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This paper summarizes 0 GPa to 0.6 GPa neutron diffraction measurements of a nickel hex-
acyanochromate coordination polymer (NiCrPB) that has the face-centered cubic, Prussian blue
structure. Deuterated powders of NiCrPB contain ≈100 nm sided cubic particles. The application
of a large magnetic field shows the ambient pressure, saturated magnetic structure. Pressures of
less than 1 GPa have previously been shown to decrease the magnetic susceptibility by as much as
half, and we find modifications to the nuclear crystal structure at these pressures that we quantify.
Bridging cyanide molecules isomerize their coordination direction under pressure to change the local
ligand field and introduce inhomogeneities in the local (magnetic) anisotropy that act as pinning
sites for magnetic domains, thereby reducing the low field magnetic susceptibility.

I. INTRODUCTION

A rich array of properties are displayed in coordina-
tion polymers (CPs).1 In the realm of magnetism, many
systems within this chemical motif have been selected by
physicists to realize particular Hamiltonians that con-
tinue to increase understanding of fundamental issues.2

Here, we approach from the different vantage point of
probing inherent properties of CPs that are expressed
in functional systems. Specifically, pressure dependent
magnetism is an attractive property for transducers, and
while it has been studied in metals and metallic alloys
for centuries,3 the more elaborately structured CPs are
only recently being investigated.

The system of interest in this manuscript is the
nickel hexacyanochromate (NiCrPB) CP that shows large
changes in magnetic susceptibility with a modest ap-
plication of pressure.4 However, there is no reported,
rigorous understanding of this response. In 1992, the
superlative, 90 K ferromagnetic ordering temperature
(TC) of NiCrPB fostered the continuing interest in mag-
netic CPs.5 Having spin-only ions and small inherent
anisotropy, the magnetism of bulk NiCrPB could be pro-
ficiently modeled until 2007 when a factor of two reduc-
tion of the magnetization was seen with the application
of 0.8 GPa in a field of 5 mT.4 A resurgent interest
in NiCrPB and its pressure dependent magnetism was
sparked in 2010 when a new type of photomagnetic effect
was observed in heterostructures of cobalt hexacyano-
ferrate (CoFePB) and NiCrPB.6 This year, subsequent
reports definitively showed the hypothesized strain cou-
pling between the photostrictive CoFePB and the neigh-
boring layer of the magnetoelastic NiCrPB.789 Somewhat
puzzlingly, those works suggest that structural deforma-
tions relax within tens of nanometers of the surface while
optimal heterostructures have NiCrPB layers that are
hundreds of nanometers.

There are different, existing precedents in the liter-
ature that provide candidates to explain the magne-
toelasticity of NiCrPB. First, this effect was qualita-
tively explained as pressure induced tilting of metal-ion
coordinated octahedra via linker buckling that subse-
quently couples to the local magnetic moments and re-

duces the magnetization component along the measuring
axis via a site-by-site spin canting.4 This type of struc-
tural modification is not surprising for a Prussian blue
analogue (PBA) as pressure induced distortions are seen
in CoFePB,10 and recent X-ray absorption measurements
provide further evidence for pressure induced deforma-
tions in nickel hexacyanoferrate (NiFePB).11 Second, it is
possible that spin-canting is correlated on a longer length
scale than site-by-site, and magnetostatic domain effects
explain anisotropy in thin films of NiCrPB.12 Finally,
NiCrPB may behave like iron hexacyanochromate (Fe-
CrPB), which has a similarly large reduction in magneti-
zation with applied pressure.13 For FeCrPB, there is an
isomerization of CN moeities that gives rise to a spin-
transition from d6−Fe2+ (S = 2) to d6−Fe2+ (S = 0)
as the Fe ligand field increases from N-coordination to
C-coordination.

We have synthesized NiCrPB powders in heavy wa-
ter and characterized their chemical make-up with X-
ray photoelectron spectroscopy (XPS). X-ray diffraction
(XRD) and neutron powder diffraction (NPD) patterns
were co-refined to give atomic coordinates within the
network repeat unit and provide a scale factor for the
magnetic scattering. The pressure dependent NPD can
directly interrogate the aforementioned hypotheses: as
a function of pressure above TC , it is sensitive to struc-
tural changes of metal ions and organic constituents, and
below TC it can detect changes in the coherently aver-
aged local moments. These data taken together present a
self-consistent model for the (pressure dependent) mag-
netizing process in NiCrPB. One main feature we find
is a change in the nuclear structure factor of NiCrPB
with pressure that is best modeled as a structural iso-
merization of the CN molecules. A second main feature
we find is little change in the magnetic structure fac-
tor of NiCrPB with pressure that points to a domain
reorganization model as the dominant modulator of the
changes in magnetism. We support the validity of the
proposed models with density functional theory (DFT)
calculations and micromagnetic calculations.
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II. METHODOLOGY14

A. Synthesis

For synthesis, two continuously stirred and stoppered
vials were connected via a peristaltic pump under N2

atmosphere. All chemicals were purchased from Sigma-
Aldrich and used without further purification. The
source vial contained 0.194 g of NiCl2 in 150 mL of heavy
water, and the sink vial contained 0.335 g of KCl and
0.488 g of K3Cr(CN)6 in 300 mL of heavy water. Solu-
tion transfers were performed at 3 mL/min. Each sat for
12 hours before 1 hour of 4 krpm (67 Hz) centrifugation
at 23◦C (296 K). The precipitate was dried under vacuum
at 80◦C (353 K) to a fudge-like consistency to avoid con-
tamination with non-isotopic water. Four batches were
combined for NPD studies.

