annihilation of
the magnetic vortices in micro- and nanosized magnetic
disks. We investigate the range of disk diameters and
thicknesses, in which the magnetic vortices can be dy-
namically annihilated, as well as possible extension of
this range by an appropriate selection of the pulse rise
time and amplitude. The experimental results are pre-
sented in section II. In section III we describe a simple,
but well-fitting analytical model based on Thiele’s equa-
tion of motion assuming a parabolic potential. In section
IV we compare the experimental data and the analytical
model with micromagnetic simulations. The discrepancy
between the prediction of micromagnetic simulations and
experimental data is discussed and a modified micromag-
netic simulation, fitting to the experimental observations
is presented.

II. EXPERIMENTS

The dynamic annihilation of magnetic vortices was
studied on a series of samples consisting of permalloy
(Ni80Fe20) disks with diameters ranging from 250 nm to
2500nm and thicknesses from 20nm to 50 nm. The disks
were placed on gold coplanar waveguides which were used
to generate in-plane magnetic field pulses up to 60mT.
To provide a circulation control, the disks were fabricated
with a wedge-like thickness asymmetry using the shad-
owing effect of a 500-nm-thick polymethyl methacrylate
(PMMA) mask and a directional ion beam sputtering of
Ni80Fe20 with the sputtered particles incident at 15◦ from
the film normal11. The entire structure was fabricated on
a 200-nm-thick, 2×2 mm-wide Si3N4 membrane to allow
for sufficient x-ray transmission in the magnetic transmis-
sion soft x-ray microscopy (MTXM)22 experiments [Fig.
1(b)].
Magnetic field pulses were generated by launching cur-

rent pulses into the waveguide using a pulse generator
(Agilent 81150A) allowing a precise setting of the rise
time in the range of 2.5–8.0 ns and the amplitude of the
pulses in the range of 1.0–50.0 mT. The pulse shapes
were recorded on a 4-GHz real-time oscilloscope (LeCroy
WaveMaster 804Zi-A). Alternatively, for smaller disks
where a faster rise time was needed, a fast pulse gen-
erator (Picosecond Pulse Labs 10,050A) with a fixed rise

time of 250 ps was used.

The magnetization in the disks and its temporal behav-
ior was imaged with full-field transmission soft x-ray mi-
croscope at beamline 6.1.2 at the Advanced Light Source
(ALS) in Berkeley, CA. Images with a spatial resolution
of 25 nm were recorded using x-ray magnetic circular
dichroism (XMCD) as magnetic contrast for a fixed cir-
cular polarization of the x-ray beam at the Fe L3 edge
(707 eV). The sample normal was tilted at an angle of
30◦ with respect to the x-ray beam to measure the in-
plane magnetization component. The disks were imaged
before, during and after application of the magnetic field
pulses. The time-resolved experiments, which recorded
snapshots of magnetization in the disks at defined times
during the magnetic pulse, were based on a pump-probe
technique enabling stroboscopic imaging of reproducible
events23. The temporal resolution is given by the length
of the photon flashes (70 ps), which arrive in the two-
bunch operational mode of the ALS at 3.05MHz repeti-
tion frequency [Fig. 1(a)]. The total acquisition time for
each image is about 120 s, i.e. approximately 3.7 × 108

events are averaged to obtain a single image [Fig. 1(c)].

Prior to the application of magnetic field pulses we set
the spin circulation in a disk into one state (e.g. clock-

FIG. 1: (a) Experimental setup of time-resolved experiments.
Photon flashes from the ALS were synchronized with current
pulses from a pulse generator. Time-resolved images of the
magnetization were recorded by varying the delay between
the field pulses and the photon flashes. (b) Atomic Force
Microscopy image of the sample consisting of 1600-nm-wide,
20-nm thick nanodisk on top of a 2500-nm-wide, 60-nm thick
waveguide. A wedge-like thickness asymmetry is on the right
side of the disk. (c) Magnetic contrast in the images of the
nanodisk with counterclockwise (c = +1) and clockwise (c =
−1) spin circulations.
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FIG. 2: (a) Pulse rise time—pulse amplitude phase dia-
gram experimentally determined for a 1600-nm-wide, 20-nm-
thick permalloy disk with an estimated eigenperiod 2π/ω =
7.9 ns and experimentally determined static annihilation field
Ban-stat = 19 mT. The pulse rise times and pulse amplitudes
are given in units of the gyrotropic oscillation period (2π/ω)
and vortex static annihilation field (Ban-stat), respectively.
Red triangles represent a case of unsuccessful switching. Blue
stars represent a case, where successful core annihilation led
to a circulation switching. Red dots represent a case, where
the circulation switching was not achieved in spite of using
shorter rise time and larger pulse amplitudes. (b) Phase di-
agram for a 1600-nm-wide, 30-nm-thick permalloy disk. The
region of successful circulation switching moved towards top-
right of the normalized phase diagram. The grey areas in the
phase diagrams define boundary of the region of successful
circulation switching predicted by the analytical model (see
section III).

