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We present an analytic theory of quantum criticality in quasi one-dimensional topological Ander-
son insulators. We describe these systems in terms of two parameters (g, χ) representing localization
and topological properties, respectively. Certain critical values of χ (half-integer for Z classes, or zero
for Z2 classes) define phase boundaries between distinct topological sectors. Upon increasing system
size, the two parameters exhibit flow similar to the celebrated two parameter flow of the integer
quantum Hall insulator. However, unlike the quantum Hall system, an exact analytical description
of the entire phase diagram can be given in terms of the transfer-matrix solution of corresponding
supersymmetric non-linear sigma-models. In Z2 classes we uncover a hidden supersymmetry, present
at the quantum critical point.

I. INTRODUCTION

The discovery of topologically non-trivial band insu-
lators has defined a whole new research field addressing
the physical properties of bulk insulating matter. What
distinguishes a topological insulator1 (tI) from its topo-
logically trivial siblings is the presence of non-vanishing
topological invariants characterizing its band structure.
While these indices are not visible in the system’s band
structure, their presence shows via the formation of gap-
less boundary states – the celebrated bulk-boundary cor-
respondence. In the bulk, the indices can be obtained via
homotopic constructions based on the functional depen-
dence of the system Hamiltonian (or its ground state) on
the quasi-momenta of the Brillouin zone2,3.

It is a widespread view that individual topological
phases owe their stability to the existence of bulk band-
gaps. A topological number may change via a gap closure
which represents a topological phase transition point and
is accompanied by the transient formation of a Dirac like
metallic point in the Brillouin zone. However, as long
as a bulk gap remains open, weak system imperfections
(’perturbations weak enough to leave the gap intact’) will
not compromise the topological number. In particular, tI
is believed to be robust against the presence of a “weak”
disorder. Indeed, one may argue that the adiabatic turn-
ing on of a small concentration of impurities in a system
characterized by an integer topological invariant does not
have the capacity to change that invariant. It is due to
arguments of this sort that disorder is often believed to
be an inevitable but largely inconsequential perturbation
of bulk topological matter.

However, on second consideration it quickly becomes
evident that disordering does more to a topological in-
sulator than one might have thought. The presence of
impurities compromises band gaps via the formation of
mid-gap states. In this way, even a weak disorder gener-
ates Lifshitz tails in the average density of states which
leak into the gap region, at stronger disorder the band
insulator crosses over into a gapless regime, which in
low dimensions d = 1, 2 will in general be insulating

due to Anderson localization. In this context, the no-
tion of ‘weak’ and ‘strong’ disorder lack a clear defini-
tion. Moreover, close to a transition point of the clean
system, where the band gap is small, even very small im-
purity concentrations suffice to close gaps, which tells us
that disorder will necessarily interfere with the topolog-
ical quantum criticality of the system. As concerns the
integrity of topological phases, one may argue that for
a given realization each system is still characterized by
an integer invariant n (for it must be possible to adia-
batically turn off the disorder and in this way adiabat-
ically connect to a clean anchor point.) However, that
number will depend on the chosen impurity configura-
tion. In other words, the topological number becomes
a statistically distributed variable with generally non-
integer configurational mean, χ ≡ 〈n〉. In the vicinity
of transition regions, the distribution of n becomes wide,
and one may anticipate scaling behavior of χ. We fi-
nally note that a theory addressing non-translationally
invariant environments should arguably not be based on
the standard momentum space/homotopy constructions
of invariants4. Rather, one would like to start out from
a more real space oriented identification of topological
sectors.

The blueprint of a strategy to describe this situation
can be obtained from insights made long ago in connec-
tion with the integer quantum Hall effect (IQH). In the
absence of disorder, the IQH tI is characterized by the
highly degenerate flat band structure of the bulk Lan-
dau level. Soon after the discovery of the quantized Hall
effect it became understood5 that the smooth profiles of
the observed data could not be reconciled with the singu-
lar density of states of the clean system. The solution was
to account for the presence of impurities broadening the
Landau level into a Landau impurity band (thence wash-
ing out the system’s band gaps.) It was also understood,
that the ensuing low temperature topological quantum
criticality could be described in terms of a two-parameter
scaling approach6. Its two scaling fields were the aver-
age longitudinal conductivity, g ≡ σxx, a variable known
to be central to the description of disordered metals in
terms of the ‘one-parameter scaling hypothesis’7, and the
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transverse conductivity σxy, which may be identified with
the configurational average of the topological Hall num-
ber, σxy = χ. The scaling of these two parameters upon
increasing system size and/or lowering temperature (cf.
Fig. 1) was first described on phenomenological grounds
by Khmelnitskii6 and later substantiated in terms of field
theory by Pruisken8,9. Starting from bare values g̃ � 1
characterizing a weakly disordered metal, and the gener-
ally non-integer σxy ≡ χ̃ characterizing a diffusive finite
size IQH system, the flow (upon increasing the system
size) is towards two types of fixed points,

(g, χ) −→

 (0, n) , χ̃ /∈ n+ 1
2 ,

(g∗, n+ 1
2 ) , χ̃ = n+ 1

2 ,
(1)

i.e. generically, the flow approaches the Anderson lo-
calized fixed point, g = 0, indexed by the integer value
χ = σxy = n of a quantum Hall configuration, where
n = [χ̃] is the integer arithmetically nearest to χ̃. Neigh-
boring basins of attraction, n and n + 1, are separated
by a critical surface χ̃ = n+ 1/2, on which the flow is to-
wards the IQHE fixed point (g, χ)→ (g∗, n+1/2), where
g∗ = O(1) is the critical value of the conductivity. The
most natural way to access the topological parameter χ
is via the introduction of spatially non-local ‘topological
sources’. As we will discuss below, this idea is central
to the description of topological invariants without ref-
erence to the momentum space (and independent of a
particular field theoretical formalism).