B. Instrumentation

The XPS spectra were collected on a Kratos AXIS
Ultra DLD equipped with a monochromatic, 140 W
Al source (1486.6 eV) operating at 1 × 106 Pa
(1 × 108 Torr). Charge compensation used the neutral-
izing electron gun, aromatic C-1s levels were defined to
be 284.7 eV, and the analyzer was 20 eV with a step
size of 0.05 eV. We used the relative sensitivity factors
(RSFs) from Kratos for Cl and N, and derived our own
for Ni using NiCl2 and for K and Cr from K3Cr(CN)6.
The XRD was at room temperature (296 K) on a Rigaku
Ultima III using a 1.6 kW Cu anode (λ = 1.54 Å). Ther-
mal NPD experiments were performed on BT-4 of the
NIST Center for Neutron Research (NCNR) and cold
neutron experiments were performed on the NG-5 Spin
Polarized Inelastic Neutron Spectrometer (SPINS) of the
NCNR. Both machines used the (002) reflection of py-
rolytic graphite (PG) as a monochromator and analyzer.
The SPINS experiment used 80’ collimators and the BT-4
experiment used 40’ collimators, with no collimation be-
tween analyzer and detector. BT-4 was set at 14.26 meV
(λ = 2.395 Å) with PG filters, and SPINS used 5.00 meV
(λ = 4.05 Å) with a cold Be filter. All NPD data were
collected on constant monitor, at approximately 10 sec-
onds per point for the large survey, 3 minutes per point
for the high magnetic field data, and 12 minutes per
point for the high pressure data. Magnetic fields were
applied with a superconducting magnet on BT-4 (0 T
and 4 T), and an electromagnet on NG-5 (5 mT). High
pressure was achieved using a two-stage helium intensi-
fier from Harwood Engineering with a 1.5 cm3 aluminum
alloy cell connected to the intensifier through a heated
high-pressure capillary. Pressure was adjusted at tem-
peratures well above the helium melting curve and the
capillary was heated during slow cooling of the cell to ac-
commodate the contracting He gas, minimizing pressure
loss.

C. Calculations

FULLPROF was used to refine the wide-angle diffrac-
tion patterns,15 and the tabulated values for scattering
lengths16 and magnetic form factors17 were used when
modeling the magnetic contribution. High field data
were analyzed using the same rubric as for CoFePB.18

Spin-polarized DFT calculations with LDA-functionals
used the GPAW1920 and ASE21 codes. The real-space
grid had a nominal spacing of 0.15 Å on a (64, 64, 64)
grid for the crystal calculations and 0.2 Å on a (80, 80,
80) grid for the molecular calculations. The unit cell
(also used for crystal calculations) contains four times
as many atoms as the chemical formula. The criterion
of convergence for DFT calculations was applied with-
out any symmetry constraints to be ≤105 eV/electron
in energy for crystal calculations and ≤106 eV/electron
for molecular calculations, ≤4 × 108 eV2 for integrated
eigenstate change, and ≤0.01 eV/Å for residual inter-
atomic forces. Magnetic moments were initially set to
the expected single-ion values and relaxed during opti-
mization. Zero temperature micromagnetic simulations
used the three dimensional implementation within the
OOMMF package22 with 100 nm sided cubic particles di-
vided into 1000 nm3 micromagnetic volumes. To choose
magnetic fields in powder averaged micromagnetic sim-
ulations, the cubic particle was reduced to the highest
symmetry wedge and the distance between nine points
within that area was maximized numerically.

III. NUCLEAR STRUCTURE

We begin the analysis with chemical characterization,
XRD, and thermal NPD. From XPS, we arrive at a chem-
ical formula of K0.42Ni[Cr(CN)6]0.88·xD2O, which has
a negative net charge of 0.22 electrons and we do not
use XPS to analyze the water content due to the low
pressures in the XPS chamber that dehydrate the lat-
tice. Starting by substituting nickel and chromium into
the face-centered cubic (s.g. 225 Fm3̄m) Prussian blue
structure,23 Fig. 1(a), the 296 K XRD and NPD were co-
refined, Fig.’s 1(b)-(c), to give a slightly different chem-
ical formula of K0.25Ni[Cr(CN)6]0.75(D2O)0.25·2.1D2O
that has a net charge of 0.0. To reduce the number of
fitting parameters, the CN and D2O intermolecular dis-
tances are constrained24 and only one Debye-Waller fac-

tor is used for the crystal (B = 3.6 Å
2
) with an additional

Debye-Waller factor (B’ = 10 Å
2
) for the disordered inter-

stitial heavy water molecules. Only those peaks in NPD
that are separate from both the aluminum holder signal
and heavy water signal were co-refined. The diffracted
beam line-widths are consistent with ≈100 nm crystal-
lites from a cubic particle Scherrer equation analysis,25

which is in accord with previous TEM reports from simi-
lar synthesis.26 Refined positions of atoms within the unit
cell are reported in Table I and the derived scale factor
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FIG. 1. (color online) Nuclear structure of NiCrPB. (a) The
NiCrPB unit cell is quantified with (b) XRD and (c) NPD,
both at 296 K. Black ticks indicate NiCrPB reflections, and
for NPD a higher set of ticks indicate D2O reflections in aqua,
and aluminum reflections in gray.

TABLE I. Atomic coordinates and occupancies for NiCrPB
at T = 296 K. Space group Fm3̄m (no. 225), a = 10.484 Å.

Atom Position n x y z

Ni 4a 1.00 0.50 0.50 0.50

Cr 4b 0.75 0.00 0.00 0.00

C 24e 0.75 0.19 0.00 0.00

N 24e 0.75 0.30 0.00 0.00

K 8c 0.13 0.25 0.25 0.25

(D2O) 24e 0.25 0.31 0.00 0.00

(D2O) 32f 0.26 0.31 0.31 0.31

for the NPD is then used for magnetic scattering. The
differences between XPS and diffraction chemical formu-
las might be representative of experimental uncertainty
within this unstoichiometric compound, but we also note
that XPS might be probing a surface chemical formula,
which is the reason that we do not co-refine XPS and
XRD.