wise) by applying an external static magnetic field in a
defined direction exploiting the asymmetry in the disk
thickness11. The pulsed magnetic field was then applied
in the opposite direction and in case of a successful an-
nihilation of a vortex the spin circulation in the disk
switched (i.e. from clockwise to counterclockwise and
vice versa). In case of unsuccessful annihilation, the cir-
culation stayed the same. These data allowed for con-
struction of a pulse rise time—pulse amplitude phase di-
agram of successful vortex annihilation (see Fig. 2). It is
possible to distinguish three distinct regions: (1) a region
of low pulse amplitude and long rise time [Figs. 2(a), (b);
red triangles], where a circulation switching was not ob-
served, (2) a region of intermediate pulse amplitude and
intermediate rise rime [Fig. 2(a), blue stars], where the
circulation switching was detected and finally (3) a re-
gion of short rise time and high amplitude [Fig. 2(a),
red dots], where again the circulation switching was not
successful.

Time resolved experiments revealed the dynamics in
each region. In region (1) the vortex core was not ex-
pelled out of the disk and gyrated freely in the disk with
an unchanged polarity (data not shown). In region (2)
the pulse parameters were sufficient to expel the vortex
core out of the disk [see Fig. 3(a)]. After an intermedi-

FIG. 3: (a)+(b) Temporal evolution of magnetization in a
1900-nm-wide and 20-nm-thick disk during magnetic field
pulses captured by series of time-resolved MTXM images.
(a) Temporal evolution of magnetization showing full satu-
ration at 8 ns which is followed by nucleation of a new vortex
at 14 ns. (b) represents a case where the vortex annihilation
was not achieved in spite of using larger pulse amplitudes
than in (a). Here, the maximum displacement of the vortex
core was reached at 3 ns. At 4 ns the vortex core(s) return
towards the disk center, indicating a continuous motion of the
core without vortex annihilation and re-nucleation. Symmet-
ric contrast in the MTXM images is a combination of two
symmetric core trajectories and thus indicates the core polar-
ity reversal (either at vortex nucleation after its annihilation
or directly during the core motion). (c) Profiles of the pulses
used in (a) and (b). The rise times of the pulse are 4 ns and
2.4 ns, respectively (measured between 10% and 90% of the
pulse amplitude).

ate state where the disk was fully saturated a new vor-
tex with a defined circulation and a random polarity is
formed11. The symmetric magnetic contrast apparent in
these images corresponds to two vortex core trajectories
for two opposite polarities of the vortex core24, which
were averaged together during a multitude of cycles of
the pump-probe technique. When applying pulses with
a shorter rise time the dynamics significantly changes
[see Fig. 3(b)]. We observe the same symmetric con-
trast revealing core polarity switching, but the disk did
not reach a full saturation in contrast to the situation in
Fig. 3(a). Hence, the symmetric contrast cannot origi-
nate from random nucleation of the core polarity. This
suggests that the core polarity flipping during the core
motion prevented vortex annihilation and consequent cir-
culation reversal, even when a stronger pulse than in re-
gion (2) was applied. Profiles of the two magnetic pulses
are indicated in Fig. 3(c).
The described behavior was consistent over all disk ge-

ometries. The character and boundaries of the normal-
ized diagram stayed the same for disks with the same
thickness, even when the radius was changed. With in-
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creasing disk thickness the region (2) shrank towards top-
right of the normalized phase diagram [Fig. 2(b)]. In
section III we present an analytical model describing the
underlying processes in the phase diagram.

III. ANALYTICAL MODELING

A vortex core trajectory in a magnetic disk during
dynamic annihilation can be described by an analytical
model based on Thiele’s equation of motion12,25. When
using a fast rising magnetic pulse B = [0, B] with a
rise time shorter or equal to the period of the vortex
eigenoscillation, the vortex core C = [x, y] gyrates about
a point S = [s, 0], following a circular trajectory. The
distance of the gyration center from the disk center is
s = RχB/(µ0Ms), where R is the disk radius, χ is the
static susceptibility of the vortex, B is the applied mag-
netic field and Ms is the spontaneous magnetization of
the disk material26. As the coordinates of the gyration
center depend on the magnitude of the magnetic field B,
during the rise time of the magnetic pulse the point S is
moving perpendicularly to the direction of the magnetic
field with a velocity vs = RχBmax/(µ0Mstrise), where
Bmax is the maximum amplitude of the pulse and trise
is the rise time of the pulse. Hence, assuming a linear
rise time, the resulting trajectory of the vortex core is
cycloidal with coordinates: x(t) = vs[t − (1/ω) sinωt],
y(t) = (vs/ω)(1−cosωt), where ω is the eigenfrequency of
the gyrotropic mode. When the maximum amplitude of
the pulse Bmax is reached at t = trise, the vortex core tra-
jectory changes to circular with a gyration center (static
equilibrium point) at a distance smax = RχBmax/(µ0Ms)
from the disk center [see Fig. 4(a)]. For detailed descrip-
tion of the model see Appendix A.
The maximum amplitude of the vortex translational

