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A fluid channel clad between two solid plates is an acoustic waveguide where excitation of elastic
waves at the channel boundaries has been usually neglected. This work develops a rigorous theory
of scattering of sound by a finite-length fluid channel which takes into account excitation of elastic
eigenmodes of two plates acoustically coupled through a fluid channel. The theory predicts an
evidently contradictory result that the transmission and reflection coefficients of a non-dissipative
channel do not sum up to one. Moreover, they both exhibit deep minima at the same series of
frequencies. It is shown that conservation of acoustic energy occurs due to redirection of sound,
since part of the acoustic flux escapes into the solid plates. This scattering becomes possible because
the bf uniform flatness of the boundaries of a straight channel is broken by vibrations. Theoretical
predictions are supported by the experiments with ultrasound transmission through a narrow slit
obtained between two brass or aluminum plates submerged in water. Measured transmission spectra
exhibit deep minima exactly at the frequencies where the theory predicts strong redirection of sound.

PACS numbers: 43.20+g,43.30.+m,46.40.-f,42.25.Fx

I. INTRODUCTION

The existence of elastic waves confined to the super-
ficial region of an infinite homogeneous solid, first pre-
dicted by Lord Rayleigh[1], play an important role in var-
ious fields like geophysics, acoustoelectronics, and seis-
mology. It is shown here that elastic surface waves also
have paramount importance in transmission of ultra-
sound through narrow fluid channels formed by two elas-
tic media. Intensive study of sound transmission through
narrow apertures has shown that this phenomenon is
much richer than it was predicted by the classical the-
ory of diffraction at zero-width ideal rigid screens [2, 3].
Transmission through an aperture in a finite-thickness
rigid wall can differ essentially [4, 5]. Fabry-Perot res-
onances which exist for a subwavelength slit of width d
in a solid screen with finite thickness give rise to un-
expected increase of the transmission with the resonant
wavelength, T ∼ λn/d [6]. A periodic set of subwave-
length slits or holes in a rigid screen may transmit almost
100% of incoming sound at the resonant frequencies [7] –
a phenomenon akin to extraordinary optical transmission
[8]. For both types of waves the extraordinary transmis-
sion is due to coupling between the Fabry-Perot cavity
mode with two surface waves excited on both faces of
the screen. Acoustic surface wave may be excited at the
interface between a fluid and a rigid screen if the faces
of the screen are periodically corrugated [9]. If the aper-
tures are arranged periodically along the surface, they
themselves serve as corrugations [6, 10]. If there is a sin-
gle aperture in a screen (a slit) then the faces of the screen
are additionally corrugated. In the latter case the trans-
mission through this slit exhibits a sharp resonant peak
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and also very effective collimation of sound [11, 12]. It
is interesting that periodically perforated thick slab may
exhibit ideal reflection, apart from extraordinary trans-
mission, as it was earlier predicted in Ref. [13].

Recent calculations of the transmissivity through a
finite-thickness aperture are based on expansion of pres-
sure over waveguide modes. The modes are the solutions
of the wave equation with rigid-body boundary condi-
tions. This method was proposed in Ref. [11] for acous-
tic transmission and in Refs. [14–16] for transmission of
electromagnetic waves. The rigid-body approximation is
usually justified by high contrast between the impedances
of the fluid and the screen. However, the acoustic cou-
pling between them is strongly enhanced near the fre-
quency of the Fabry-Perot resonance, i.e. when a quasi-
standing wave is formed inside a fluid channel. Due to
the resonance, even weak coupling may be sufficient for
effective exchange of energy between the fluid and elas-
tic screens. Synchronized oscillations of the fluid and
the screens are accompanied by deformation of the elas-
tic boundaries of the channel. While this surface de-
formation looks similar to propagating Rayleigh wave
[17], there are essential differences. First, the dispersion
equation is nonlinear, unlike the one for the Rayleigh
waves. Second, there is a non-zero flux of acoustic en-
ergy from fluid to metal, which does not exist for evanes-
cent (inside metal) Rayleigh waves. Due to this flux a
finite-length fluid channel serves as a redirecting acous-
tic antenna. Collective vibrations of the screens coupled
through the fluid and driven by external wave can be
represented as a superposition of the eigenmodes of the
whole system. Deep minima in transmission occur when
two eigenmodes propagating in opposite directions inter-
fere destructively, forming a quasi-standing wave. Deep
minima have been reported in Ref. [18] and their un-
usual nature has remained unclear. Here we develop a
theory of sound transmission through a slit formed by
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FIG. 1: (color online). Sound transmission spectra of a wa-
ter slit between two aluminum (a,b) and brass (c,d) plates.
Experimental results are shown by circles for aluminum and
by squares for brass. Calculated spectra are shown by solid
lines. The minima corresponding to excitation of the slow
mode are marked by vertical arrows. Inset: Experimental
setup showing the geometrical parameters of the slit.

two elastic solid plates. We solve the eigenvalue prob-
lem for the whole system which consists of two elastic
infinite plates coupled through a straight fluid channel.
The acoustic field is expanded over the set of eigenfunc-
tions which describe synchronized vibrations of the whole
system. Each eigenfunction is characterized by complex
eigenvector, i.e. these eigenfunctions are inhomogeneous

plane waves. They form a nonorthogonal basis, like the
well-known Rayleigh-Lamb modes describing vibrations
of an isolated solid elastic plate [19]. Lack of orthogonal-
ity presents certain mathematical difficulties in calcula-
tions. Nevertheless, the expansion over this nonorthogo-
nal basis converges sufficiently fast, providing very good
agreement with experimental results in the whole fre-
quency range. Using the proposed theory we show that

at the frequencies when the deep minima in transmission
are observed the reflection is also minimal. This occurs
due to formation of quasi-standing Rayleigh wave in the
whole system. Since the transmission and reflection are
strongly suppressed, the only way for the accumulated
elastic energy to escape is radiation into metal. This
means that the eigenfunctions are leaky modes, similar
to quasi-surface waves at solid-fluid interfaces studied in
Ref. [17, 20, 21]. It was also demonstrated that leaky (or
quasi-guided) elastic modes give a resonant contribution
to sound transmission through a glass plate decorated by
periodically arranged polymer spheres [22].
The rate of radiation into metal is relatively high,

i.e. a straight fluid channel serves as redirecting acous-
tic antenna. The proposed mechanism is very differ-
ent from the strong suppression of sound transmission
through a periodic arrangements of holes in a rigid screen
[13, 23, 24]. The latter is due to destructive interference
between the Fabry-Perot cavity mode and the Fourier
component of the acoustic field in the fluid with the wave-
length equal to the period of perforation. This Fano-like
resonance exists even in the rigid-body approximation
and is manifested as total reflection of sound wave from
the perforated solid plate. Unlike this, the proposed ef-
fect of redirection of sound leads to suppression of both,
transmission and reflection, and it vanishes in the rigid-
body approximation.