Even before the advent of the clean topological band
insulators, the above quantum Hall paradigm was ob-
served in other system classes, viz. the class C10 and
class D11 quantum Hall effects. Similar physics showed
up, but not understood as such, also in quasi one-
dimensional disordered quantum wires. Studies of quan-
tum wires in symmetry classes, D12, DIII13,14, and AIII15

describing disordered superconductors and chiral disor-
dered lattice systems, respectively had revealed unex-
pected de-localization effects. Early observations of the
phenomenon were subject to some controversy, as it ap-
peared to be tied to non-universal fine tuning. The point
not understood at the time was that the delocalized sys-
tem configurations were actually topological insulators
fine tuned to a phase transition point conceptually anal-
ogous to the IQH transition. First parallels to QH physics
and two parameter scaling were drawn in Ref.[14], how-
ever the full framework of the underlying topology was
probably not understood at that time.

The high degree of universality reflected in the above
can be understood from a simple argument first formu-
lated in Ref. [16] (cf. Fig. 1): consider a schematic phase
plane of a topological insulator spanned by a parameter
µ controlling the topological sector of the system (the
chemical potential, a magnetic field, etc.), and a param-
eter w quantifying the amount of disorder. In the clean
system, w = 0, the topological number jumps at certain
values of µ through topological phase transition points,
characterized by a closure of bulk band gaps. Turning

FIG. 1. Schematic phase diagram of topological insulators.
The Z (top) or Z2 (bottom) valued topological number of a
clean topological insulator can be controlled by a parameter µ
(e.g. chemical potential, magnetic field, etc.). At the transi-
tion points separating distinct phases, band gaps close. Disor-
der, characterized by its strength w, induces a crossover from
a clean band to an Anderson insulator (shaded lines). The
amount of disorder required to close the band gap vanishes
at the transition points. The transition points themselves be-
come end points of transition lines in the (µ,w) phase plane.
Driving the system through one of these lines via a parameter
change implies IQH type transition with a divergent localiza-
tion length. The right panels show the flow of the average
topological number, χ, and the conductance, g upon increas-
ing the system size, L, starting from some non-universal bare
values (g̃, χ̃), defined at a scale of the order of the mean-free
path. In the L→∞ limit, the insulating, g = 0, and self av-
eraging, χ = n, Anderson topological insulator configurations
are generically approached. The critical surfaces separating
these regions are characterized by half integer χ = n + 1/2
(Z) or vanishing χ = 0 (Z2) values of the average topological
number.

on disorder at a generic value of µ generates a crossover
from the clean band insulator into a configuration char-
acterized by a non-vanishing density of states. In most
symmetry classes — for the discussion of exceptional sit-
uations, see below — Anderson localization will turn the
ensuing ‘impurity metal’ into an Anderson insulator. The
amount of disorder required to drive this crossover van-
ishes at the clean system’s gap closing points. At the
same time, the closing points mark points of quantum
phase transitions and the integrity of these cannot be
compromised by the crossover from the band– into the
Anderson insulator regime. They become, rather, end-
points of phase transition lines meandering through the
phase plane (µ,w). It is the existence of these lines that
distinguishes the ‘topological Anderson insulator’ (tAI)
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from a conventional Anderson insulator. At the phase
transition lines the localization length diverges and the
system builds up a delocalized state. From an edge-
oriented perspective, the delocalization accompanying a
transition n→ n−1 means that a pair of edge states is hy-
bridized across the bulk via a delocalized state to disap-
pear (i.e. move away from the zero energy level). Some-
what counter-intuitively, the delocalization phenomenon
can be driven by increasing the amount of disorder in
the system, or by changing any other parameter capa-
ble of changing the system’s location in the phase plane.
In early works12,13,15 delocalization was observed as a
consequence of an ‘accidental’ crossings of phase transi-
tion lines. For other crossing protocols see Refs. [17 and
18]. Notice that each phase lobe in Fig. 1 is character-
ized by an integer invariant. However, the integerness
of that value is tied to the limit of infinite system size
characterizing a thermodynamic phase. By contrast, the
finite size system will generally be described by a non-
integer mean topological number, which leads to perhaps
counter-intuitive conclusion that Anderson localization
actually stabilizes the topological rigidity of disordered
systems. The corresponding flow g → 0 (localization)
and χ → n (re-entrance of the topological number) is
described by the two-parameter flow diagram.

For two-dimensional topological insulators the above
argument has been made quantitative, to varying degrees
of completeness. In some cases (the class A IQH, or the
class AII quantum spin Hall effect) no rigorous theory
describing the strong coupling regime close to the fixed
point exists, but the global pattern of the flow can be
convincingly deduced from a two-parameter effective field
theory pioneered by Pruisken19 and Fu and Kane20, re-
spectively. In the class D or DIII system even the phase
diagram is not fully understood, while the exact equiva-
lence of the class C insulator to a percolation problem10

implies existence of exact solutions for the flow. Re-
markably, in two-dimensional systems of chiral symme-
try classes AIII, CII and BDI, which are not tI in 2d, the
mechanism of Anderson localization is also controlled by
the point-like topological defects21 (vortices) and in this
way is analogous to class AII topological insulator stud-
ied by Fu and Kane.