motion xmax = smax + |C(trise) − Smax| needs to fulfil
the geometrical condition for the successful vortex anni-
hilation: xmax(Bmax, trise) ≥ Ran, where Ran is the an-
nihilation radius. The vortex core is annihilated, when
its distance from the disk center reaches Ran, which is
smaller than R due to the finite size of the vortex core.
The value Ran ∼0.85R was estimated from experimental
data fitting the upper boundary of the phase diagram
[see Fig. 2(a) and Fig. 4(a), (b)] and confirmed by mi-
cromagnetic simulations [see section IV and Fig. 7(c)].
A second condition to be considered is associated with

the vortex core velocity. If the core velocity exceeds the
critical velocity27,28 the core polarity is switched and the
sense of the vortex core gyration is reversed24. The po-
larity reversal causes an offset of the initial core posi-
tion before it continues gyrating about the point S and
as a result, the maximum amplitude of the vortex core
translational motion is reduced. Although the vortex
core may still reach the annihilation radius after polar-
ity switching, it is at the cost of a significantly increased
pulse amplitude35 and this case is not considered in the
model. The experimental data confirming the reduced

FIG. 4: (a) Sketch of the trajectory of the vortex core dur-
ing a magnetic field pulse with a rise time. During the rise
time of the magnetic pulse the gyration center S is moving
perpendicularly to the direction of the magnetic field with a
velocity vs. The trajectory of the vortex core is cycloidal.
At the maximum amplitude of the pulse Bmax the vortex
core trajectory changes to circular with a gyration center
at a distance smax. The vortex core is annihilated, when
its maximum amplitude of the vortex translational motion
xmax reaches the annihilation radius Ran. (b) Rise time –
pulse amplitude phase diagram showing the region of success-
ful vortex core annihilation [color-coded, marked (2)]. The
pulse rise times, pulse amplitudes and maximum amplitudes
of the vortex translational motion are given in units of the gy-
rotropic oscillation period (2π/ω), vortex static annihilation
field (Ban-stat) and the disk radius (R), respectively. The re-
gion is defined by the two boundaries; the annihilation radius
Ran (thick gray line at xmax = 0.85R) and the critical veloc-
ity vcrit (black dotted line at vcmax = 320m s−1). For the rise
time – pulse amplitude combinations in the region [marked
(1)] above the annihilation radius boundary, the maximum
amplitude of the translation motion of the vortex core is too
low and the core gyrates inside the disk. For the rise time
– pulse amplitude combinations in the region (3) below the
critical velocity boundary the core switches its polarity and
reverses its sense of gyration. The phase diagram is calcu-
lated for 20-nm-thick permalloy disks with following material
parameters: Ms = 6.9×105 Am−1, γ = 2.9×1011 radHzT−1,
vcrit = 320m s−1.
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efficiency of the magnetic field pulse in the core-flipping
regime can be found in Appendix B. For efficient dy-
namic switching (i.e. without core polarity reversal), the
following condition for the maximum vortex core velocity
vmax must be satisfied: vmax(Bmax, trise) < vcrit, where
vmax = ((2smax)/trise) sin((ωtrise)/2) for trise ≤ π/ω and
vmax = ((2smax)/trise) for trise ≥ π/ω (see Appendix A).
For our model we use a value of vcrit = 320m s−1[27],
which corresponds to our experimental data36.

These conditions set a limit on the amplitude and rise
time of the magnetic pulse needed for successful and ef-
ficient vortex core annihilation and form boundaries in a
phase diagram displaying the region of successful switch-
ing [color-coded area in Fig. 4(b)]. The region is marked
by two boundaries. The first boundary results from the
condition that the vortex core must reach the annihila-
tion radius [thick gray line in Fig. 4(b)] and the second
boundary is the result of the condition for the critical
velocity [black dotted line in Fig. 3(b)].

Input parameters for the model are the rise time trise,
the pulse amplitude Bmax, the disk radius R, the thick-
ness L, its susceptibility χ, and its eigenfrequency ω.
The pulse parameters trise and Bmax are used for the
construction of a phase diagram displaying the region
of successful vortex annihilation [Fig. 4(b)] for disks
with a given geometry. The last two parameters in the
model (χ and ω) can be either determined experimentally
or calculated from the material parameters of the mod-
eled disk. It has been shown, that the susceptibility can
be predicted with reasonable precision by the rigid-core
model26 and the eigenfrequency by the pole-free model25.
Since the eigenfrequency dependence on the disk geom-
etry is proportional to L/R25, the vortex core velocity
during gyration is proportional to the disk thickness L
only (from ω ∝ L/R and |C − S| ∝ R it follows that
vc = ω|C−S| ∝ L). We can also normalize the pulse rise
time by the period of the eigenoscillation and pulse am-
plitude by the static annihilation field. As a result, the
shape of the phase diagram is the same for all disk diam-
eters and depends on the thickness only. The lowest am-
plitude boundary remains the same for all thicknesses in
the normalized phase diagram [see Fig 4(a)]. The inter-
section of the lowest amplitude boundary with the pulse
amplitude axis at zero rise time indicates the minimum
pulse amplitude which is sufficient to annihilate the vor-
tex [∼0.43 of the static annihilation field for our permal-
loy disks, see Figs. 5(a), (b)]. The boundary for the
critical velocity is moving to the top-left with increasing
thickness [see Fig. 5(a)] and at a certain threshold [∼23
nm for our permalloy disks, see Fig. 5(b)] it is no longer
possible to annihilate the vortex with a pulse with a zero
rise time. By increasing the rise time, it is still possi-
ble to dynamically annihilate the vortex in thicker disks
at the cost of an increased pulse amplitude. Finally, for
disks thicker than 36.9 nm the minimum pulse amplitude
equals the static annihilation field Ban−stat [Fig. 5(b)].