II. SCATTERING PROBLEM FOR SOUND

WAVE IMPINGING AT ELASTIC SCREEN

WITH STRAIGHT FLUID CHANNEL

In the experiment a sound wave was generated and de-
tected by two 1.5′′ transducers immersed in a water tank
at equal distance l = 8 cm from the plates. A slit between
two square brass or aluminum plates with side L = 12 cm
is located in front of the transducers. A sound wave was
incident normally to the slit and the transmission spec-
trum was measured with compensation of the non-flat
frequency response of the piezoelectric transducers. The
plate thickness h defines the length of the water chan-
nel and its width d (the slit’s aperture) is maintained by
means of a sample holder that fixes both metal plates.
This experimental setup is schematically shown in the
inset to Fig. 1.
To calculate the transmission of a plane sound wave

coming from the left, (p0/iωρf) exp(ik0x − iωt), we in-
troduce the potentials of the reflected R(x, z) (x < 0)
and transmitted T (x, z) (x > h) acoustic fields. They
define velocity and pressure in the fluid (e.g. v = ∇R,
p = p0 + iωρfR for x < 0). Here k0 = ω/cf , ρf is the
density and cf is the speed of sound in the fluid. The
potentials of the reflected and transmitted fields are rep-
resented through their Fourier integrals

R(x, z) =

+∞
∫

−∞

r(k)eikz−iβ(k)xdk, x ≤ 0, (1)
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T (x, z) =

+∞
∫

−∞

t(k)eikz+iβ(k)(x−h)dk, x ≥ h. (2)

Here the longitudinal (along x) component of the wave

vector is defined as β(k) =
√

k20 − k2 for |k| < k0 and

β(k) = i
√

k2 − k20 for |k| > k0.

In the region 0 ≤ x ≤ h occupied by the fluid channel
and the elastic plates the potentials can be expanded
over a set of eigenfunctions of the corresponding infinite
channel

B (x, z) =
∑

n

(b+n e
iβnx + b−n e

−iβnx) cos knz, (3a)

L (x, z) =
∑

n

(l+n e
iβnx + l−n e

−iβnx)e−νn|z|, (3b)

S (x, z) =
∑

n

(s+n e
iβnx − s−n e

−iβnx)e−ηn|z|, (3c)

where B is the velocity potential of the fluid (v(x, z) =
∇B, |z| ≤ d/2) and the potentials L and S give the
displacement vector in the plates,

u = ∇L+∇× (Sŷ), |z| ≥ d/2. (4)

The transversal parts of the wave vectors in the fluid and
in the plates are defined as

kn =
√

k20 − β2
n, νn =

√

β2
n − k2l , ηn =

√

β2
n − k2t ,

Re (νn, ηn) > 0, kl = ω/cl, kt = ω/ct, (5)

ct (cl) is the speed of transversal (longitudinal) sound in
the plates. Our final goal is calculation of the reflected
and transmitted acoustic fields in the fluid. Transmitted
t(k) and reflected r(k) amplitudes in Eqs. (1) and (2)
are related to the coefficients bn, ln, and sn in the linear
expansions (3). These linear relations can be obtained
through the boundary conditions at the vertical (x =
0, h) and horizontal (z = ±d/2) surfaces of the structure.

III. DISPERSION OF EIGENMODES IN

INFINITE CHANNEL

The eigenmodes in Eq. (3) are labeled by integer n
which numerates the roots of the dispersion equation
βn = βn(ω). This equation is derived in Appendix A
from the continuity of force and velocity at the bound-
aries z = ±d/2 [18, 25]. Since the system is symmetric
with respect to the plane z = 0 the eigenmodes are ei-
ther even or odd functions of z. Odd modes are excited
at oblique incidence or if the plates are made of different
metals [26]. In our case only even modes can be excited.
The dispersion equation for these modes is written as
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FIG. 2: Dimensionless phase velocity ξ = Ω/q vs wave vector
q = βd for infinite brass channel filled by water. Fast mode
is presented by infinite number of waveguide branches above
the speed of sound in water, cf/ct < ξ < 1 (red curves).
Phase velocity of the slow mode grows very fast (blue line
near the vertical axis) and saturates at the level ξ = cf/ct for
very small q = βd ≈ 0.2. Insert is the blowup of this narrow
region where the phase velocity behaves as ξ ∼ √

qd. Dashed
line is asymptotic dependence obtained from Eq. (9).

follows:

(

2− ξ2
)2 − 4

√

1− ξ2

√

1− c2t
c2l

ξ2 (6)

= ± ρf
ρm

ξ4

√

1− (ct/cl)
2
ξ2

(ct/cf )
2
ξ2 − 1

cot

(

ω

ξ

d

2ct

√

c2t
c2f

ξ2 − 1

)

.

Here ρm is the density of the elastic plates plates. Each
root ξn of the dispersion equation gives the normalized
phase velocity ξn = ω/ctβn of the coupled quasi-surface
waves. Since the coupling between these waves occurs
through the fluid, the r.h.s of Eq. (6) is proportional
to the ratio ρf/ρm. When ρf/ρm = 0 the vibrations
of the plates are uncoupled and Eq. (6) is reduced to
the well-known cubic equation with respect to ξ2. Its
unique solution ξ = ξR defines the velocity of dispersion-
less surface Rayleigh wave at the plane interface between
vacuum and elastic solid [17].
The dispersion equation has finite number of real roots

and infinite number of complex roots with Reξn > 0. Due

to the factor
√

1− ξ2 all real roots lie within the inter-
val 0 < ξ ≤ 1. The real roots are obtained from Eq.
(6) with ”+” sign in the right-hand side. Each complex
root gives rise to an inhomogeneous plane wave in the
expansions (3). These terms oscillate and decay with the
coordinate z. For complex roots the decrements νn and
ηn acquire imaginary parts, which must be negative in or-
der the corresponding modes run away from the channel.
This scattering condition is satisfied for the roots with
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Imξn < 0, which are obtained from Eq. (6) with ”-” sign
in the right-hand side. For each frequency ω all the real
roots must be included in the expansions (3). The num-
ber of complex roots included in numerical calculations
depends on desired accuracy. The roots are arranged
in ascending order of the imaginary part of the longitu-
dinal wave vector βn = ω/(ctξn) (|Imβn−1| < |Imβn|),
since those with smaller |Imβ| give larger contributions.
For infinitely long channel the complex solutions should
be ignored as they decay exponentially with length, but
they play essential role in sound transmission through a
finite-length channel.
Solutions of the transcendental equation (6) are ob-