In this paper, we will focus on the five families of
topological multi-channel quantum wires, AIII, CII, BDI,
D, DIII. There are far reaching parallels between dis-
ordered insulators in one and two dimensions: both
show two-parameter scaling, and can be described in
terms of field theories — non-linear σ-models containing
a θ-term/fugacity term measuring the action contribu-
tion of smooth/point-like topological excitations in the
Z/Z2 cases —, the scaling variables are obtained from
the field theory via topological sources, and the bulk-
boundary correspondence establishes itself by identical
mechanisms. However, unlike the 2d systems, the 1d
field theories are amenable to powerful transfer matrix
techniques. These methods can be applied to solve the
problem non-perturbatively, and to describe the results

in terms of parameter flows all the way from the diffusive
regime into the regime of strong localization. Overall the
situation in 1d is similar, but under much tighter theo-
retical control than in 2d.

II. MAIN RESULTS

In this paper we describe five topologically non-trivial
insulators in one dimension in terms of supersymmetric
nonlinear σ-models with target spaces representing the
different symmetry classes. It provides a framework de-
scribing non-translationally invariant topological insula-
tors in terms of a theory that:

• Is universal, in that elements that are not truly es-
sential to the characterization of topological phases,
such as translational invariance, or band gaps, do
not play a role. The theory, rather, describes the
problem in a minimalist way, in terms of symmetry
and topology.

• Topological sectors are described in real space,
rather than in terms of the more commonly used
momentum space homotopy constructions. To this
end we study response of supersymmetric partition
sum on a twisted boundary conditions. The later
are given by a proper gauge transformations dic-
tated by the corresponding symmetry group and
containing continuous as well as discrete (i.e. Z2)
degrees of freedom.

• These field theories differ from the ones describ-
ing conventional Anderson insulators by the pres-
ence a topological contribution to the action. The
latter weighs the contribution of smooth/point-
like topological field excitations in terms of a
θ-term/fugacity term depending on whether we are
dealing with a Z/Z2 insulator.

• At the bare (short distance) level, the field theo-
ries are described by two coupling constants (g̃, χ̃),
where g̃ is the Drude conductance, central to the
one-parameter scaling approach to conventional
disordered conductors, and χ̃ is the ensemble av-
erage topological number. In the construction of
the effective field theory these parameters are ob-
tained from an underlying microscopic disordered
lattice model by a perturbative self-consistent Born
approximation (SCBA). We provide numerical ver-
ification of this approach, which appears to work
well down to N = 3-channel wires (though the the-
ory is developed in N →∞ limit).

• At large distance scales, these parameters exhibit
the flow (1). Using transfer-matrix approach, we
provide the exact quantitative description of this
flow, including the strongly localized phase and
quantum critical points. For generic χ̃, the fixed
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point configuration (g, χ) → (0, n) is attained ex-
ponentially fast in the length, L, of the system.
The fixed point value for the critical conductance,
g∗ = 0, but the approach to this configuration is
algebraic, ∼ L−1/2. The vanishing of the mean
conductance at criticality is manifestation of large
sample-to-sample fluctuations in 1d. In fact, it is
known15,22 that a sub-Ohmic scaling ∼ L−1/2 sig-
nifies the presence of a delocalized state in the sys-
tem. (Some symmetry classes in 2d (D, AII, DIII)
exhibit flow more complicated than that depicted
in Fig. 1 in that the critical surface broadens into a
metallic phase. We return to the discussion of this
point below.)

• The theory describes bulk-boundary correspon-
dence by a universal mechanism. In the fixed
points, (0, n), the field theory becomes fully topo-
logical in the sense that its standard gradient term
is absent. In the Z-cases, the topological terms with
integer coefficients become Wess-Zumino terms at
the boundary, where they describe n gapless bound-
ary excitations.

• In the Z2 cases the fermionic parts of the σ-
model target spaces contain two disconnected
components23. The topological quantum critical-
ity turns out to be associated with the field con-
figurations with kinks, switching between the two.
The corresponding transfer-matrix evolution equa-
tion acquires a spinor form, which reveals a hidden
supersymmetry (not related to Efetov’s supersym-
metry of the underlying σ-models). Its fermionic
degree of freedom, creating kinks between the two
sub-manifolds, is dual to the Majorana edge modes,
residing on the boundaries between two topolog-
ically distinct phases. Such supersymmetry may
prove to be crucial for understanding of the bulk-
boundary correspondence in the 2d Z2 insulators,
which has not yet been worked out.

III. SOLUTION STRATEGY

Before delving into more concrete calculations, it is
worthwhile to provide an overview of the key elements of
our approach to the low energy physics of the five classes
of quantum wires:

1. We find it convenient to model our wires as chains
of coupled sites, or “quantum dots”, where each site
carries an internal Hilbert space accommodating
spin indices, multiple transverse channels, etc. The
symmetries of the wire and its topological number
are encoded in the intra- and inter-site matrix ele-
ments describing the system.

2. Disorder is introduced by rendering some of those
matrix elements randomly distributed. The choice

of those random matrix elements is largely a mat-
ter of convenience, i.e. different models of disorder
may alter the bare values of the two coupling con-
stants entering the system’s field theory, but not
the universal physics.

3. In the clean case, the topological sector of the sys-
tem can be described in terms of the well estab-
lished homotopy invariants constructed over the
Brillouin zone. We will discuss how this informa-
tion may be alternatively accessed by probing the
response of the spectrum to either extended (Z) or
local (Z2) changes in the inter-site hopping. The
latter scheme generalizes to the presence of disor-
der.

4. We describe this response in terms of supersymmet-
ric Gaussian integrals. Upon averaging these inte-
grals over disorder, the symmetries of the micro-
scopic Hamiltonian turn into a ‘dual’ symmetry of
the corresponding functional integrals. (The math-
ematical concept behind this conversion is called
‘Howe-pair duality’24,25.) In practice this means
that the Gaussian actions are invariant under a
group G of transformations whose symmetries are
in one-to-one correspondence to that of the parent
Hamiltonian.