The pulse parameters, the rise time trise , the pulse am-
plitude Bmax and the minimum pulse duration tan (i.e.

FIG. 5: (a) Phase diagram showing the regions of success-
ful vortex core annihilation in permalloy disks with different
thicknesses. The pulse rise times and pulse amplitudes are
given in units of the gyrotropic oscillation period (2π/ω) and
vortex static annihilation field (Ban-stat), respectively. The
lowest amplitude boundary on the left remains the same for
all thicknesses. The critical velocity boundary is moving to
the top-left with increasing disk thickness, i.e. the region
of successful core annihilation is progressively shrinking. (b)
Thickness dependence of the minimum pulse amplitude (red
line) and the corresponding minimum pulse rise time (black
line) needed for successful vortex core annihilation. For the
disks with a thickness of 23 nm or less, the minimum pulse
amplitude is 0.43Ban−stat . For disks with thicknesses above
36.9 nm the model does not predict the possibility of dynamic
annihilation of the core with a pulse amplitude lower than
Ban−stat [the thickness limit is calculated assuming the same
material parameters as in Fig 4(b)].

the predicted time at which the core reaches the anni-
hilation radius Ran) can be used to calculate the energy
cost associated with the vortex annihilation (resp. the
circulation switching). Mapping the energy cost for each
point in the region (2) of the phase diagram allows to
find the specific pulse parameters for which the vortex
annihilation is most efficient. Since the exact pulse en-

ergy E =
∫ tan

0
RI2dt (R is the electrical resistance of the

waveguide and I is the electric current) depends on the
resistance of the waveguide used to generate the magnetic
field pulse, we calculate the reduced energy ε from the

magnetic field pulse: ε =
∫ tan

0
B2dt. Assuming a linear

rise time, we get ε = B2
max(tan−

2
3 trise) for the case where

tan ≥ trise and ε = 1
3 tan(Bmaxtan/trise)

2 when tan ≤ trise,
i.e. the core is annihilated before the (theoretical) max-
imum pulse amplitude is reached. In Figs. 6(a)-(c) the
reduced energy is plotted in the pulse rise time – pulse
amplitude phase diagrams for the disks with thicknesses
L of 15, 20 and 30 nm. For disks with thicknesses be-
low ∼20 nm, the most effective switching occurs when
the pulse amplitude is slightly above the minimum value
(Bmax = 0.47Ban−stat) and the rise time is short, but
nonzero [trise = 0.17(2π/ω)]. The region is marked by
hashes in Figs. 6(a)-(b). For thicker disks the phase dia-



6

FIG. 6: Pulse rise time - pulse amplitude phase diagrams showing the reduced energy ε needed for the vortex circulation
switching (a)-(c) and shortest annihilation times tan (d)-(e). The pulse rise times and pulse amplitudes are given in units of the
gyrotropic oscillation period (2π/ω) and vortex static annihilation field (Ban-stat), respectively. The regions of the most efficient
switching (least energy cost) and shortest annihilation times are marked by hashes. The phase diagrams were calculated for
permalloy disks with a radius R = 500 nm and thicknesses L = 15, 20 and 30 nm. Material parameters used for calculation of
the phase diagrams were the same as in Fig. 4.

gram becomes restricted by the critical core velocity and
successful vortex annihilation cannot be achieved with
short rise times. Then, the region of the most effective
switching is located along the bottom-right boundary of
the phase diagram and starts already at the minimum
pulse amplitude [Fig. 6(c)].
The regions of fastest switching [Figs. 6(d)-(f), marked

by hashes] are located around the minimum rise time and
maximum pulse amplitude, i.e. the right boundary of the
phase diagram. By comparing the absolute values of ε
in Figs. 6(a)-(c) and tan in Figs. 6(d)-(f), we can see
that the switching becomes more efficient with decreasing
disk thickness and also the time to annihilation can be
shortest in thinnest disks. However, for thinner disks the
position of the region of the fastest switching does not
correspond to the region of minimum ε [compare Fig.
6(d) and Fig. 6(a), respectively] and the choice between
fast or efficient switching must be made.
Note, that the positions of the energy and pulse du-

ration minima are independent of the disk radius and
depend on the disk thickness only.