tained numerically. For channel of width d Eq. (6) gives
implicit relation between the dimensionless phase veloc-
ity ξ and frequency ω. Substituting ω = (ct/d)ξq, where
q = βd is dimensionless wave vector, into the argument
of cotangent in Eq. (6), we obtain equation which re-
lates the dimensionless phase velocity ξ and wave vector
q. This equation is independent of the channel width d
and it leads to the spectrum shown in Fig. 2. The spec-
trum consists of two unequal parts. One is so-called fast

mode propagating faster than sound wave in the fluid,
ξ > cf/ct. It has infinite number of branches (shown
in red) which originate from the symmetric waveguide
modes

ωn = cf

√

(

2πn

d

)2

+ β2, n = 0, 1, 2, . . . (7)

of a channel with ideally rigid walls, ρm, ct → ∞. More
detailed analysis of the spectrum in the limit ρf/ρm → 0
is given in Appendix A. All the branches of the fast mode
lie between two horizontal lines, cf/ct < ξ ≤ 1. Unlike
the waveguide spectrum (7) where each phase velocity
ωn/β diverges at β = 0, except the mode with n = 0,
in a channel with elastic boundaries all fast modes start
with finite phase velocity ξ = 1 at the wavevector

Qn = βnd = 2√
(ct/cf )2−1

[πn (8)

+ arctan
(

ρf

ρm

√

1−(ct/cl)2

(ct/cf )2−1

)]

, n = 0, 1, 2, . . .

Near the point where each branch crosses the level of
the phase velocity of the Rayleigh wave, ξ = ξR, the
slope of the dispersion curve noticeably decreases since
for the parameters used in the plot of Fig. 2 the ratio
ρf/ρm = 0.12 is quite small.
Another part of the spectrum in Fig. 2 is represented

by a blue line. It is displaced below the level ξ = cf/ct,
i.e. this mode propagates slower than sound in the fluid.
The right-hand side of the dispersion equation (6) re-

mains real while the square root
√

( ct
cf
)2ξ2 − 1 is pure

imaginary. The phase velocity of this mode grows ex-
tremely fast, starting from zero and approaching cf for
q > 5. The growth occurs in the subwavelength region,
where the wavelength λ = 2π/β = 2πd/q is greater than
the channel width, λ ≥ 2πd/5. This narrow subwave-
length region is zoomed in the insert to Fig. 2. Within

this region the frequency Ω and wavevector q are small
parameters. Expansion of Eq. (6) leads to the following
nonlinear dispersion in the low-frequency limit:

Ω ≈
√

ρm
ρf

(

1− c2t
c2l

)

(βd)3/2. (9)

As shown in Fig. 2, this asymptotics is valid in the re-
gion of very long wavelengths, when λ > 100πd. It is this
part of the spectrum which provides penetration of sound
through any narrow slit. Unlike transmission through a
channel with ideally rigid walls where the dispersion is
linear (see Eq. (7) for n = 0), in a real channel the vibra-
tions of the walls result in nonlinear dispersion (9) with
vanishing phase and group velocities in the low-frequency
limit. Analysis of transmission through a subwavelength
acoustic channel will be published elsewhere. It is note-
worthy to mention that transmission of electromagnetic
waves through a deeply subwavelength metallic slit also
exhibits interesting features which do not exist for per-
fectly conducting screens [27, 28].

IV. SOLUTION OF THE SCATTERING

PROBLEM

The eigenvalue problem which leads to the dispersion
equation (6) also gives the relations between the coeffi-
cients l±n , s

±
n and b±n .

l±n = − iknc
2
t

νnω3
(η2n + β2

n) sin
knd

2
eνnd/2 b±n , (10)

s±n = −2knβnc
2
t

ω3
sin

knd

2
eηnd/2 b±n .

These relations are obtained from the linear set (A3).
Using Eq. (10) the coefficients l±n and s±n , which define
the fields in the solid plates can be eliminated, and the
unknowns left are t(k), r(k), and b±n . These four un-
knowns are calculated from four boundary conditions for
velocity and pressure at two vertical boundaries, x = 0
and x = h.

(p0/iωρf) +R(x = 0, z) = B(x = 0, z), |z| < d/2, (11)

p0 − iωρfR(x = 0, z) = σxx(x = 0, z), |z| > d/2,

p0
ρfcf

+
∂R(x, z)

∂x
|x=0=

∂B(x, z)

∂x
|x=0, |z| < d/2,(12)

p0
ρfcf

+
∂R(x, z)

∂x
|x=0= −iωux(x = 0, z), |z| > d/2,

T (x = h, z) = B(x = h, z), |z| < d/2, (13)

−iωρfT (x = h, z) = σxx(x = h, z), |z| > d/2,

∂T (x, z)

∂x
|x=h=

∂B(x, z)

∂x
|x=h, |z| < d/2, (14)

∂T (x, z)

∂x
|x=h= −iωux(x = h, z), |z| > d/2.
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Although there are formally eight equations and only four
unknowns, the system is not overdetermined. In fact,
each pair of equations defines one of the physical pa-
rameters – stress/pressure or velocity – at the semiaxis
z > 0, which is divided into two intervals occupied by
fluid, 0 < z < d/2, and metal, d/2 < z < ∞. Thus, the
number of independent equations is four.
Substitution of the explicit expressions (1), (2), and

(3) for the potentials R(x, z), T (x, z), and B(x, z) into
Eqs. (11)-(14) leads to a set of linear equations for two
unknown continuous functions, t(k) and r(k), and two
discrete unknowns, b±n , see Eqs. (B1)-(B4) in Appendix
B. Two functions, r(k) and t(k), can be eliminated ana-
lytically and for the rest two unknowns, b±n , a set of linear
equations is obtained (B11)-(B12), which is solved nu-
merically. Derivation of the set of equations for b±n given
in Appendix B is complicated by nonorthogonality of the
eigenfunctions used in the expansions (3). It is well-
known that an eigenvalue problem for elastic waves in a
finite volume leads to a set of nonorthogonal eigenfunc-
tions. In particular, normal vibrations of elastic plate
(Lamb waves) are not orthogonal over the width of the
plate [29]. While several ”orthogonality relations” for
Lamb waves based on the reciprocity relations have been
proposed [30, 31], they (or their modification for solid-
fluid structure [32]) cannot help in calculation of b±n . In
Appendix B we use a basis of trigonometric functions for
derivation of the linear set of equations for b±n . Once the
coefficients b±n are known, then the Fourier components
r(k) and t(k) can be calculated that gives the solution of
the scattering problem in the form of integrals (1), (2).