IV. HIGH FIELD MAGNETIC STRUCTURE

During the same thermal NPD experiment, the tem-
perature and applied magnetic field were changed to
probe the high field magnetic structure in order to ex-
tract the size of the magnetic moments. By comparing
relative NPD intensities at 296 K and 100 K and us-
ing the Debye model,25 we find a Debye temperature of
270 K that is used to remove thermal effects when com-
paring patterns above and below TC (the temperature
decrease from 100 K to base temperature reduces ther-
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FIG. 2. (color online) High field magnetic structure of
NiCrPB. (a) The high field magnetic structure coincidentally
balances chemical occupation with spin magnitude to give (b)
a site averaged magnetic unit cell that is approximately half of
the chemical cell, as shown by the nature of (c) the additional
scattering at 3.5 K and 4 T after subtracting Debye-Waller
corrected data at 100 K. The ticks in (c) indicate NiCrPB
reflections.

mal displacements, 〈u〉2, by 1.75 times). At low tem-
perature and high magnetic field, 3.5 K and 4 T in this
measurement, the magnetization in NiCrPB saturates as
a ferromagnet5 and can be modeled without considera-
tion of domains and magnetic nanostructure. According
to magnetometry, magnetic resonance, and ligand field
analysis, the magnetic terms are spin-only Ni2+ (d8, 3A2,
S = 1) and Cr3+ (d3, 4A2, S = 3/2) and the g-factor is
nearly 2.512 Interestingly, the site averaged Cr3+ moment
has approximately the same magnitude as the site aver-
aged Ni2+ moment because the larger magnetic moment
of Cr3+ is almost exactly offset by Cr(CN)6 vacancies,
Fig. 2(a). Thus, the neutrons measure a magnetic unit
cell that is approximately simple cubic, Fig. 2(b). This
happenstance is manifest by the fact that only second or-
der reflections are observed when the nuclear background
has been subtracted from the low temperature, high field
data (T = 3.5 K, µ0H = 4 T) as shown in Fig. 2(c), which
indicates that the magnetic cell is metrically half the size
of the nuclear cell. As a result, the NPD is consistent
with the bulk measurements and NiCrPB can be consid-
ered a simple cubic ferromagnet of S = 1 for diffraction
purposes, being built from S≈1 nickel ions and S≈3/2
chromium ions that have randomly distributed vacancies.
To be clear, the simple cubic cell results from including
site occupancies, and the most rigorous magnetic unit cell
likely has finite intensity at the odd reflections. The con-
sistency of the high field NPD saturated moments with
the previously reported values will be important to keep
in mind for when we present the pressure dependence of
the low magnetic field NPD for NiCrPB.

V. HIGH PRESSURE NEUTRON
DIFFRACTION

We investigated the response of NiCrPB to high pres-
sure by performing neutron diffraction using a lower
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FIG. 3. (color online) High pressure NPD of NiCrPB. High
pressure data are offset by 1.2 × 104 counts, and subtraction
data are offset by −104 counts and scaled by a factor of three.
Black tick marks are peak positions at ambient pressure, open
tick marks are peak positions at high pressure.

background, cold triple-axis. Four conditions were mea-
sured in µ0H = 5 mT: (P0-cold) below TC at 5 K and at
≈100 kPa, (P0-hot) above TC at 110 K and at ≈100 kPa,
(P0.5-cold) below TC at 5 K and at 0.50 GPa, and (P0.6-
hot) above TC at 110 K and at 0.60 GPa. The P0.6-hot
and P0.5-cold pressures were chosen due to practical re-
strictions. These data are plotted together in Fig. 3,
along with scaled subtractions of [P0-hot - P0-cold] and
[P0.6-hot - P0.5-cold] that show the additional magnetic
scattering has a pattern superficially similar to the high
field case. In the following, we first quantify the pres-
sure dependent structural changes and then the pressure
dependent changes in magnetic scattering are detailed.

A. Structural Scattering

First, the positions of the peaks are sensitive to the
size of the unit cell, which gives one measure of how
NiCrPB responds to strain. There is very little ther-
mal contraction, but pressure has a drastic effect on the
peak positions that can be used to derive the bulk mod-
ulus, K = − V dV/dP . The 110 K phase shows a
change from 10.477 Å at ambient pressure to 10.410 Å
at high pressure, such that K = 31.43 GPa. Simi-
larly, at 5 K the application of pressure causes a con-
traction from 10.468 Å to 10.413 Å that gives a nearly
identical value of K = 31.94 GPa. The ansatz of lin-
ear volume contraction with pressure is supported by the
similar K values for 0.5 GPa and 0.6 GPa. As a frame
of reference, these modulus values are slightly less than
CoFePB (43 GPa),10 near those for silica glass (35 GPa
to 55 GPa),27 and considerably less than the 170 GPa of
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FIG. 4. (color online) Pressure induced structural changes in
NiCrPB. (a) The strain, 4ε, increases with pressure and the
fit to an anisotropic cubic strain model is shown. (b) The
intensity of the (111) peak changes the most, and the 20%
isomerized µ-CN model fit is shown. (c) A Fourier transform
of the change in scattering length density with pressure is in
the unit cell of NiCrPB at the z = 0, x-y plane that contains
metal ions and CN molecules with fractional coordinates as
per Table I. (d) The conventional cyanide linkage, Ni-N-C-Cr,
and an isomerized cyanide linkage, Ni-C-N-Cr, are illustrated
with horizontal positions aligned to the above Fourier differ-
ence map. The bound neutron scattering length, bN , for the
atoms is shown along with a fit to a cosine function in the z=0,
y=0, x-bN plane that illustrates the decrease in (111) wave
amplitude with isomerization, although quantitative model-
ing allows for interference of all atoms within the cell. For (a)
and (b), uncertainty bars show the standard error from least
squares fits to the peaks.

elemental iron.28

Second, the widths of the peaks have information
about particle size and strain, and these data show pres-
sure induced anisotropic strain broadening. By tak-
ing the geometrical difference of widths between low
pressure (β0) and high pressure (βP ) for the non-
magnetic high temperature phase, a width associated
with pressure induced strain broadening may be scru-
tinized (βstrain = (β2

P − β2
0)1/2). Strain, ε, has an

effect on line-width (βstrain = 4εtanθ) that may be ex-
pressed as variances of lattice spacings, dhkl, such that 4ε
= d2hkl(σ

2(d−2
hkl))

1/2.29 For a cubic system, these variances

have two parameters and we find S400 = 0.16 Å
−4

and

S220 = 2.70 Å
−4

reproduce the anisotropic experimen-
tal behavior of NiCrPB, Fig. 4(a). A similar anisotropic
response to pressure was seen in CoFePB.10