5. If the disorder is strong enough to close the gap,
that symmetry gets spontaneously broken to a sub-
group H. The ensuing Goldstone modes describe
diffusive transport in the system. At large distance
scales, these modes are expected to “gap out” due
to Anderson localization. Within the field theo-
retical framework, Anderson localization manifests
itself in a diminishing of the stiffness of Goldstone
modes, and an eventual crossover into a disordered
phase, not dissimilar to the disordered phase of a
magnet. From yet another perspective one may
understand this crossover in terms of a prolifer-
ation of topological excitations on the Goldstone
mode manifold. At the strong disorder fixed point,
which is characterized by a vanishing of longitudi-
nal transport coefficients, the full symmetry of the
system, G, is restored (once more in analogy to a
magnet). However,

6. It remains broken at the boundary points (or lines,
in 2d) of the system. As one would expect on gen-
eral grounds, the boundary Goldstone modes en-
joy topological protection and describe the system’s
zero energy states.

7. Methodologically, we describe the process of bulk
disordering by a method conceptually allied to a
real space renormalization group approach. In con-
crete terms, this means that we map the field in-
tegral description onto an equivalent transfer ma-
trix equation which describes the dot-to-dot evolu-
tion along the system. The derivation of that equa-
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tion does not rely on premature field-continuity as-
sumptions. In face, we will observe that in the Z2

cases discontinuous changes of the field play a piv-
otal role. Evolution via the transfer matrix equa-
tion may be understood as a process whereby sites
effectively fuse to larger sites, with renormalized
parameters. However, rather than describing this
process in explicit terms, we will analyze the eigen-
value spectrum of the transfer operator, and from
there extract the L-dependent flow of observables
(g(L), χ(L)).

8. Within the field theoretical framework, the real
space topological twists employed to access the
system’s topological numbers, become topologi-
cal field excitations, smooth instantonic configu-
rations/kinks for the Z/Z2-insulators. The action
cost of these configurations is quantified by a topo-
logical θ-term/fugacity term. Localization can then
be understood in terms of a proliferation of such
topological excitations at large distance scales, and
this process reflects in an effective flow of both the
gradient term, and the coefficient of the topologi-
cal term. However, at half-integer/zero bare topo-
logical coefficient, the contribution of such excita-
tions gets effectively blocked, either in terms of a
destructive interference of topological excitations
(conceptually similar to what happens in a half-
integer antiferromagnetic spin chain26)/or in terms
of a vanishing fugacity.

In the rest of the paper, we derive and solve the the-
ory for the five families of topological quantum wires.
The presentation is self-contained, however, to keep the
main text reasonably compact, details are relegated to
appendices. We start out with a preamble (section III),
in which we formulate the general strategy of our deriva-
tion. To avoid repetitions, we discuss two cases in more
detail, viz. the AIII Z-insulator, section IV, and the class
D Z2 insulator, section V C. The theory for the remain-
ing classes, BDI, CII, and DIII, largely parallels that of
those two, and will be discussed in more sketchy terms.

IV. Z-INSULATORS

In this section, we derive and analyze the effective the-
ory for the one-dimensional Z-insulators. We start by
discussing the simplest of these viz. a ‘chiral’ system
lacking any other symmetries, class AIII, in a fairly de-
tailed manner. After that we turn to the time reversal
invariant chiral system, class BDI, whose theory will be
described in more concise terms, emphasizing the differ-
ences to the time reversal non-invariant case. The theory
of the third Z representative, CII, does not add quali-
tatively new structures, and will be mentioned only in
passing.

FIG. 2. Schematic of a multi-channel AIII quantum wire with
staggered hopping of strength t, µ, respectively, and random

inter-chain hopping described by matrix elements Rkk
′

ss+1.

A. Definition of the model

Consider a system of N -quantum wires, described by
the Hamiltonian

H =

2L∑
s=1

C†s (tss′ +Rss′)Cs′ , (2)

where s is a site index, Cs = {Cks }, k = 1, . . . , N a vector
of N fermion creation operators, and t a nearest neighbor
hopping matrix defined through ts,s+1 = ts+1,s = µ if s is
even, ts,s+1 = ts+1,s = t if s is odd, and zero otherwise,
cf. Fig. 2. In other words, the matrix t implements
a staggered nearest neighbor hopping chain as realized,
e.g., in a Su-Shrieffer-Heeger model27. Randomness is
introduced into the system through the Hermitean bond
random matrices Rss′ as〈

Rkk
′

s,s′

〉
= 0,

〈
Rkk

′

s,s+1R
k′k
s+1,s

〉
=
w2

N
, (3)

where all other second moments of matrix elements van-
ish. To keep the model simple, neighboring chains are
only coupled through randomness (one may switch on
non-random hopping, at the expense of slightly more
complicated formulae).

To describe the symmetries of the system, we define the
site parity operator, Ps,s′ = (−)sδss′ . The fact that the
first quantized Hamiltonian H ≡ t+ R, defined through
Eq. (2), is purely nearest neighbor in s-space is then ex-
pressed by the anti-commutation relation {H,P}+ = 0.
The absence of other anti-unitary symmetries makes H
a member of the chiral symmetry class AIII. To con-
veniently handle the symmetry of the Hamiltonian, we
switch to a two-site unit cell notation through c2s → c+,s,
and c2s−1 → c−,s. In this representation the Hamil-

tonian assumes a +/− off-diagonal form, H =
(

h
h†

)
,

and P = σ3 is represented by the Pauli matrix. Anti-
commutativity with P implies the symmetry of H un-
der the continuous but transformation H = THT , where
T = exp(iθP ), and θ is, in general, complex parameter.