V. TRANSMISSION, REFLECTION AND

REDIRECTION OF SOUND

The proposed method of calculation of transmitted and
reflected acoustic fields excited by a plane wave is practi-
cally exact. The only physical approximations we used –
the linear Hooke’s Law and inviscid fluid – do not really
affect the accuracy of the obtained results. Indeed, the
width of the viscous boundary layer

√

2ν/ω ≈ 10−4 cm
in water (ν = 0.01 cm2/s) is negligible as compared with
the apertures used in our experiments. Therefore, the
calculated spectra of direct transmission

T‖(ω) =
1

Ap0v0x

∫

A

I‖(x = l, z)dydz (15)

=
1

πR2
dp0v0x

∫ Rd

−Rd

I‖(x = l, z)
√

R2
d − z2dz

are in excellent agreement with the experimental spectra,
as shown in Fig. 1. Here A = πR2

d is the area of the
transducer antenna, l = 8 cm is the coordinate of the
receiver, p0v0x is the flux in the incident wave, and I‖ =
p(x, z)v∗x(x, z) = iωρfT (x, z)(∂T

∗(x, z)/∂x) is parallel to
the channel component of the transmitted flux of sound
energy. Note that no fitting parameters were used in the

plots. The agreement is observed within a wide range
of frequencies, for different metal plates (aluminum and
brass), and for very different geometry of the slit: short
and wide channel, h < d, Fig. 1 (a,b) and long and
narrow channel, d < h, Fig. 1 (c,d).

The accuracy of the theoretical spectra depends on the
number of complex roots of Eq. (6) included in the ex-
pansions (3). To plot the transmission spectra in Fig.
1 we numerically calculated each root as a function of
frequency, i.e. each root generates a trajectory ξn(ω) in
the complex ξ-plane (see Fig. 8). The convergence of
the series (3) is slower for wider channels, therefore in
calculations of the results shown in Fig. 1 (a) and (b)
the number of complex roots was 11, while the plots in
Fig. 1 (c) and (d) were obtained with only 7 complex
roots. For all the graphs addition of one more complex
root leads to less than 1% variation. As in any waveguide
the number of real roots (propagating modes) increases
with frequency, i.e. each new real root emerges at cut-
off frequency, except the slow mode which starts from
zero frequency. For the fast mode the cutoff frequencies
Qnct/d are obtained from Eq. (8). For the frequencies
near 1.4 MHz Eq. (6) has 8, 5, 2, and 2 real roots for
the channels whose spectra are shown in Fig. 1 (a)-(d).
One of these running modes is always the slow mode. In
the case of brass channel the cutoff frequency for the sec-
ond (n = 1) waveguide mode Q1ct/d = 2.35 MHz for the
channel with width d = 1 mm. Therefore, it does not
contribute to sound transmission in our experiments. Its
contribution becomes essential for width d > 2 mm.
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FIG. 3: Calculated transmission and reflection spectra for
two square brass plates with sides of length L = 12 cm
separated by a slit with h = 3 mm and d = 0.5 mm.
The measured transmission spectrum is shown in Fig. 1
(c). (a) Transmission through the whole vertical boundary

x = h (solid-red line), T‖ = C
∫ L+d/2

0
T (h, z) ∂T

∗(x,z)
∂x

|x=h dz.
Log scale for T‖ is displaced on the right. Reflection from
the whole vertical boundary x = 0 (long dashed-green

line), R = C
∫ L+d/2

0
R(0, z) ∂R

∗(x,z)
∂x

|x=0 dz, and the sum
T‖ + R (short dashed-blue line). (b) Transmission T⊥ =

C
∫ h

0
B(x, d/2) ∂B

∗(x,z)
∂z

|z= d
2

dx through the horizontal bound-

ary z = d/2. Inset demonstrates conservation of energy: the
deviation of the sum T‖ +T⊥+R from 1 does not exceed 2%.

C = iωρ2fcf/(p
2
0L) is the normalization constant.
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In order to analyze physical nature of the deep minima
in Fig. 1, we calculated the reflection spectrum for the
slit with h = 3mm and d = 0.5 mm and plotted it in
Fig. 3 together with the total transmission T‖ through
the whole boundary x = h.

The positions of the minima in the reflection in Fig.
3 (a) coincides with the positions of the minima in the
transmission in Fig. 1 (c). Near these minima the sum
of forward and backward scattered flux, T‖ + R, is con-
siderably less than 1, that is a clear indication that this
sum does not represent the total flux scattered by the
slit. Since the slit shown in Fig. 1 is a 2D scattering sys-
tem, the lack of scattered flux, 1− T‖ −R, is the energy
scattered along axis z. In Fig. 3b we plot the spectrum
transmitted from the fluid to the metal through the hor-
izontal boundary z = d/2. It exhibits maxima exactly
at the frequencies where T‖ + R exhibits minima, thus
representing the flux, T⊥, which is lost if the slit is ap-
proximated as a 1D scatterer. The total scattered flux
T‖ + T⊥ + R, while fluctuates due to numerical errors,
still remains very close to 1, as it is shown in the inset to
Fig. 3b.

Vibrations of the metal-fluid boundary z = ±d/2 break
1D symmetry of the system, i.e. these boundaries are
not flat any more. This broken symmetry of the channel
boundaries gives rise to the elastic wave propagating in
the metal plates perpendicular to the incident wave. The
flux of energy T⊥ associated with this redirected wave
does not appear in the model of rigid screen which was
accepted in many previous studies. Therefore, the prop-
erty of a slit to redirect the incoming flux into metal is
manifested only for elastic screens. The amount of redi-
rected acoustic energy may rich 12% at the frequencies
near 0.7 MHz, as shown in Fig. 3. This is relatively
strong effect, taking into account that a brass plate in
water transmits only about 8% (-11 Db) in the minimum
of the Fabry-Perot resonance.