Third, the intensities of the peaks provide informa-
tion about the fractional coordinates of atoms within the
unit cell and their positional distributions. We consider
the high temperature data to avoid magnetic scattering.
Fitting the peaks and subtracting the areas of P0-hot
from P0.6-hot shows how the intensities are affected by
pressure, Fig. 4(b), where the intensity of the low angle
(111) peak is changed the most. Since the overall Debye-
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Waller factor does not appreciably change under pres-
sure, there must be a correlated, strained contraction of
the lattice with a coherent change in the structure factor.
Taking the Fourier transform of the subtracted intensi-
ties from Fig. 4(b) provides a real-space visualization of
how pressure changes the neutron scattering length den-
sity (SLD) in NiCrPB. We show a two dimensional cut
of this mapping onto the real-space crystallographic cell
in the plane that contains metal ions and bridging CN
molecules, Fig. 4(c), which shows increased SLD near
Cr sites compared to Ni sites. Taking a brief aside, un-
derstanding of the pressure induced change is helped by
conceptualizing the (111) peak, which is due to SLD os-
cillations that have peaks and valleys at the 4a and 4b
Wyckoff positions. In the XRD of NiCrPB, Fig. 1 (b),
the (111) is relatively weak because the dominant scatter-
ers are Ni (28 electrons, 4a site) and Cr (24 electrons, 4b
site), which have similar X-ray bound scattering lengths.
Conversely, in the NPD, e.g. Fig. 1 (c), the (111) rela-
tive intensity is stronger, due to the fact that the chain
of atoms along the (111) oscillation ridge is mostly Ni-
N-C-Cr, which have greater contrast and are arranged
in descending order with respect to neutron scattering
length to provide the appropriate, (111)-like, oscillatory
behavior. Analogously, the (200) arises due to SLD oscil-
lations that have peaks at 4a and 4b sites and valleys at
8c sites, such that XRD has the stronger relative (200).
So, as a function of pressure, there must be an antisym-
metric change in the SLD that increases in the vicinity
of the Cr sites while simultaneously decreasing by a sim-
ilar amount at the Ni site; if there was only an increase
in SLD at the Cr site (such as if pressure inducing He
gas were to load a vacancy site) the (200) would increase
as the (111) decreases, which is not observed. There-
fore, something is happening on the 24e sites, which in-
clude C, N, and the coordinated heavy water molecules,
Table I, that have bound scattering lengths of 6.65 fm,
9.36 fm, and 19.14 fm, respectively.16 One change that
can explain these data is an isomerization of the cyanide
linker from carbon bonding to Cr to carbon bonding to
Ni, Fig. 4(d). Chains of Ni-C-N-Cr have less of a (111)
contribution than Ni-N-C-Cr because the SLD is less like
a (111) plane wave. Indeed, a change of 20% of the CN
to its structural isomer in the sample can reproduce the
observed intensity change, Fig. 4(b). A choreographed
shift of the coordinated water and the cyanide linker can
also reproduce an antisymmetric change in SLD between
the metal ions, but we were unable to find a quantitative
model.

B. Magnetic Scattering

The additional scattering present below TC is con-
firmed to be magnetic by the temperature dependence
of the (200) reflection, Fig. 5(a), which indicates that
TC ≈ 75 K, consistent with that expected.45 The mag-
netic Bragg reflections do not strongly change with pres-
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FIG. 5. (color online) Pressure induced magnetization
changes in NiCrPB. (a) The temperature dependence of the
order parameter taken from the (200) reflection. (b) Widths,
∆β, of magnetic peaks increase when below TC . (c) The
peak area due to magnetic scattering from experiment is com-
pared to (d) mono-domain, (e) domain wall, and (f) site
canting models, where magnetization illustrations represent
two dimensional cuts through the center of a particle. For
(b) and (c), uncertainty bars show standard error from least
squares fits to the peaks, while in (a) uncertainty bars are one
standard deviation under the assumption of normal counting
statistics.

sure in the way that the net magnetization does.4 We
note that an additional set of measurements of trans-
mitted beam depolarization (not shown) that is sensitive
to ferromagnetic ordering were performed that revealed a
similar TC and a stronger pressure dependence. However,
even though the depolarization measurements suggest a
reduction of moment along the field axis with pressure,
unresolved questions about the neutron coherence length
within the polarization setup precluded a quantitative
analysis.

The widths of the diffraction peaks are used to esti-
mate the size of the coherent magnetic domains. Unfor-
tunately, only the ambient pressure measurements can
be compared, as the high pressure phases can also have
changes due to their different relative pressure induced
strain (i.e. the high pressure data at low temperature
are 0.5 GPa and at high temperature they are 0.6 GPa).
For the ambient pressure data, the purely structural peak
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widths do not change with temperature, while the mag-
netic peaks indeed broaden. This broadening is more pro-
nounced when the structural scattering is subtracted out.
If changes in peak width, ∆β, are only due to changes
in magnetic versus structural domain size, D, for a cu-
bic particle from differentiating the Scherrer equation25

∆D = −1.06×∆βcos(θ)D2/λ, where θ is the scattering
angle and λ is the wavelength. Fig. 5(b) shows the broad-
ening of peak widths and the magnetic contribution to
this broadening. For the (311) peak, there is a higher
level uncertainty due to the proximity of the stronger
(222), and the subtracted (222) has a higher level of un-
certainty due to the much stronger relative contribution
of nuclear scattering compared to magnetic scattering at
this position. Taking the width of the (200) peak that
is well determined, if the structural domains are 100 nm,
the magnetic domains would be 68 nm ± 29 nm.