B. Topological invariants

In the clean system (R = 0), one may access the
system’s topological invariant by the standard3 winding
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number construction. Turning to a Fourier representa-
tion with a wavenumber q conjugate to s, the block ma-
trices h become functions hkk′(q) = δkk′(µ + teiq). We
then obtain the topological number n as

n =
1

2π
Im

2π∫
0

dq tr(h−1(q)∂qh(q)). (4)

For the simple model under consideration this becomes
n = NΘ(|t|− |µ|), where Θ is the step function. A trans-
verse coupling between the chains would lift the degener-
acy of this expression and turn n into a function stepwise
diminishing from N to 0 upon changing system parame-
ters.

We aim to access the number n in a manner not tied
to the momentum space. To this end, we consider a sys-
tem of L unit cells, and close it to form a ring. On
this ring, we impose the non-unitary axial transformation
Hφ = TφHTφ, where (Tφ)s,s′ = exp(−i sLφPs,s′δss′). The
transformation Tφ changes the Hilbert space of the prob-
lem, and hence may affect its spectrum. We will show
that the sensitivity of the spectrum probes topological
sectors. To this end, we notice that the transformation
affects the functions h as hkk′(q) → hkk′(q + φ/L) and

h†kk′(q)→ h†kk′(q−φ/L). We next define the zero energy
retarded Green function Gφ = (i0−Hφ)−1 and compute
its sensitivity to the insertion of the flux as

1

4π
ln

(
det(G2π)

det(G0)

)
=

1

4π

∫ 2π

0

dφ ∂φ tr ln(Gφ) =

=
1

4π

∑
q

∫ 2π

0

dφ ∂φ tr

(
lnh(q +

φ

L
) + lnh†(q − φ

L
)

)

=
i

2πL
Im
∑
q

∫ 2π

0

dφ ∂q tr (lnh(q + φ/L)) =

=
i

2π
Im

∫ 2π

0

dq ∂q tr (lnh(q)) , (5)

where in the last line the general identity,∑
q

∫ 2π

0
dφF (q + φ/L) = L

∫
dqF (q) was used. Compar-

ison with Eq. (4) then shows that

1

4π
Im ln

(
det(G2π)

det(G0)

)
= n. (6)

This equation represents the topological invariant in
terms of the ‘spectral flow’ upon insertion of one 2π-twist
under the axial transformation. To conveniently compute
this expression, we define the “partition sum”,

Z(φ) ≡

〈
det(G−1

φ1
)

det(G−1
−iφ0

)

〉
, (7)

where φ ≡ (−iφ0, φ1)T , and following Refs. [28 and 29]
consider the generating function

F(ϕ0) = ∂φ1Z(φ)
∣∣
φ1=−iφ0

= ∂ϕ1 ln det(Gϕ1)
∣∣
φ1=−iφ0

,

(8)

which contains the full information about the transport
properties of the system. From F , our two variables of
interest, (g, χ) can be accessed,

χ =
1

4π

∫ 2π

0

dφ1 ImF(iφ1); g = −i∂ϕ0
F(ϕ0)

∣∣
ϕ0=0

.

(9)
Here, the second equality expresses the conductance of
the system in terms of its sensitivity to a change in
boundary conditions. The equivalence of this relation
to the linear response representation of the conductance
is shown in Sec. VI.

C. Field theory representation

We proceed by representing the ratio of determinants
in (7) as a supersymmetric Gaussian integral,

Z(φ) =

〈∫
d(ψ̄, ψ) eiψ̄G

−1
φ ψ

〉
, (10)

where ψ = (ψb, ψf) and ψα are vectors of complex
commuting (α = b) or Grassmann variables (α =
f) with components ψα = {ψα±,s,k}. Further ψ̄b =

ψb†, while ψ̄f and ψf are independent, and G−1(φ) ≡
bdiag(G−1

−iφ0
, G−1

φ1
) is a block operator in bf-space. Gaus-

sian integration over the super-field ψb/f produces the
determinant/inverse determinant of G−1

φ1
/G−1
−iφ0

, and in

this way we obtain the partition sum Z(φ), Eq. (7).

The functional integral possesses a continuous symme-
try under transformations

ψ̄+ → ψ̄+TL, ψ+ → T−1
R ψ+

ψ̄− → ψ̄−TR, ψ− → T−1
L ψ−, (11)

where TL,R are 2× 2 supermatrices whose internal struc-
ture will be detailed below. A symmetry transforma-
tion of this type generally spoils the adjointness relation
ψ̄b = ψb†, but as long as we make sure not to hit singu-
larities it does not alter the result of the integration.

Denoting the set of these matrices by GL(1|1), we ob-
serve that the action has a continuous symmetry un-
der G ≡ GL(1|1) × GL(1|1). This symmetry may be
interpreted as the supersymmetric generalization of the
GL(n)×GL(n) symmetry under unitary transformations
of left- and right- propagating excitations in chiral quan-
tum systems; it is a direct heritage of the chiral symmetry
of the Hamiltonian.

Finally, notice that we may interpret the insertion of
the chiral flux φ in terms of a boundary condition chang-
ing chiral gauge transformation, ψ̄G−1

φ ψ = ψ̄′G−1
0 ψ′,

where ψ′L/R,s ≡ e(+/−)iφ sLψL/R,s are subject to the

twisted boundary condition ψ′L/R,L = e(+/−)iφψ′L/R,0,

where φ = diag(−iφ0, φ1)T .
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D. Disorder average and low energy field theory

We next average the theory over the distribution of
the R-matrices and from there derive an effective theory
describing the physics at distance scales larger than the
elastic mean free path. There are two ways of achiev-
ing this goal30, one being explicit construction, the other
symmetry reasoning. For an outline of the former route,
we refer to Appendix A. Here, we discuss the less ex-
plicit, but perhaps more revealing second approach.