Enhanced radiation of sound into metal occurs due
to large amplitude of vertical vibrations uz of the plate
boundaries at z = ±d/2. Suppressed direct transmission
and reflection originate from low pressure p(x, z) at the
channel ends and also from small amplitude of horizontal
vibrations ux of the plate boundaries x = 0 and x = h.
When these two effects occur at close frequencies they
mutually enhance each other, leading to extraordinary
low transmission. The sharper a dip in Fig. 1, the more
energy is redirected into metal. The sharpness of a dip
depends on how close to zero the pressure p(x, z) and
the displacement ux become at x = 0, h. Being repre-
sented by a sum of plane waves taken over the roots of
the dispersion equation, these quantities become small
when those plane waves that give the principal contri-
bution interfere almost destructively at the length of the
channel h. It may occur that another pair of eigenmodes
with smaller amplitudes also interfere destructively, thus
leading to even sharper dip. It is, however, nearly im-
possible to predict how the amount of redirected energy
depends on the geometry of the channel and frequency,

0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.5

1.0

1.5 Brass

0.0
0.5
1.0
1.5
2.0 p ux uzBrass(a) x = 0

z = d/2

p ux uz
x = h
z = d/2

(b)

Frequency (MHz)

FIG. 4: Frequency dependence of the pressure, horizontal and
vertical displacement of the plates at the left (a) and right (b)
ends of the same channel as in Fig. 3. Straight vertical lines
mark the positions of the deep minima in the transmission
shown in Fig. 1 (c).

since it depends on the values of the roots of the tran-
scendental equation (6).
In Fig. 4 we plot the pressure and the amplitudes

of horizontal and vertical vibrations at the channel ends
(x = 0, h) vs frequency. It is clearly seen that near the
resonant frequencies where minima in the transmission
are experimentally observed (marked by vertical lines)
the amplitude of horizontal vibrations of the both faces
of the plates is close to zero. The same is true for the
pressure at the ends of the channel. Since the vibra-
tions of the plates and the fluid are coupled through the
boundary conditions, we conclude that a quasi-standing
wave is formed in the whole system due to interference
between two eigenmodes propagating in opposite direc-
tions. At the same resonant frequencies the amplitude
of the vertical vibrations reaches its local maxima that
explains strong radiation into metal. While the graphs
in Fig. 4 exhibit many peaks, strong redirection of sound
occurs when minimum in pressure and displacement ux

coincides with maximum in displacement uz. The depth
and width of the minimum in T‖ depends on how close
to each other these three extrema occur. For example,
the first two minima at 0.32 and 0.71 MHz in Figs. 1
(c) and 3 (a) are well pronounced since the frequencies
of all three extrema practically coincide. Unlike this,
the third minimum at 1 MHz is quite broad due to vis-
ible shifts in the positions of the extrema. There are
two Fabry-Perot resonances at 0.72 and 1.22 MHz in the
transmission spectrum in Fig. 1 (c). Here the situation
is quite simple and standard – maximum in transmission
coincides with minimum in reflection. This also can be
seen from Fig. 4 (b) where the amplitude of longitudinal
vibrations at the right face (x = h) of the plate exceeds
that on the left face (x = 0), especially for the resonance
at 1.22 MHz which is not affected by close proximity of
a deep minimum in transmission.
In Fig. 1 (c) two minima at 0.32 and 0.71 MHz in

transmission are associated with appearance of the real
roots of Eq. (6), ξ1 = 0.99 and ξ2 = 0.715, respectively.
The first root corresponds to excitation of the fast mode,
since its phase velocity ctξ1 exceeds the speed of sound in



7

the fluid cf . For the second root, ξ2, the phase velocity
of the corresponding eigenmode is less than cf , therefore
this minimum is due to excitation of the slow mode. The
minima associated with excitation of the slow mode are
marked by arrows in the transmission spectra shown in
Fig. 1. As a rule, these minima are sharp and asymmet-
ric, except the minimum at 0.4 MHz in Fig. 1 (d), which
structure is strongly affected by a standard Fabry-Perot
resonance.

FIG. 5: The structure of the fluid channel used for numerical
simulations. A Gaussian beam coming from the left impinges
on the slit and the pressure field is obtained behind the plates.
The illustrated pattern corresponds to two brass plates with
h = 5 mm, d = 1 mm at frequency 0.32 MHz.

VI. NUMERICAL MODELING BY FINITE

ELEMENT METHOD

Theoretical and experimental results are also sup-
ported by finite element simulations, which were per-
formed through the commercially available software
Comsol Multiphysics. The employed model is repre-
sented in Fig. 5. It consists of a two-dimensional domain
filled with a fluid having the acoustic properties of wa-
ter. Two elastic plates with thickness h and separated

by a distance d are displaced forming a fluid channel.
The plates are of the same length of 12 cm as the ex-
perimental samples. At the ends the both plates termi-
nate with two additional absorbing domains (or elastic
perfectly matched layers, PML) in order to suppress re-
flection. Normally incident Gaussian beam is used as im-
pinging wave to provide a more realistic excitation. The
exterior boundaries of the model are configured with non-
reflecting conditions, ensuring that outgoing waves leave
the domain.

A frequency sweep is performed numerically for differ-
ent thicknesses h and apertures d of the slit. This process
provides a large amount of data which can be summa-
rized through maps showing the transmitted pressure as
a function of frequency and aperture. In addition, the
same sweep was also experimentally carried out using an
automated setup. In Fig. 6 we compare experimental
and numerical data for brass plates with thickness h = 3
mm and h = 5 mm. The numerical data are obtained
by integrating the pressure field over the length of the
receiving transducer (see Fig. 5). Both maps exhibit re-
gions of parameters with anomalously low transmission.
There is excellent agreement between the positions of the
deep minima obtained experimentally, theoretically, and
numerically. The deepest minima at 0.32 MHz for h = 3
mm and at 0.2 and 0.64 MHz for h = 5 mm appear as
bright blue spots in the maps in Fig. 6. Unlike this, less
deeper minima at 0.71 MHz (h = 3 mm) and at 0.4 MHz
(h = 5 mm) appear as narrow yellow lines on red back-
ground. This occurs because these local minima are close
to the maxima of the Fabry-Perot resonances. These less-
deeper minima correspond, as it is explained in the main
text, to excitation of the slow mode. The minimum at
0.4 MHz (h = 5 mm) has a doublet structure (see Fig.
1d), which is well-reproduced in the experimental map in
Fig. 6. It, however, is not resolved in our numerical sim-
ulations. It is worth mentioning that no viscosity effects
were considered in the fluid, thus demonstrating that the
reported effects are not due to viscous phenomena inside
the channel.