IV. MICROMAGNETIC SIMULATIONS

The predictions of the analytical model agreed with
micromagnetic simulations37 only for disks with radii
R up to ∼125 nm. For larger disks and independent
of thickness, the vortex core velocity exceeded the crit-
ical velocity within few picoseconds after the begin-
ning of the pulse which lead to core polarity switch-
ing. Micromagnetic simulations predict large nonlin-
earity in the dimensionless displacement susceptibility

χd = (ds/dB)(Ban-stat/R) [Fig. 7(a); orange line with
circles]. Due to this nonlinearity, at the beginning of the
pulse where the displacement susceptibility is higher, the
gyration center in micromagnetic simulation is located
further out than the linear model predicts. For instance,
a pulse amplitude B = 0.5Ban-stat corresponds to a gyra-
tion center S at s = 0.5R according to the linear model
[Fig. 7(a) grey line], whereas according to micromagnetic
simulations the initial position of S is at s = 0.85R [Fig.
7(a) orange line with circles]. This increase in the gyra-
tion radius leads to an increase of the core velocity above
the critical velocity. We can overcome the unwanted po-
larity switching at the beginning of the pulse by using a
pulse with a nonzero rise time.

However, when the core approaches the disk bound-
ary, its velocity again exceeds the critical velocity, which
leads to polarity reversal and a consequent change in
the sense of gyration [see Fig. 7(b)]. This reversal at
the disk boundary, which is always present in simula-
tions of disks with radii larger than ∼500 nm is caused
by an anharmonicity in the potential energy well, which
for large vortex core displacements leads to an increase
in eigenfrequency16,17,29,30. From the dimensionless dis-
placement susceptibility χd(s), we can obtain the local

eigenfrequency ω(s) = µ0

8πγMs
ξ2

χd(s)
, where we assume

ξ = 2/3 (pole-free model magnetization distribution25).
Note that this approach is more suited for the calcula-
tion of the eigenfrequency of small amplitude vortex core
gyration about a gyration center position S shifted from
the disk center by a static biasing field20. In our case of
a large gyration amplitude, the eigenfrequency at the po-
sition C of the vortex core is lower29. The local eigenfre-
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FIG. 7: (a) Comparison of simulated displacement susceptibility of the 1600 nm wide, 20 nm thick disk with uniform Ms (sim1
– orange line with circles), simulated displacement susceptibility of the same disk, where the spontaneous magnetization of
the disk material was gradually decreased from 690 kAm−1 to 310 kAm−1 in the 80-nm-wide region around the disk perimeter
(sim2 – green line with triangles) and the displacement susceptibility determined directly from the experimental measurements
of the shift of the vortex core in an increasing applied magnetic field by MTXM (exp – blue line with squares). Linear
susceptibility, used in analytical models is plotted as a gray line. (b) Simulated vortex core trajectories in the disk with uniform
magnetization (nonlinear susceptibility). A magnetic field pulse of 10mT is not enough to reach the annihilation radius (gray
trajectory). A slight increase of the magnetic field amplitude to 11mT drives the vortex core into the nonlinear region, where
the eigenfrequency of the translational motion and thus also the vortex core velocity are increased, which leads to unwanted
polarity switching. Switched core then continues with inverted sense of gyration towards the disk center (orange trajectory).
(c) Simulated vortex core trajectory in the disk with magnetization decreasing towards the edge (linearized susceptibility). A
magnetic pulse of 9mT is sufficient to drive the vortex core into the annihilation region and the vortex is successfully annihilated
(green trajectory). (d) Comparison of local eigenfrequencies ω(s) calculated from displacement susceptibilities in (a).

quency ω(s) rapidly increases for the core displacements
larger than 0.6R [see Fig. 7(d) orange line with circles].
The increase in eigenfrequency drives the core velocity
above the critical value and the core polarity close to the
disk boundary switches [Fig. 7(b)].

This result of micromagnetic simulation is in contra-
diction to our experimental observations, where we were
able to annihilate the vortex core in disks with radii up
to 1.25µm. To quantify the nonlinearity in displacement
susceptibility we tracked the vortex core position as a
function of static magnetic field. The spatial resolution
of MTXM allowed us to directly measure a shift of the
vortex core in an applied magnetic field with sub-100-
nm precision. Comparison of the experimentally mea-
sured displacement susceptibility for 1600-nm-wide, 20-
nm-thick disk [Fig. 7(a); blue line with squares] with
micromagnetic simulation [Fig. 7(a); orange line with
circles] reveals clearly the overestimation of the nonlin-
earity in displacement susceptibility by the micromag-
netic simulation.

We were able to reproduce the experimental displace-
ment susceptibility curve in micromagnetic simulations
[see Fig. 7(a)], blue line with squares and green line
with triangles, respectively) by gradual decrease of the
spontaneous magnetization of the disk material near the
edge [from 690kAm−1 to 310 kAm−1 in the 80-nm-wide

‘boundary zone’, see insets in Figs. 7(b) and 7(c)]. By
including this modification, it is possible to annihilate
the vortex also in micromagnetic simulations [see Fig.
7(c)]. The eigenfrequency calculated from corrected sim-
ulation and from experimentally measured displacement
susceptibility stays close to the eigenfrequency used in
the linear model [see Fig. 7(d)] and the vortex core can
reach the annihilation radius without exceeding the crit-
ical velocity.