The averaging over disorder turns the infinitesimal in-
crement i0 → i/2τ of the retarded Green function into
a finite constant, which defines the inverse of the elas-
tic scattering time. Its value may be exponentially small
or not, depending on whether the amplitude of the dis-
order, w, exceeds the gap ∼ |t − µ| of the clean sys-
tem or not. This criterion defines the crossover from
the band insulator into the impurity ‘metal’. The metal-
lic regime is characterized by a globally non-vanishing
density of states, and finite electric conduction at length
scales shorter than the localization length to be discussed
momentarily. In the metallic regime, the appearance
of a finite diagonal term i0 → i/2τ in ±-space ‘spon-
taneously breaks’ the symmetry under G down to the
diagonal group H = GL(1|1) defined by the equality
TL = TR. (Within the context of QCD this mechanism
is known as the spontaneous breaking of chiral symmetry
by gauge field fluctuations, where in our context the role
of the latter is played by impurity potential fluctuations.)
We expect the appearance of a Goldstone mode mani-
fold, G/H = (GL(1|1) × GL(1|1))/GL(1|1) ' GL(1|1).
In mathematical terminology, that manifold is under-
stood as a Riemannian (super-)symmetric space, viz. the
space A|A of rank 1. The assignment AIIIHamiltonian →
(A|A)field theory is an example of the symmetry duality
mentioned in section III.

We next identify the low energy ‘Ginzburg-Landau’ ac-
tion S[T ] describing the Goldstone mode fluctuations,
and its connection to physical observables. Techni-
cally (cf. Appendix A 1), the field T = {Ts} ap-
pears after averaging the theory over disorder and
decoupling the ensuing ψ4-term through a Hubbard-
Stratonovich transformation. After integrating over the
ψ-fields, the partition function then assumes the form
Z(φ) =

∫
DT exp(−S̃[T ]), where

S̃[T ] = str ln

(
iΣ0T −h
−h† iΣ0T

−1

)
, (12)

Σ0 = 1/2τ is the impurity self-energy evaluated in the
self-consistent Born approximation (SCBA) and h con-
tains the disorder independent nearest neighbor hopping
matrix elements. Here str(A) =

∑
α(−)αAαα is the so-

called supertrace. We recall that the action must be sym-
metric under the action of the full symmetry group G.
Within the present context, the latter acts by transforma-
tion T 7→ TLTT

−1
R , i.e. for constant (i.e. s-independent)

transformations our action must be invariant under in-
dependent left- and right-transformation, and the fulfill-

ment of this criterion is readily verified from the structure
of the action. Specifically, the action of a constant field T
vanishes, S̃[T ] = S̃[I] = 0. To obtain an effective action
of soft fluctuations, varying on length scales larger than
the lattice constant, we replace the site index s → x by
a continuous variable, x, and think of the hopping op-
erators as derivatives. Up to the level of two gradients,
two operators can be constructed from field configura-
tions Ts → T (x): str(∂xT∂xT

−1), and str(T−1∂xT )31. A
substitution of T (x) into Eq. (12) followed by a straight-
forward expansion of the logarithm (cf. Appendix A 1)
indeed produces the effective action30

S[T ] =

L∫
0

dx

[
− ξ̃

4
str(∂xT∂xT

−1) + χ̃ str(T−1∂xT )

]
,

(13)

where (ξ̃, χ̃) are two coupling constants. In this ex-
pression, the presence of the source variable φ implies
a twisted boundary condition,

T (L) = eiφT (0)eiφ. (14)

To make progress, we parameterize the fields T as as
T = U

(
ey0

eiy1

)
U−1, where U = exp ( ν

µ ) contains the

Grassmann variables. The two radial coordinates (y0, y1)
(one non-compact and one compact) parameterize the
maximal domain for which the path integral over T with
the action (13) is convergent. Notice that the first deriva-
tive term, str(T−1∂xT ) = ∂x str(lnT ) can formally (more
on this point below) be expressed as a surface term, in-
dicating that it is a topological θ-term. In the absence of
a boundary twist explicitly breaking the symmetry be-
tween fermionic and bosonic integration variables, that
is for φ1 = iφ0, the functional integral equals unity by
supersymmetry32, and Z(φ) = 1 by definition, i.e. the
connection between Z(φ) and the functional integral does
not include normalization factors.

The interpretation of the two coupling constants (ξ̃, χ̃)
appearing in the action can be revealed by taking a look
at the short system size limit l < L < ξ̃, where l ∼ tτ is
a short-distance cutoff set by the elastic mean free path
due to disorder scattering. In this limit, field fluctu-
ations are suppressed and we may approach the func-
tional integral by stationary phase methods. A straight-
forward variation of the action δTS[T ] = 0 yields the
equation ∂x(T∂xT

−1), and the minimal solution con-
sistent with the boundary conditions is given by Ts =
ei2φ

s
L . Substituting this expression into the action and

ignoring quadratic fluctuations, we obtain the estimate,

Z(φ) ' exp
(
− ξ̃
L (φ2

0 + φ2
1)− 2χ̃(φ0 − iφ1)

)
. Application

of Eq. (9) then readily yields χ̃ = χ and g = 2ξ̃/L. This
identifies χ̃ as the bare value of the average topological
number, and ξ̃ as the localization length (for L < ξ̃, the

conductance of the wire is Ohmic, g ∼ ξ̃/L). Within
the explicit construction of the theory outlined in Ap-
pendix A 1, the coefficients (ξ̃, χ̃) are obtained as func-
tions of the microscopic model parameters. For the spe-
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cific model under consideration one finds ξ̃ = Nl, and
χ̃ = i

2 tr(G+P∂kH), where G+ is the Green function sub-
ject to the replacement i0 → i/2τ . In parentheses we
note that this expression can be identified with the ex-
pectation value of velocity, or a ‘persistent current’ flow-
ing in response to the axial twist of boundary conditions.