The elastic displacements were also obtained from the
simulations, allowing the observation of the wave phe-
nomena occurring inside the plates. A motion picture
showing the pressure map in the fluid superimposed with
the lines of displacement (either in water or metal) is pre-
sented in the Supplementary Material Movie S1 [33]. It
is calculated for brass plates with h =3 mm and d =0.5
mm (the same parameters as in Fig. 1c) at 0.704 MHz.
It is shown how the incoming wave generates elastic vi-
brations inside the slit and the plates and how these vi-
brations propagate. It is easy to see that that the vi-
brations of the plate which originally are localized near
the channel boundaries become leaky modes, carrying
the acoustic energy away from the channel in a form of
vortices. The vortex structure of the displacement field
in metal is due to non-potential contribution ∇ × S to
the displacement field u. This movie visualizes the effect
of redirection of sound by a straight fluid channel with
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elastic boundaries.

VII. SUMMARY

In summary, we reported a comprehensive study of
sound transmission through a finite-length fluid channel
with elastic boundaries. It is experimentally observed
and explained and how a straight fluid slit between two
metallic screens may serve as a redirecting acoustic an-
tenna. This previously unknown property is due to exci-
tation and interference of the eigenmodes which describe
the synchronized vibrations of the fluid and metal plates.
The proposed method of solution of the scattering prob-
lem for a slit is practically exact and leads to excellent
agreement with the experiment. The proposed analytical
approach may be easily extended to more complicated ge-
ometries, in particular, to a set of periodically arranged
slits. The effect of redirection of sound may find appli-
cations in design of specific devices for manipulation of
acoustic energy and vibration of plates embedded into
fluids. The resonant modes which are responsible for the
redirection of sound are of particular interest for microflu-
idics since pressure produced by the vibrating boundaries
is comparable with the capillarity force or the force gen-
erated by a micropump.
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Appendix A: Derivation of the dispersion relation

Consider a monochromatic sound wave propagating
along an infinite straight fluid channel clad between two
elastic plates. A solution of the wave equation in the fluid
and in the plates can be written as a superposition of the
corresponding eigenmodes Eq. (3). Linear relations be-
tween the coefficients bn, ln, and sn are obtained from
the boundary conditions. Since the channel is infinite
we can consider only the waves propagating in positive
direction of axis x and omit super-indices ±.

At the fluid-metal interface z = d/2 the stress, and the
normal component of the velocity are continuous

σzz = − p, σxz = 0, u̇z = vz . (A1)

Here σik(x, z) is the stress tensor in the elastic plates.
Using the Hooke’s Law σik = λuik+µullδik the nonzero
components of the stress tensor can be expressed through

the potentials

σxx = − λk2l L+ 2µ

(

∂2L

∂x2
− ∂2S

∂x∂z

)

, (A2)

σzz = − λk2l L+ 2µ

(

∂2L

∂z2
+

∂2S

∂x∂z

)

,

σxz = µ

(

2
∂2L

∂x∂z
+

∂2S

∂x2
− ∂2S

∂z2

)

.

Here λ and µ are the Lamé coefficients, µ = ρmc2t , λ+
2µ = ρmc2l . Substituting the potentials (3) to Eqs.
(A2) and (4), the components of σik and u are expressed
through the unknown constants ln and sn. The veloc-
ity v = ∇B and the pressure p = iωρB are expressed
through bn. Thus, all the dynamical variables are given
in terms of three unknowns, l, s, and b.
The boundary conditions Eq. (A1) written in terms of

l, s, and b (here sub-index n can be omitted) lead to the
following set of linear equations:























(

2µν2 − λk2l
)

e−νd/2 · l
− 2iµηβ e−ηd/2 · s+ iωρf cos(kd/2) · b = 0,

2iνβ e−νd/2 · l + e−ηd/2
(

β2 + η2
)

· s = 0,

k sin(kd/2) · b+ iων e−νd/2 · l + ωβ e−ηd/2 · s = 0.

(A3)

This set has nontrivial solution if the corresponding de-
terminant vanishes, viz

(

η2 + β2
)2 − 4νηβ2 =

ρf
ρm

ω4

c4t

ν

k
cot

kd

2
. (A4)

Here k, ν, and η are expressed through ω and β using Eq.
(5). Dependence on the channel width d can be elim-
inated if dimensionless frequency Ω = ωd/ct and wave
vector q = βd are introduced.

(

2q2 − Ω2
)2 − 4q2

√

q2 − (ct/cl)2Ω2
√

q2 − Ω2 (A5)

=
ρf

ρm
Ω4
√

q2−(ct/cl)2Ω2

(ct/cf )2Ω2−q2 cot(12

√

c2t
c2
f

Ω2 − q2)

Dispersion relation (6) for the phase velocity ξ is obtained
from Eq. (A5) by substitution q = Ω/ξ. Real and com-
plex solutions of Eq. (A5) define the allowed values of
the wave vector qn = qn(Ω) for each frequency Ω.
The structure of the spectrum given by Eq. (A4) is

shown in Fig. 7. The dimensionless frequency is plot-
ted versus kd/2. Since k is not the wave vector in the
direction of propagation, the slope of the curves is not
related to the phase velocity. For almost all values of
kd/2 the right-hand side of Eq. (A4) can be neglected
since ρf/ρm << 1. In this approximation Eq. (A4) gives
linear dispersion (Rayleigh wave) which serves as asymp-
tote for the dispersion curves of the fast mode. How-
ever, near the points where kd/2 = πn (n = 1, 2, . . . ) the
Rayleigh wave becomes a waveguide mode of a channel
with rigid walls. Here the dispersion curves become prac-
tically vertical lines as a result of quantization condition
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vz = ∂B
∂z |z=±d/2 = 0. For very small ratio ρf/ρm = 0.01

the spectrum exhibits this quantization condition with
high accuracy, as one can see in the inset to Fig. 7.
The slow mode corresponds to pure imaginary values
of k in Eq. (A4). In Fig. 7 these values are plotted
along the negative direction of the horizontal axis. At
kd/2 >> 1 the dispersion of the slow mode becomes lin-
ear since coth(kd/2) → 1 and Eq. (A4) is reduced to
a polynomial equation over ω/k. The tendency to lin-
ear dispersion is manifested as saturation of the phase
velocity in Fig. 2.
Expansions (3) of the potentials over eigenmodes can

be used if all real roots and sufficient number of complex
roots of the dispersion equation (6) are known. In general
case each root depends on frequency, ξn = ξn(ω) that
shows frequency dispersion of the corresponding mode.
Examples of frequency dispersion for the lowest two real
solutions are given in the left panel in Fig. 8. The mode
which starts at ω = 0 is the slow mode (blue line). It
exhibits strong dispersion in the subwavelength regime
and at ω > 0.5 MHz the phase velocity saturates at the
level ξ = cf/ct, i.e the slow mode becomes dispersionless
sound wave, propagating with speed cf . Red line shows
dispersion of the first waveguide mode. This mode starts
at cut-off frequency (ct/d)Ω1. Frequency dispersion of a
complex root can be visualized as a trajectory in complex
plane. One of such trajectories is shown in the right panel
in Fig. 8. This complex root has very small imaginary
part at low frequencies. Therefore it gives a contribution
to subwavelength transmission which is comparative with

the contribution of the pure real root which gives rise to
the slow mode.