The linear behavior of the displacement susceptibility
in real disks may be caused by shape imperfections, lat-
eral roughness and other deteriorations of the magnetic
properties of the disk material close to the disk edge,
e.g. by oxidation. It cannot be explained by the lat-
eral roughness only, because the lateral roughness at the
edges of our disks was approximately 20 nm (estimated
from SEM images), whereas the width of the boundary
region necessary for reproducing the experimental data
is 4× larger. Also, it cannot be explained by the thick-
ness gradient at one side of the disk as the susceptibil-
ity curve was measured on the side without the thick-
ness asymmetry. We observed an additional increase of
the nonlinearity in displacement susceptibility for larger
disks, however the experimentally determined nonlinear-
ity in displacement susceptibility was still significantly
smaller than the predictions of micromagnetic simula-
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tions (2.5-µm-wide disks, data not shown). Similar,
weaker than expected nonlinearity in displacement sus-
ceptibility was reported for 3-µm-wide permalloy disks
measured by Lorentz transmission electron microscopy
by Uhlig et al.31. The existence of a higher-order term
(beyond the parabolic approximation) in the potential
energy well resulting in a parabolic dependence of eigen-
frequency on the core displacement and 10% increase at
∼0.3R was recently reported in FeV single crystal disks18.
In our case, a similar dependence in experimentally de-
termined eigenfrequency can be seen for static core dis-
placements up to 0.4R [Fig. 7(d)]. Beyond this point
the experimental data do not follow a clear trend (i.e.
parabolic dependence) and stay in the vicinity of ωlinear.
This comparison shows that for large amplitude vortex
core gyrations the assumption of linear susceptibility pro-
vides a good approximation and that the micromagnetic
simulations of ‘ideal’ disks grossly overestimate the non-
linearity in displacement susceptibility (anharmonicity of
the vortex potential well) for large core displacements.

V. CONCLUSIONS

We have studied the influence of the pulse parame-
ters on the dynamics and efficiency of the vortex core
annihilation in permalloy nanodisks. The experimen-
tally determined pulse rise time – pulse amplitude phase
diagram was successfully reproduced with an analytical
model based on Thiele’s equation describing vortex core
motion in a parabolic potential. We found that the an-
alytical model is in good agreement with experimental
data for a wide range of disk geometries. From both
the analytical model and the experimental findings we
have determined the geometrical condition for dynamic
vortex core annihilation and the pulse parameters giving
the most efficient and fastest circulation switching. How-
ever, micromagnetic simulations of the vortex core anni-
hilation in ‘ideal’ disks did not fully reproduce the exper-
imental behavior. This is due to the fact that the nonlin-
earities in displacement susceptibility and eigenfrequency
of ‘ideal’ disks with diameters larger than ∼250nm are
overestimated with respect to the experimentally deter-
mined values. This overestimation leads to a core po-
larity switching near the disk boundary which prevents
the core annihilation and subsequent circulation switch-
ing. We modified the micromagnetic simulation by in-
troducing a ‘boundary region’ of reduced magnetization
to simulate the experimentally determined displacement
susceptibility. This results in linearization of the dis-
placement susceptibility and the modified micromagnetic
simulation shows a good agreement of the dynamic vor-
tex core annihilation with the experimental observations.
Assumption of a nonparabolic potential with higher or-
der energy terms, which may be more precise for the
description of vortex core motion within 0.4R from the
disk center18, does not provide a significant correction
to the parameters inferred from the linear susceptibility

model. We conclude that the linear susceptibility model
(i.e. a parabolic potential) is appropriate for the descrip-
tion of the first period of the high amplitude vortex core
gyration in real disks.
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Appendix A: Description of the analytical model

The relation between the position of the vortex core
and the external static in-plane magnetic field in the disk
made from soft-magnetic material can be described by
the rigid vortex model26:

s =
RχB

µ0Ms
, (A1)

where s is the displacement of the vortex core from the
disk center, R is the disk radius, χ is the vortex sus-
ceptibility depending on the geometrical parameters of
the disk, B is the external magnetic field, and Ms is the
spontaneous magnetization of the disk material. In the
following calculations, the susceptibility χ is assumed to
be independent of the core displacement. The equation of
motion of the vortex core in time-varying external mag-
netic field can be described by Thiele’s equation12, which
is derived from the Landau-Lifshitz-Gilbert equation of
magnetization dynamics assuming the vortex core moves
as a rigid object. Thiele’s equation is as follows:

G× Ċ−
∂W

∂C
= F(t), (A2)

where G = −2πpLMs/γẑ is the gyrovector, C is the po-
sition of the vortex core, W is potential energy associated
with the force restoring the vortex core back to the disk
center, and F(t) = − 2

3πcLRMs(B(t) × ẑ) is the time-
dependent excitation force associated with the applied



9

in-plane magnetic field32. The parameter p is the vortex
core polarity, c is the circulation, L is the disk thickness,
R radius and γ is the gyromagnetic ratio. The poten-
tial energy W is mainly defined by the magnetic dipolar
energy17 and can be approximated by a parabolic term

W =
1

2
κC2, (A3)

where κ can be understood as a stiffness constant. Ac-
cording to our experimental results higher order terms in
the expression of potential energy need not to be taken
into account as discussed in the paper.

FIG. 8: Magnetic disk with a vortex magnetization (p =
−1, c = −1). Position of the vortex core (open circle)
is represented by vector C = (x, y, 0), the gyrovector by
G = (0, 0, G) ∝ −pẑ. External force due to the applied
in-plane magnetic field B = (0, B, 0) is described by vector
F = (F, 0, 0) ∝ −c(B× ẑ).