Within our present model, one obtains χ̃ = N
2 (1+ (t−µ)t

w2 ),
see Appendix A 1 for more details.

E. Anderson localization

Before exploring in quantitative terms what happens at
large scales, L > ξ̃, let us summarize some anticipations.
For generic values of χ̃ one expects flow into a ‘disordered’
regime. At large distance scales, the fields exhibit strong
fluctuations and the ‘stiffness’ term ∝ ξ̃ becomes ineffec-
tive. (Within an RG oriented way of thinking, one may
interpret this as a scaling of a renormalized localization
length ξ(L) → 0.) On general grounds, we expect this
scaling to be accompanied by a scaling χ(L)→ n. At the
fixed point, the Goldstone modes disappear from the bulk
action, which we may interpret as a restoration of the full
chiral group symmetry G. The presence/absence of this
symmetry is a hallmark of localized/metallic behavior,
the scaling is towards an attractive bulk insulating fixed
point.

As for the boundary, the fixed point topological
term with quantized coefficient n

∫
dx str(T−1∂xT ) =

n [str ln(T (L))− str ln(T (0))] ≡ Sb[T ], becomes a sur-
face term, where we temporarily assume our system to be
cut open. For generic values χ 6= n it actually is not a sur-
face term, because T = T (y0, y1) = T (y0, y1 + 2π) is 2π-
periodic in the coordinates y1 while exp(−χ str lnT ) =
exp(−χ(y0−iy1)) is not. The requirement of a quantized
coefficient reveals the surface terms n str lnT as zero di-
mensional variant of Wess-Zumino term. At any rate,
the G-symmetry at the boundary remains broken, and
we will discuss in section IV F how this manifests itself
in the presence of protected surface states. Notice how
the protection of these states is inseparably linked to bulk
localization. The latter plays the role of the bulk band
gap in clean systems.

The above picture can be made quantitative by pass-
ing from the functional integral to an equivalent “trans-
fer matrix equation”30,32. The latter plays a role analo-
gous to that of the Schrödinger equation of a path inte-
gral. Interpreting length as (imaginary) time, it describes
how the amplitude Ψ(φ,L) ≡ Z(φ,L)− 1 defined by the
functional integral at fixed initial and final configuration
T (0) = 1, T (L) = exp(2iφ) evolves upon increasing L.
(Since Z(0, L) = 1, by its supersymmetric normalization
the function Ψ is defined to describe the non-trivial con-
tent of the partition sum.) This equation, whose deriva-

tion is detailed in Ref. [30], is given by

−ξ̃ ∂xΨ(y, x) =
1

J(y)
(∂ν − iAν)J(y)(∂ν − iAν)Ψ(y, x),

(15)
where J(y) = sinh−2

(
1
2 (y0 − iy1)

)
is the Jacobian of the

transformation to the radial coordinates yν , ∂ν = ∂/∂yν ,
Aν = χ̃ i1−ν , and the index ν = 0, 1 is summed over. To
understand the structure of this equation notice that the
action of the path integral (13) resembles the Lagrangian
of a free particle, subject to a constant magnetic field.
One therefore expects the corresponding transfer matrix
equation to be governed by the Laplacian on the con-
figuration space manifold GL(1|1) of the problem. The
differential operator appearing in Eq. (15) is the radial
part of that Laplacian (much like r−2∂rr

2∂r is the ra-
dial part of the Laplacian in spherical coordinates), i.e.
the contribution to the Laplacian differentiating invari-
ant under angular transformations U . The presence of
the Jacobian J(y) reflects the non-cartesian metric of the
manifold, and the vector potential, Aν , is proportional to
the bare topological parameter χ̃.

It is straightforward to identify the eigenfunctions and
eigenvalues of the transfer matrix operator as

ψl(y) = sinh

(
1

2
(y0 − iy1)

)
eilνyν ,

ε(l) = (l0 − iχ̃)2 + (l1 − χ̃)2, (16)

where l0 ∈ R, and l1 ∈ Z + 1
2 to make the eigenfunc-

tions 2π-periodic in ỹ1. We may now employ these func-
tions to construct a spectral decomposition Ψ(φ,L) =∑
l1

∫
dl0 µ(l)ψl(φ)e−ε(l)L/ξ̃. Using that

〈ψl, ψl′〉 ≡
∞∫

0

dy

2π∫
0

dỹ J(y)ψ̄l(y)ψl′(y) =

= (2π)2δ(l0 − l′0)δl1l′1 , (17)

it is straightforward to obtain the expansion coefficients
µ(l) by taking the scalar product 〈ψl,Ψ(L→ 0)〉. Upon
substitution of the limiting value Ψ(φ,L→ 0)→ −1 (at
any φ, but φ = 0, where Ψ(φ,L → 0) → 0)33, we obtain
µ(l) = 1

π
1

l1+il0
and thus

Z(φ) = 1 +
∑

l1∈Z+ 1
2

∫
dl0
π

ψl(φ)

l1 + il0
e−ε(l)L/ξ̃. (18)

Differentiation of this result, according to Eq. (9), yields
the two observables of interest34

g =

√
ξ̃

πL

∑
l1∈Z+1/2

e−(l1−χ̃)2L/ξ̃, (19)

χ = n− 1

4

∑
l1∈Z+1/2

[
erf
(√L

ξ̃
(l1 − δχ̃)

)
− (δχ̃↔ −δχ̃)

]
,
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FIG. 3. Flow of the conductance g and the topological pa-
rameter χ as a function of system size for class AIII system.
Dots are for values, L/ξ̃ = 1, 2, 4 . . . , 32.

where δχ̃ = χ̃ − n is the deviation of χ̃ off the nearest
integer value, n.