The intensities of the magnetic Bragg reflections,
Fig. 5(c), depend upon the magnitudes of the magnetic
moments along with their correlations. Since the nuclear
structure has been determined, a scale factor can be de-
rived in which the intensity of the observed magnetic
scattering can be compared to different models. Tak-
ing the high field structure and assuming a monodomain
structure oriented along crystallographic axes, Fig. 5(d),
yields a decent agreement and reproduces the relative
moments of Ni2+ and Cr3+, although the predicted in-
tensity of the (200) reflection is larger than that observed
under both low and high pressure. Therefore, there is a
loss of coherent magnetization perpendicular to the scat-
tered wave vector. If spins were to cant with pressure on
a site-by-site basis, Fig. 5(f), reducing the overall coher-
ent moment by 30% as in magnetometry4(but assuming
a tight distribution so the magnetic Debye Waller is unaf-
fected), there would be significantly less scattering than
observed such that we rule out this model as a correc-
tion to the monodomain model. However, if a domain
structure is introduced, coherent scattering will reduce
depending upon the domain wall thickness, Fig. 5(e), and
a domain model can yield an arbitrary value for the net
magnetization with a similar NPD pattern, until satura-
tion when the domain wall annihilates. A domain struc-
ture would also increase the magnetic peak width as the
size of coherent magnetic regions is reduced, as we ob-
served in the preceding paragraph.

VI. DISCUSSION

These NiCrPB NPD experiments confirm the nuclear
structure and spin states, show clear changes in the nu-
clear structure with pressure, demonstrate differences in
magnetization between high and low field, and mani-
fest modifications to magnetization between ambient and
high pressure. The pressure induced structural changes
affect the ligand field in NiCrPB, but without obvious
additional buckling of the linkages (rotation of octahe-
dra) such that there is no modification of the ferromag-

netic superexchange, J , as when > 1 GPa.30 A stable
form of CoFePB showed departure from the native cu-
bic symmetry at ≈2 GPa.10 X-ray absorption studies of
NiFePB suggest buckling of linkages at 1.6 GPa; strik-
ingly there is no magnetoelastic effect in NiFePB up to
1 GPa (at 100 mT), due to an absence of CN isomerism
for hexacyanoferrate species that may occur in the less
stable hexacyanochromate (where stability is in compar-
ison with cyanonickelate species).11 There emerges two
regimes for pressure response in these cubic PBAs that
has a cross-over at 1 GPa to 2 GPa. So, while pressure
in the first regime induces ligand field changes in the
hexacyanochromate based FeCrPB that dramatically al-
ter the Fe2+ ground term,13 similar ligand field changes
for Ni2+ and Cr3+ in NiCrPB do not affect the ground
spin state but rather the orbitally non-degenerate ex-
cited states, which modify the g-factor and the mag-
netocrystalline anisotropy of NiCrPB.31 The introduc-
tion of local magnetocrystalline anisotropy also explains
the loss of magnetic resonance intensity in photomag-
netic strain coupled NiCrPB heterostructures near the
g = 2 position.32 There is a randomness to ligand fields
(thus anisotropy) in cubic PBAs due to chemical dis-
order, Fig. 1(a). In CoFePB, random local anisotropy
dominates the magnetization determination, leading to a
short magnetic correlation length (LC).18 Compared to
CoFePB, NiCrPB has five times greater J and five times
less coercive field, HC , increasing LC by orders of magni-
tude because neighbor spin misalignment becomes more
costly than anisotropy axis misalignment. Therefore, the
reason that the NiCrPB magnetic NPD signal does not
have a large intensity change while the magnetometry
signal does is due to pressure causing spin rotations that
are correlated at length scales on the order of the particle
size; the observed changes are then due to the presence
of a magnetic domain structure. To probe plausibility of
the proposed picture, we check the energetic viability of
CN isomerism and look for local anisotropy with DFT,
and assess the effect of such anisotropy on a particle-wide
extent with micromagnetics.

A. Density Functional Theory Calculations

For DFT crystal calculations, “idealized”
KNi[Cr(CN)6] and “isomerized” KNi[Cr(NC)6] are
used because the defect lattice has structural glassiness
that is problematic for DFT structural optimization. To
determine the required additional electron repulsion for
the d-electrons (parameterized as Racah’s “A” or Hub-
bard’s “U” parameters),1931 we use one parameter for
both Ni and Cr and optimize the fractional coordinates
while varying the lattice parameter of KNi[Cr(CN)6].
This approach yields a nearly linear dependence of
a = 10.205 Å +(0.0315 × U) Å/eV, so we choose
U = 7 eV. The energy as a function of lattice constant
shows equilibrium values of 10.442 Å and 10.426 Å
for “idealized” and “isomerized” models, respectively,
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with the KNi[Cr(NC)6] minimum lower by 1.1 eV per
unit cell or 0.3 eV per chemical formula unit (Fig. 6(a)
). Both CN coordinations stabilize a ferromagnetic
ground state. The different CN coordinations are nearly
degenerate and energies not included in our simulation
may stabilize one. Notably, the “isomerized” state
has a subtly decreased lattice constant. The bulk
moduli, KDFT = (1/9a)(d2E/da2), are 73.62 GPa
and 75.02 GPa for the “idealized” and “isomerized”
crystals; scaling KDFT by the number of CN linkers
in K0.25Ni[Cr(CN)6]0.75 improves agreement with NPD
but still overestimates experiment by 50%. Throughout
compression and elongation over this range, the linkers
remain straight, although at less than ≈10 Å the CN
molecules buckle and the energy surface of cell volume
becomes less defined (the DFT remains well-behaved
while structural optimization does not).