It is important to stress that the Fabry-Perot maxima
in transmission are due to the roots which are necessary
complex. Indeed, these maxima appear when longitudi-
nal waves interfere constructively at the length h. Since
cl > ct, the roots of the dispersion equation which corre-
spond to the phase velocities close to cl cannot lie within
the interval 0 < ξ ≤ 1 (where all the real roots lie),
i.e. they are all complex. This complexity reflects an
obvious fact that in a solid plate with a slit pure longi-
tudinal waves cannot propagate. The channel boundary
gives rise to shear displacements which change the am-
plitude and phase of the Fabry-Perot resonance. Nev-
ertheless, the imaginary part of the quasi-longitudinal
solution may be quite small leading only to slight modi-
fication of the Fabry-Perot resonance. For example, the
complex root shown in Fig. 8 has the real part close to
2 (which is approximately the ratio cl/ct in brass) and
negligible imaginary part in the limits of either zero fre-
quency or zero channel width. This root corresponds to
quasi-longitudinal sound wave propagating in metal.
Appendix B: Calculation of the transmission and

reflection coefficients

Substitution of the potential expansions (3) into the
boundary conditions Eqs. (11)-(14) leads to the following
set of linear equations:

p0
iωρf

+

+∞
∫

−∞

r(k)eikzdk =























∞
∑

n=1

(b+n + b−n ) cos knz, |z| < d/2,

1

iωρf

∞
∑

n=1

(l+n + l−n )
(

λk2l + 2µβ2
n

)

e−νn|z| − 2µ

ωρf

∞
∑

n=1

ηnβn(s
+
n + s−n )e

−ηn|z|, |z| > d/2,

(B1)

p0
icfρf

−
+∞
∫

−∞

r(k)β(k)eikzdk =























∞
∑

n=1

(b+n − b−n )βn cos knz, |z| < d/2,

− iω

∞
∑

n=1

(l+n − l−n )βne
−νn|z| − ω

∞
∑

n=1

(s+n − s−n )ηne
−ηn|z|, |z| > d/2,

(B2)

+∞
∫

−∞

t(k)eikzdk =















































∞
∑

n=1

(b+n e
iβnh + b−n e

−iβnh) cos knz, |z| < d/2,

1

iωρf

∞
∑

n=1

(l+n e
iβnh + l−n e

−iβnh)
(

λk2l + 2µβ2
n

)

e−νn|z|

− 2µ

ωρf

∞
∑

n=1

ηnβn(s
+
n e

iβnh + s−n e
−iβnh)e−ηn|z|, |z| > d/2,

(B3)
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+∞
∫

−∞

t(k)β(k)eikzdk =























∞
∑

n=1

(b+n e
iβnh − b−n e

−iβnh)βn cos knz, |z| < d/2,

− iω

∞
∑

n=1

(l+n e
iβnh − l−n e

−iβnh)βne
−νn|z| − ω

∞
∑

n=1

(s+n e
iβnh − s−n e

−iβnh)ηne
−ηn|z|, |z| > d/2.

(B4)

The equations (B1)-(B4) form a linear set which, being
inhomogeneous, has a unique solution. The inhomoge-
neous term in the l.h.s. of Eqs. (B1) and (B2) is due to
the incoming plane wave with the amplitude p0/(iωρf).
Using the linear relations (10), the unknowns l±n and s±n
can be expressed through b±n . Then, the number of un-
knowns in Eqs. (B1)-(B4) is reduced to four: b+n , b−n ,
r(k), and t(k).

It is possible to reduce the number of unknowns ana-
lytically. This is easy to do since in the l.h.s. of Eq. (B1)-
(B4) the unknowns r(k) and t(k) enter through their
Fourier transformations. Applying the inverse Fourier
transformation to Eq. (B2) and (B4) (where l±n and s±n
have already been expressed through b±n ) we obtain the
following formulas:

r(k) =− p0
iωρf

δ(k) +
1

2π

N
∑

n=1

(b+n + b−n )

[(

sin((kn + k)d/2)

kn + k
+

sin((kn − k)d/2)

kn − k

)

−

− 2knc
2
t

νnω4ρf

(ηk2l + 2µβ2
n)(η

2
n + β2

n)

ν2n + k2
sin(knd/2) (νn cos(kd/2)− k sin(kd/2))+

+
8µc2t
ω4ρf

knηnβ
2
n

η2n + k2
sin(knd/2) (ηn cos(kd/2)− k sin(kd/2))

]

, (B5)

t(k) =
1

2π

N
∑

n=1

(b+n e
iβnh + b−n e

−iβnh)

[(

sin((kn + k)d/2)

kn + k
+

sin((kn − k)d/2)

kn − k

)

−

− 2knc
2
t

νnω4ρf

(ηk2l + 2µβ2
n)(η

2
n + β2

n)

ν2n + k2
sin(knd/2) (νn cos(kd/2)− k sin(kd/2))+

+
8µc2t
ω4ρf

knηnβ
2
n

η2n + k2
sin(knd/2) (ηn cos(kd/2)− k sin(kd/2))

]

. (B6)

Eqs. (B5) and (B6) give r(k) and t(k) in terms of b±n .
Substituting r(k) and t(k) into the rest two equations

(B1) and (B3) we come to two equalities for b±n where
both their sides are functions of the variable z.