In the following calculations we choose the co-ordinate
system in the following way: the origin coincides with
the disk center and z axis is parallel with the disk axis
of symmetry, the gyrovector points in the direction of ẑ:
G = (0, 0, G) and C = (x, y, 0), see Fig. 8.
If the applied magnetic field is zero, i.e. F = 0, we

obtain from (A2) the following homogeneous set of first-
order ordinary differential equations:

ẏ +
κ

G
x = 0, ẋ−

κ

G
y = 0 (A4)

which leads to a set of two separated second-order differ-
ential equations:

ẍ+
( κ

G

)2

x = 0, ÿ +
( κ

G

)2

y = 0. (A5)

Solutions of both equations represent harmonic oscilla-
tions of both components with equal translational eigen-
frequency ω ≡ κ/|G|. According to the discussion on
our experimental results, besides χ also ω can be consid-
ered as independent from the position of the vortex core.
Therefore, the trajectory of the vortex core is a circle
with a center located at the disk center and an arbitrary
radius lower than R.
The solution of Thiele’s equation (A2) with general

time dependence of the external force F(t) needs to be
calculated numerically. However, assuming a magnetic
field pulse with a linear rise time (see Fig. 9), the mo-
tion of the vortex core can be treated analytically, as
described in the next paragraph.

1. Analytical solution of Thiele’s equation

We consider the initial state as following: At the begin-
ning the vortex core is located at the disk center having
zero velocity, i.e.

x(0) = y(0) = ẋ(0) = ẏ(0) = 0. (A6)

Furthermore, without loss of generality, we will consider
that the external force acts only in the direction of x
axis, i.e. F(t) = [F (t), 0, 0], see Fig. 8. Then the set of
first-order ordinary differential equations is according to
(A2) as follows:

ẏ + ωx = F (t)/G, ẋ− ωy = 0 (A7)

By solving these equations for a constant external force
F0 we obtain a circular vortex core trajectory with a
center at S = (s, 0, 0) and a radius s, where F0 = κs.
If we consider a linear rise of the magnetic field from

zero to a maximum value Bmax during a time interval
〈0; trise〉 where trise ≤ 2π/ω, the instantaneous position S

is moving along the x-axis with a velocity

vs =
smax

trise
, (A8)

where

smax =
RχBmax

µ0Ms
(A9)

is the x-position of S at the instant trise. The vortex
core velocity can be obtained by solving the set of two
equations (A7) with F (t) = κvst, i.e.

ẍ+ ω2x = ω2vst, ÿ + ω2y = ωvs. (A10)

The solutions with respect to the initial conditions (A6)
read

x(t) = vs

(

t−
1

ω
sinωt

)

, y(t) =
vs
ω

(1− cosωt) .

(A11)
Thus, in this case the trajectory of the vortex core is
represented by part of a cycloid. The components of the
vortex core velocity are the following:

ẋ(t) = vs(1− cosωt), ẏ(t) = vs sinωt. (A12)

Therefore, using (A8) and (A9) the magnitude of the core
velocity is given by

v(t) = 2vs sin

(

ωt

2

)

=
2Rχ

µ0Ms

Bmax

trise
sin

(

ωt

2

)

. (A13)

It can be seen that the point of the trajectory, where the
vortex core moves at the fastest speed, is at the apex of
the cycloid with a velocity of

vmax = 2vs =
2Rχ

µ0Ms

Bmax

trise
. (A14)
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FIG. 9: Left: Assumed shape of a magnetic-field pulse con-
sisting of a linear increase up to Bmax during a time in-
terval 〈0, trise〉 and a constant pulse amplitude Bmax at in-
stants t > trise. Right: Corresponding vortex core trajectory:
part of a cycloid during the interval 〈0, trise〉; a circle at in-
stants t > trise. The core reaches the maximum distance
xmax = smax + |C(trise) − Smax| from the disk center at the
point where the trajectory crosses the x axis.

At instants t > trise we consider the external magnetic
field constant and equal to the pulse amplitude Bmax.
Thus, the vortex core continues to move on a circle with a
center Smax = (smax, 0, 0) and a radius |C(trise)− Smax|,
see Fig. 9. Hereafter, the core velocity has a constant
magnitude

v(trise) =
2smax

trise
sin

(

ωtrise
2

)

. (A15)

The maximum distance of the core from the disk is lo-
cated at the x axis, see Fig. 9, and reads

xmax = smax + |C(trise)− Smax|

= smax +
2smax

ωtrise
sin

(

ωtrise
2

)

. (A16)

2. Conditions for dynamic annihilation

In this paragraph we show how the rise time and ampli-
tude of the magnetic-field pulse influences the vortex-core
trajectory. The goal is to find appropriate pulse param-
eters for annihilation of the vortex (the instant when the
core leaves the disk area). Therefore, the first condition
for annihilation comes from geometry: the core moving
on its trajectory has to reach some minimum distance
from the disk center. According to our experimental data
the minimum distance Ran, called the annihilation radius
Ran is about 15% smaller than the disk radius R. There-
fore, the first condition has the general form

xmax ≥ Ran. (A17)