The defects are investigated by discrete, charged
molecular DFT calculations. The local environ-
ments of metal ions in NiCrPB are estimated by
[Cr(CN)6]3−, [Ni(NC)6]4−, and [Ni(NC)5(H2O)]3−, for
which DFT gives octahedral splitting, ∆oct, values of
4.7946 eV, 1.5634 eV, and 1.2877 eV, respectively. The
[Ni(NC)5(H2O)]3− species is present at the surface and
near chromium vacancies, and we impose symmetry to
avoid the strong attraction between the H and N atoms
that is present in the molecular form. Under pressure
in the dilute isomerization limit that we are near at 0.5
GPa, CN may flip to give rise to [Ni(NC)5(NC)]4−, a-
[Ni(NC)4(NC)(H2O)]3−, and b-[Ni(NC)4(NC)(H2O)]3−,
where a- and b- denote parallel or perpendicular flips
with respect to the water coordination axis. In tractable
terms, when an axial ligand changes in a transition metal
coordination sphere, the different π-bonding of the alien
ligand can shift dxz and dyz energies and the energy of
d2z can shift due to σ-bonding changes. In the spectro-
chemical series, CN− is a strong π-acceptor, NC− a very
weak π-acceptor, and H2O a weak π-donor, while the
σ-bonding presumably tracks the Lewis basicity.33 The
effect of such ligand field distortions on the d-electron en-
ergies are quantified here with DFT, and select molecules
are shown in Fig. 6(b). Taking the DFT wavefunctions
for these distorted geometries, the spin-orbit interac-

tion (λSO
~L · ~S) then breaks the spin degeneracy of the

ground terms via second-order non-degenerate perturba-
tion theory, which is typically captured as∝DS2

z (D is the
anisotropy energy and the z is the unique axis).31 This
scheme mixes in the first excited state with non-zero ma-
trix elements, which is an anisotropic, orbital triplet for
both Ni2+(3A2) and Cr3+(4A2), to give an energy shift
that depends upon the strength of the distortion and ∝
λ2SO/∆oct and a g-factor shift by ≈8λ2SO/∆oct. Because
free-ion values of λSO for Cr3+ and Ni2+ are 34 meV and
80 meV, respectively, (although covalency can reduce the
orbital moment) and Ni2+ has the weaker ligand field, the
anisotropy in NiCrPB is dominated by nickel ions. For
b-[Ni(NC)4(NC)(H2O)]3− the symmetry is lower than
axial and the perturbation theory is more complicated,

[Ni(NC)
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2 O)] 3-

[Ni(NC)
5  (CN)] 4-
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FIG. 6. (color online) DFT calculations. (a) The energy as
a function of lattice constant for “idealized” KNi[Cr(CN)6]
and “isomerized” KNi[Cr(NC)6], where lines are parabolic
fits used to extract the minimum energies, equilibrium lat-
tice constants, and bulk moduli. (b) The energy splittings of
the majority spin electrons are shown relative to the center of
mass of each symmetry block for selected molecules. The mi-
nority spin levels are 1.0 eV higher in energy such that these
energy shifts do not affect spin pairing.

but it is clear that the symmetry axis is no longer a
crystallographic axis. For [Ni(NC)5(H2O)]3−, we esti-
mate DCALC = 0.247 meV, and for [Ni(NC)5(NC)]4−,
D’CALC = -0.092 meV. Although on a single particle
level, these energies are perturbative and will not be rel-
evant for powder averaged paramagnetic susceptibilities,
in the many body state they become significant. Fur-
thermore, these shifts are smaller than the spin-pairing
energy such that no spin transition occurs. However, if
ligand field distortions are extreme enough, S = 0 species
may be stable, like in square-planar Ni2+,33 and reduce
the ordering temperature. As mentioned, ordering tem-
perature may also reduce due to bond buckling.

B. Micromagnetic Calculations

While NPD points towards the long LC and presence
of domains in NiCrPB, additional magnetization stud-
ies will be necessary to uncover details of the domain
structure (whether through imaging, single crystal work,
studying a series of NiCrPB systems, or some other tech-
nique). In the meantime, some insight into the magnetic
nanostructure can still be gained from micromagnetics.
Micromagnetic simulations of NiCrPB include implemen-
tations of Zeeman energy, superexchange energy, mag-
netocrystalline anisotropy, and magnetostatic energy.22

Normalizing to the measured unit cell volume, superex-
change stiffness (A) is derived from the mean-field ex-
pression for TC , and saturation magnetization (MSAT )
from the high field NPD. Magnetocrystalline anisotropy
is easily related to HC in the isotropic limit but inco-
herent and inhomogeneous anisotropies are more diffi-
cult to quantify. Magnetostatic energy is extrinsic, de-



8

TABLE II. Micromagnetic simulation parameters of NiCrPB with bulk Fe parameters for comparison. These parameters are
saturation magnetization, MSAT , exchange stiffness, A, anisotropy, K1, domain wall width, δ, domain wall energy, γ, exchange
length, LEX , magnetic hardness, κ, and critical single-domain radius, RSD. The approximation symbols are included for
NiCrPB parameters that depend upon K1; moreover such parameters become less quantitative for highly inhomogeneous K1-
distributions.

MSAT A K1 δ γ LEX κ RSD

A/m J/m J/m3 nm J/m2 nm nm

NiCrPB 1.4 × 105 5.1 × 10−13 ≈ 1 × 104 ≈ 7 ≈ 7 × 10−5 4.6 ≈ 0.6 ≈ 100

Fe34 1.8 × 106 1.0 × 10−11 4.8 × 104 40 2.6 × 10−3 1.6 0.12 7

pending upon the shape of the magnet as well as the
relative positions of particles in a powder measurement,
and can also introduce anisotropy. Collections of par-
ticles can reduce magnetostatic energy across a bound-
ary without superexchange, while isolated particles must
relax internally where superexchange competes with de-
magnetization; here we only model isolated particles. Lo-
cal anisotropies are present in NiCrPB near defects and
at the surface (i.e. the aforementioned [Ni(NC)5(H2O)]
species), depending upon the chemistry involved. Indeed,
CoFePB particles of similar sizes but different surface co-
ordinations have strikingly different coercivities.35

Therefore, we consider three models that capture
the essence of the motivated coherent anisotropy dis-
tributions: (Vol) a constant cubic volume anisotropy,
(SurfHard) uniaxial surface anisotropy having the hard
axis normal to the surface by only applying anisotropy
to surface micromagnetic cells, and (SurfEasy) uniaxial
surface anisotropy having the easy axis normal to the
surface by only applying anisotropy to surface micromag-
netic cells. In NiCrPB, for Ni:Cr = 1:1, TC ≈ 90 K and
µ0HC ≈ 7 mT5 and for Ni:Cr = 1:0.75, TC ≈ 70 K and
µ0HC ≈ 10 mT.35 To have a powder-averaged µ0HC ≈ 7
mT, the anisotropy constants are K1,V ol = 7 × 103 J/m3,
K1,SurfEasy = 1 × 104 J/m3, and K1,SurfHard = -
3 × 104 J/m3, with hysteresis loops shown in Fig. 7(a).
Notably, the harsh inflection points in these simulated
loops are not seen in most reported NiCrPB measure-
ments, but are present in a diluted powder that better
approximates isolated particles,36 and finite temperature
can also change magnetization. From these values we es-
timate relevant anisotropies in NiCrPB are of the order
104 J/m3, which corresponds to D ≈ 0.1 meV (≈1 K)
that is the same order of magnitude as the crude single-
ion calculations presented in the previous section. Mi-
cromagnetic parameters of NiCrPB are summarized in
Table II, and are quite different from typical parameters
for bulk iron.34