2p0
iωρf

− 1

2π

∞
∑

n=1

(b+n − b−n )

+∞
∫

−∞

βn

β(k)

[

sin((kn + k)d/2)

kn + k
+

sin((kn − k)d/2)

kn − k
−

−2knc
2
t (η

2
n + β2

n)

νnω2(ν2n + k2)
sin

knd

2

(

νn cos
kd

2
− k sin

kd

2

)

+
4ηnknc

2
t

ω2(η2n + k2)
sin

knd

2

(

ηn cos
kd

2
− k sin

kd

2

)]

eikzdk =

=























∞
∑

n=1

(b+n + b−n ) cos knz, |z| < d/2,

−
∞
∑

n=1

knc
2
t

ω4ρf
(b+n + b−n ) sin

knd

2

[

η2n + β2
n

νn

(

λk2l + 2µβ2
n

)

e−νn(|z|−
d
2
) − 4µηnβ

2
ne

−ηn(|z|−
d
2
)

]

, |z| > d/2,

(B7)
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1

2π

∞
∑

n=1

(b+n e
iβnh − b−n e

−iβnh)

+∞
∫

−∞

βn

β(k)

[

sin((kn + k)d/2)

kn + k
+

sin((kn − k)d/2)

kn − k
−

−2knc
2
t (η

2
n + β2

n)

νnω2(ν2n + k2)
sin

knd

2

(

νn cos
kd

2
− k sin

kd

2

)

+
4ηnknc

2
t

ω2(η2n + k2)
sin

knd

2

(

ηn cos
kd

2
− k sin

kd

2

)]

eikzdk =

=























∞
∑

n=1

(b+n e
iβnh + b−n e

−iβnh) cos knz, |z| < d/2,

−
∞
∑

n=1

knc
2
t

ω4ρf
(b+n e

iβnh + b−n e
−iβnh) sin

knd

2

[

η2n + β2
n

νn

(

λk2l + 2µβ2
n

)

e−νn(|z|−
d
2
) − 4µηnβ

2
ne

−ηn(|z|−
d
2
)

]

, |z| > d/2.

(B8)

The right-hand-sides of Eqs. (B7) and (B8) are pre-
sented in the form of expansions over eigenfunctions of
vibrating fluid channel. These eigenfunctions are defined
on the semiaxis z > 0. They are oscillating, cos(knz),
within the channel, 0 < z < d/2, and evanescent,
exp(−ηnz), exp(−νnz), inside the metal plates, z > d/2.
These eigenfunctions, as well as the displacements and
velocities defined by them, are not orthogonal. The
lack of orthogonality is due to the boundary conditions
at z = ±d/2, explicitly containing the eigenvector βn,
as it was mentioned in Ref. [30] with respect to non-
orthogonality of Lamb modes in a solid plate.
While the non-orthogonal basis does not allow analyt-

ical calculation of the unknowns b±n , it really does not
impose additional difficulty in numerical calculation. On
the contrary, standard orthogonalization of the basis of
channel eigenfunctions will require more numerical efforts
than direct solution of the set of linear equations by the
method shown below. Due to the fact that the size of
the set of equations (B7) and (B8) is cut by the number
of calculated roots ξn(ω), n = 1, 2, . . . , N , the necessary

set of equations for b±n can, for example, be obtained by
equating the first N Fourier coefficients of the both sides
of Eqs. (B7) and (B8). We introduce the finite Fourier
transform defined on a segment 0 < z < Rd

f(z) =
F0

2
+

N−1
∑

m=1

Fm cos

(

πm

Rd
z

)

, 0 < z < Rd, (B9)

Fm =
2

Rd

Rd
∫

0

f(z) cos

(

πm

Rd
z

)

dz, (B10)

where Rd is a parameter which gives the width of the re-
gion along axis z where the acoustic fields are calculated.
If we need to know the fields within the transducer, then
Rd must be a bit larger than the radius of the transducer
antenna. Applying the Fourier transform (B10) to the
both sides of Eqs. (B7) and (B8) the following linear set
of equations for b±n is obtained:

2p0
iωρf

Rdδm,0 −
1

2π

N
∑

n=1

(b+n − b−n )

+∞
∫

−∞

βn

β(k)

[

sin((kn + k)d/2)

kn + k
+

sin((kn − k)d/2)

kn − k
− 2knc

2
t (η

2
n + β2

n)

νnω2(ν2n + k2)
sin

knd

2
×

×
(

νn cos
kd

2
− k sin

kd

2

)

+
4ηnknc

2
t

ω2(η2n + k2)
sin

knd

2

(

ηn cos
kd

2
− k sin

kd

2

)]





Rd
∫

0

eikz cos
πmz

Rd
dz



 dk =

=

N
∑

n=1

(b+n + b−n )













d/2
∫

0

cos knz cos
πmz

Rd
dz






− knc

2
t

νnω4ρf
(η2n + β2

n)
(

λk2l + 2µβ2
n

)

sin
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+
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2
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, m = 0, 1, 2, . . . , N − 1

(B11)
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+
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×

×
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e−νn(|z|−
d
2
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+
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∫
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e−ηn(|z|−
d
2
) cos

πmz
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,m = 0, 1, 2, . . . , N − 1.

(B12)

This 2N × 2N set of linear equations is solved numeri-
cally. Once b±n are known, the reflection and transmis-

sion coefficients are calculated directly from Eqs. (B5)
and (B6).
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[15] F.J. Garćıa-Vidal, L. Martin-Moreno, T.W. Ebbesen,
and L. Kuipers, Rev. Mod. Phys. 79, 1267 (2007).

[16] B. Sturman, E. Podivilov, and M. Gorkunov, Phys. Rev.
B 82, 115419 (2010).

[17] I.A. Viktorov, Rayleigh and Lamb Waves: Physical The-

ory and Applications (Plenum, New York, 1967).
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FIG. 6: Transmitted pressure at the receiving antenna (in dB) for a slit between two brass plates with h = 3 mm (top) and
h = 5 mm (bottom) at several apertures and frequencies. Left (right) panels corresponds to experimental (simulated) data.
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FIG. 7: Dispersion relation between dimensionless frequency
Ω = ctω/d and transverse wave vector kd/2 obtained from Eq.
(A4) for infinite brass channel filled by water, ρf/ρm = 0.12.
Linear dispersion for the case ρf/ρm = 0 (Rayleigh wave) is
shown by thin line. Insert shows the dispersion of the fast
mode for very weak coupling, ρf/ρm = 0.01. In this case
the waveguide modes are reduced to almost vertical lines at
kd/2 = πn. Dispersion of the slow mode obtained from Eq.
(A4) for pure imaginary values of k is plotted to the left of
the origin.
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FIG. 8: Left panel: Frequency dependence of the first two real roots of the dispersion equation (A4) for water channel between
two brass plates. Right panel: Trajectory of the first complex root for the same system.