To avoid vortex polarity switching during the core mo-
tion, a second condition must also be fulfilled: the maxi-
mum of the core velocity vmax must not exceed the crit-
ical core velocity vcrit, i.e.

vmax < vcrit. (A18)

In the following we focus on discussion at which cir-
cumstances both conditions are fulfilled.

a. Simple dynamic annihilation: trise → 0

In this case the vortex-core trajectory is circular almost
from the beginning. Annihilation of the vortex requires
the displacement xmax of the core equal or greater than
the annihilation radius Ran. Therefore, using the limit
case of (A16) the first condition (A17) reads

xmax = lim
trise→0

{

RχBmax

µ0Ms

[

1 +
2

ωtrise
sin

(

ωtrise
2

)]}

=
2RχBmax

µ0Ms
≥ Ran. (A19)

Using the limit case of (A15) the second condition (A18)
is

vmax = lim
trise→0

[

2Rχ

µ0Ms

Bmax

trise
sin

(

ωtrise
2

)]

=
ωRχBmax

µ0Ms
< vcrit. (A20)

b. Approaching the static limit: trise → 2π/ω

The pulse amplitude required in this case approaches the
value of the static annihilation field and the vortex-core
trajectory completes one arc of the cycloid. The radius
of the following circle trajectory tends to zero, i.e. the
core stays in the vicinity of the point Smax. Using (A16)
the first condition (A17) determines

xmax =
RχBmax

µ0Ms
≥ Ran. (A21)

The magnitude of the core velocity changes according
to (A13). Therefore, using (A14) the second condition
(A17) reads

vmax =
2ωRχBmax

πµ0Ms
< vcrit. (A22)

c. Short rise time: trise ∈ (0, π/ω〉

The maximum amplitude Bmax is reached before t =
π/ω, i.e. the vortex core switches from the cycloidal
to circular trajectory before it gets to the apex of the
cycloid. Using (A16) the first condition (A17) has the
following form:

xmax =
RχBmax

µ0Ms

[

1 +
2

ωtrise
sin

(

ωtrise
2

)]

≥ Ran.

(A23)
Using (A9) and (A15) the second condition (A18) is given
by

vmax =
2Rχ

µ0Ms

Bmax

trise
sin

(

ωtrise
2

)

< vcrit. (A24)
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d. Long rise time: trise ∈ (π/ω, 2π/ω)

The maximum amplitude Bmax is reached after t = π/ω,
i.e. the vortex core switches from the cycloidal to circular
trajectory having passed the apex of the cycloid. Using
(A16) the first condition (A17) has the same form as in
the previous case:

xmax =
RχBmax

µ0Ms

[

1 +
2

ωtrise
sin

(

ωtrise
2

)]

≥ Ran.

(A25)
However, as the core velocity reaches its maximum at
t = π/ω the maximum core velocity changes to the value
according to (A14). Therefore, the second condition
(A18) determines

vmax =
2Rχ

µ0Ms

Bmax

trise
< vcrit. (A26)

3. Phase diagram

Pairs of corresponding values of Bmax and trise fulfill-
ing both inequalities, i.e. xmax(Bmax, trise) ≥ Ran and
vmax(Bmax, trise) < vcrit, define the pulse parameters
needed for successful vortex annihilation. They are dis-
played as the region of successful core annihilation in
Figs. 2, 4, and 5. Note, that vmax(Bmax, trise) is given by
(A24) when trise < π/ω and by (A26) when trise > π/ω.

Appendix B: Dynamics in the core-flipping regime

In case of high pulse amplitudes and/or short rise times
the core velocity exceeds the critical velocity, the core po-
larity is switched and the sense of the vortex core gyration
is reversed. This significantly reduces the efficiency of
the magnetic field pulse on the vortex core displacement
(the maximum amplitude of the vortex core gyration).
Fig. 10 shows how changes in the pulse amplitude and

rise time affect the maximum core displacement from the
disk center in the core-flipping regime [region (3) of the
pulse rise time – pulse amplitude phase diagram]. The
pulse amplitude is higher than the threshold dynamic
annihilation field for all three pulses. Increasing a pulse
amplitude from -8.5mT to -10.8mT while keeping the
rise time constant leads to an increase in the maximum
displacement of about 100nm. However, a further in-
crease of the amplitude to -11.4mT and shortening the
rise time to 2.5 ns at the same time leads to an over-
all decrease in the maximum displacement to the value
induced by the first pulse.

FIG. 10: Demonstration of the reduced effectivity of the mag-
netic field pulse on the maximum displacement of the vortex
core in the core-flipping regime. The disk is 2500 nm wide
and 20 nm thick. Each image is a snapshot of the maximum
core displacement during a particular pulse. Increasing the
amplitude leads to a progressive increase in the maximum
displacement (the black domain shrinking due to a negative
pulse). However, a decrease of the rise time of the pulse with
the highest amplitude leads to an overall decrease of the max-
imum displacement of about 100 nm despite the increased am-
plitude. The red line is a guide to the eye.
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