The first micromagnetic result is that for all chosen
NiCrPB anisotropy distributions, a magnetic vortex is
stabilized in sufficiently low fields because of the demag-
netizing energy. In zero field, with an overall cubic sym-
metry, vortices tend to be centered with boundary con-
ditions determined by the surface anisotropy, Fig.’s 7(b)-
(d). An applied field will first orient the vortex core and

typically push it to one side as majority spins overtake
minority spins. The precipitous shape changes in the hys-
teresis loop are due to vortex formation and destruction.
The presence of such vortices (or other domain type) ex-
plains the low remanent magnetization (MR) in NiCrPB,
MR ≈ 0.1MSAT ,35 compared to magnets with uniax-
ial coherent rotation, MR,uni = 0.5MSAT,uni, or cubic
coherent rotation, MR,cub ≈ 0.8MSAT,cub.

34

The second micromagnetic result is that anisotropy
inhomogeneities can cause magnetization pinning in
NiCrPB. For the Vol particle, the anisotropy is essen-
tially homogeneous and the introduction of only one mi-
cromagnetic cell with an additional uniaxial anisotropy
of 104 J/m3 (a simulation we called VolTron) can shift
the de-pinning energy of the ground state vortex. For
SurfEasy and SurfHard, there already exists a region of
strong inhomogeneity that causes pinning at the sur-
face, such that a single impurity has no obvious ef-
fect. Both types of surface anisotropy respond to random
anisotropy in a similar way, so we only discuss SurfHard
here, where the decrease of susceptibility with increas-
ing anisotropy is shown in Fig.’s 7(e). A model sys-
tem called SurfHardRand1 that introduces random axis
anisotropy of random strength between 0 and 104 J/m3

can reduce the low-field magnetization without affecting
the high field magnetization or coercivity. Increasing the
strength of the random anisotropy to a maximum value
of 5 × 104 J/m3 (SurfHardRand5) has a more profound
effect as the anisotropy and superexchange energies be-
come comparable; the coercive field is also increased ten
times and saturation is pushed to higher fields. However,
SurfHardRand5 is more like a mosaic of weakly interact-
ing uniaxial nanoparticles that undergo coherent rota-
tion, as the micromagnetic cell size is 1000 nm3. After
a vortex is annihilated, the spins must still continue to
undergo rotation until saturation is reached, Fig. 7(f). In
the SurfHardRand5, the chirality of the low field state is
barely discernible due to the domination of random local
anisotropy, Fig. 7(g).

To validate the simulations, we investigated size de-
pendence of the micromagnetic cell. Powder-averaged
field sweeps are computationally expensive, so we checked
the 10 nm cell results against 1 nm cells for zero field,
5 mT, 1 T, and a remnant field for SurfHard, SurfEasy,
and Vol configurations. These checks confirm the vor-
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FIG. 7. (color online) Micromagnetic simulations. (a) Powder-averaged hysteresis loops are shown for different anisotropy
distributions, with details described in Sec. VI-B. (b-d) Initial, zero-field vortex states shown as cuts through the center
of a particle are similar for different anisotropy distributions aside from the surface configuration. (e) Magnetizing becomes
progressively harder with increased random anisotropy. (f) This cut through the center of a particle shows a typical state after
a vortex is annihilated, but without complete field alignment of the spins. The subtle incoherence of spin alignment due to the
presence of random anisotropy is barely visible. (g) For larger local anisotropy, the vortex is on the verge of being indiscernible.
(h) Using smaller, 1 nm3 micromagnetic cells allows for shorter wavelength content of magnetic relaxation. Cell magnetizations
have been down sampled three times to improve visibility and the coloring denotes magnetization magnitude out of the plane.

tex state (with limited cell size dependence for models
without random anisotropy) and pinning of magnetiza-
tion to anisotropy inhomogeneities, although it is inter-
esting how finer graining allows for more gradual re-
laxation of spins through short wavelengths that even
smooths out comparatively down sampled distributions;
for SurfHard5 with 1 nm3 micromagnetic cells (dubbed
SurfHard5-manycells) the anisotropy is still distributed
randomly over 10 nm sided cubes, but the magnetiza-
tion within those cubes can relax and disrupts the ob-
vious coherent rotation behavior that was seen with the
larger cells. The remnant magnetization of SurfHard5
with 1 nm cells after a 1 T field was applied along the
(0.64 0.09 0.76) direction with a cut through the particle
shows the presence of one clear vortex with a core at an
angle defined by the previously applied field and differ-
ent major and minor spin populations, Fig. 7(h). There
is a degree of arbitrariness to the choice of the field vec-
tor, as we have simply avoided high symmetry directions
that can give rise to unstable equilibria; other vectors
give similar results.

C. Other Considerations

This idea of complicated magnetic ground states
in CPs is not new, and pioneering work was
done on CoFePB3738 and vanadium tetracyanoethylene
(VTCNE)394041, among other systems, that revealed the
importance of random anisotropy to define glassy ground
states in many CPs that can have weak superexchange
and structural disorder. Although we emphasize the
importance of nanostructure, additional insight can be
gained by examining the analytical theories. Specifically,
the low field magnetic susceptibility for a ferromagnet
containing random uniaxial anisotropies was evaluated
to be χCSG = 1/2βr(15/(4Hr/Hex))3, where βr ∝ Dr,
Hex ∝ AMSAT /Ra, Hr = βrMSAT , Dr is a random-
ized D, and Ra is the spatial scale over which anisotropy
changes.42 Therefore, as random anisotropy in NiCrPB
increases with pressure, the susceptibility from χCSG de-
creases, as is observed experimentally. However, NiCrPB
looks to be in the Dr < J regime, which is different than
CoFePB and solvent grown VTCNE, which have Dr ≈ J .
For Dr < J , coherent lab or anisotropy fields can easily
anneal the glassy behavior.

While the largest relative change in magnetic response
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with pressure for NiCrPB is at low field, there is a more
subtle change in high field that might be due to g-factor
modification or large random anisotropy. The effect of
pressure induced structural distortions on spin-waves is
less obvious, but presumably local hardening provides
excitation gaps that would decrease the density of states
at low temperatures. From perturbation theory for Ni2+

in a strong octahedral field, goct = gfree + 8λ2SO/∆oct,
and for axial distortions gpar = gfree + 8λ2SO/∆0 and
gperp = gfree + 8λ2SO/∆1, where gfree is the free-ion g-
factor, and ∆0 and ∆1 are the gaps to the Lz = 0 and
Lz = ±1 excited states that are close in value to ∆oct.

31

If [Ni(NC)6] transforms to [Ni(NC)5(CN)], the splitting
between t2g and eg electrons can increase and reduce the
g-factor. Large random anisotropy could cause the high
field spins to cant along a local axis and decrease the
moment along the field. While both explanations are
plausible, the g-factor renormalization explanation is fa-
vored because any anisotropies that are strong enough to
modify the high field magnetization seem to affect the co-
ercive field and magnetic correlation length in ways hard
to reconcile with experiment.

Better understanding of the magnetization in NiCrPB
and how it responds to pressure can shed light on strain
coupled heterostructures that exploit NiCrPBs magne-
toelasticity. First, there is a definite extrinsic character
to NiCrPB as demagnetizing fields play an important role
in domain formation. Indeed, even at high fields, demag-
netizing effects were found to be important in NiCrPB.12

On the other hand, the exchange length is essentially
intrinsic and while the domain wall width and single-
domain radius are extrinsic, the generic values in Table II
are useful to consider. Then, it is not surprising that
≈ 100 nm layered heterostructures can show the largest
magnetic response,43 as that is close to the domain size.
So, domain wall formation in NiCrPB could be modified
with the optically controlled strain, giving rise to the
synergistic response. Moreover, NiCrPB strain coupled
heterostructures with ≤10 nm layers that show a seem-
ingly opposite response to strain are actually in a differ-
ent size regime than the ≈ 100 nm structures for both
NiCrPB strain and magnetism.44 Notably, nanoparticles
of NiCrPB showed slightly different response to pressure
than the “bulk” material, but a surfactant was used that
might modify the surface anisotropy as well as the effec-
tive mulk modulus.45 Using our model of NiCrPB, each
system must be approached individually to properly iden-
tify the magnetic ground state of the constituent particles
even though the coordination polymer repeat unit might
be identical.

So, this analysis of NiCrPB provides information that
can be used by researchers engineering nanoscale mag-
nets of CPs. We invoke magnetic vortices and CN iso-
merism to explain the observables, but independent of

these likely models, there is long correlation of magnetism
in NiCrPB at low fields and pressure causes a striking
change to the local magnetic ion environments. While
linkage isomerism of PBA compounds has been studied
extensively with spectroscopic methods,46 which are sen-
sitive for systems that have a concurrent spin transition,
neutron diffraction directly measures differences in C and
N site occupations. To further support the model, it
will be useful to check the NPD response of other sys-
tems, such as FeCrPB, that also have structural isomer-
ization with pressure. The NPD, and magnetic state, of
NiCrPB is different than the previously studied CoFePB,
which did not have magnetic scattering at low fields and
is better classified as a coherent spin glass.18 The com-
mon theme for NiCrPB and CoFePB is that a typical
magnetic structure of one unit cell does not adequately
describe the relevant observables. We hope that these
findings provide insight to CP researchers not only us-
ing NiCrPB, but also for analogous systems that are in
the same magnetic parameter regime and can support
complicated nanomagnetism.

VII. CONCLUSIONS

We have presented a model for the magnetizing pro-
cess in NiCrPB that invokes magnetic vortex domains,
and the application of strain introduces inhomogeneous
anisotropy via CN-isomerism of ≈20% of the sites that
increases domain pinning energies. The general picture of
magnetization in CPs is becoming clearer due to NPD,
and the complicated magnetism within NiCrPB under-
scores the need to congruently consider magnetic terms
(ground and excited), local structure, and nanostructure
when interpreting these systems. Indeed, precedented
analysis algorithms, such as the magnetic unit cell, may
not be adequate to describe the complex behavior of CPs.
For the subclass of PBA CPs, this work further stresses
the need to approach each system independently, even
though analogies across similar systems are often useful.
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38 D. A. Pejaković, J. L. Manson, J. S. Miller, and A. J.
Epstein, J. Appl. Phys. 87, 6028 (2000).

39 B. G. Morin, P. Zhou, C. Hahm, A. J. Epstein, and J. S.
Miller, J. Appl. Phys. 73, 5648 (1993).

40 P. Zhou, J. S. Miller, and A. J. Epstein, Phys. Lett. A
189, 193 (1994).

41 K. I. Pokhodnya, D. Pejakovic, A. J. Epstein, and J. S.
Miller, Phys. Rev. B 63 (2001).

42 E. M. Chudnovsky, W. M. Saslow, and R. A. Serota, Phys.
Rev. B 33, 251 (1986).

43 D. M. Pajerowski, J. E. Gardner, F. A. Frye, M. J. Andrus,
M. F. Dumont, E. S. Knowles, M. W. Meisel, and D. R.
Talham, Chem. Mater. 23, 3045 (2011).

44 N. Dia, L. Lisnard, Y. Prado, A. Gloter, O. Stphan,
F. Brisset, H. Hafez, Z. Saad, C. Mathonire, L. Catala,
and T. Mallah, Inorg. Chem. 52, 10264 (2013).
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