These equations quantitatively describe the scaling
behavior anticipated on qualitative grounds above: for
generic bare values (ξ̃, χ̃) we obtain an exponentially fast
flow of (g(L), χ(L)) towards an insulating state (0, n).

At criticality, (ξ̃, n + 1/2), the topological number re-
mains invariant, while algebraic decay of the conduc-

tance g(L) ≈
√
ξ̃/πL indicates the presence of a delo-

calized state at zero energy (i.e. in the center of the
gap of a clean system). Introducing the scaling form

ξ(χ̃) = ξ̃|χ̃ − n − 1/2|−ν and comparing the ansatz,
g ∼ exp(−L/ξ(χ̃)), with the result above, we obtain
the correlation length exponent ν = 2 describing the ex-
ponential decay of the average conductance, 〈g〉. (This
exponent differs from ν = 1 for the typical correlation
length, 〈ξ〉 = −L/〈ln g〉.15,35) The flow is shown graphi-
cally in Fig. 3, and it represents the 1d analogue of the
two-parameter flow diagram6 describing criticality in the
integer QH system.

In Fig. 4 we show the phase diagram of N = 3–channel
disordered AIII wire in the (µ,w) plane. The clean sys-
tem, w = 0, exhibits topological phase transitions at
µ/t = ±1. Solid lines show half-integer values of the
SCBA computed topological number χ̃, see Appendix
A 1 for the details. Squares show numerically computed34

boundaries between regions with different number of neg-
ative Lyapunov exponents, section VI, of the transfer
matrix. Notice a very satisfactory agreement between
numerical transfer-matrix calculation and SCBA, even
though the latter is justified only in N � 1 limit.

F. Density of states

The critical physics discussed above also shows in the
density of states of the system. We here recapitulate a
few results derived in more detail in Ref. [30]. At the
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FIG. 4. Phase diagram of the AIII class 3-channel disordered
wire. Dashed lines show crossover regions between band insu-
lator (bI) and Anderson insulator (AI) or tI and tAI phases,
derived from the SCBA. Solid lines correspond to half-integer
values of the SCBA computed topological number χ̃ and mark
boundaries between phases of different n. bI and AI have
n = 0, while for tI and tAI n 6= 0. Squares: data points, rep-
resenting phase boundaries found from a numerical analysis
of Lyapunov exponents, section VI.

.

insulating fixed points, (0, n), the zero energy action of
the system with vacuum boundary conditions reduces to
the boundary action Sb[T ], i.e. the G-symmetry remains
broken at the metallic system boundaries, which may be
interpreted as ‘quantum dots’ of size ' ξ̃. At finite en-
ergies, E, the boundary action representing the Green
function GE ≡ (E+ i0−H)−1 at, say, the left boundary
is given by36

SL[T ] = −n str(lnT ) + i
ε

2
str(T + T−1), (20)

where ε = π|E|/∆ξ, and ∆ξ is the average single particle

level spacing of a wire segment of extension ξ̃. The fact
that the energy ε enters the action like a ‘mass term’ for
the Goldstone modes reflects the explicit breaking of the
chiral symmetry {G−1

E , P}+ 6= 0. From this expression,
the density of states at the system boundaries is obtained
as

ρ(ε) =
1

2∆ξ

〈
(T + T−1)bb

〉
. (21)

The integral can be done in closed form, and as a result
one obtains36,37

ρ(ε) =
1

∆ξ

(
πnδ(ε) +

πε

2

[
J2
n(ε)− Jn+1(ε)Jn−1(ε)

])
.

(22)

The first term here represents the n topologically pro-
tected zero energy states, and the second describes the



10

rest of the spectrum in terms of a bathtub shaped func-
tion which remains strongly suppressed up to values
|E| ∼ n∆ξ. This suppression reflects the level repul-
sion off the zero energy states in the chaotic scatter-
ing environment provided by the disorder. For larger
energies, the second term asymptotes to unity, i.e.

ρ(ε)
ε�1−→ ∆−1

ξ . The boundary DoS obeys the sum rule

lim∆ε→∞
∫∆ε

−∆ε
dε ρ(ε) = 2∆ε/∆ξ, i.e. the spectral weight

n sitting at zero all is taken from the bulk of the spec-
trum.

At criticality, the bulk of the system remains in a sym-
metry broken state. The transfer matrix method dis-
cussed above may then be applied to compute the bulk
density of states (21) at observation points ξ � x � L
deep in the system. The result30: ν(ε) = − ν0

ε ln3(ε)
shows

a strong accumulation of spectral weight at the band cen-
ter. This spectral anomaly is based on the same buildup
of long range correlations that gives rise to the delocal-
ization phenomenon. Heuristically, one may interpret it
as a ‘channel’ through which a left and a right boundary
state hybridize at the critical point to move away from
the zero energy.

G. Topological Sources

Unlike the locally confined source terms commonly
used to compute observables from field theories, the
phase variable φ employed above is a ‘topological’ source’,
i.e. one that twists boundary conditions and is defined
only up to local deformation. In view of our later con-
sideration of other symmetry classes we here briefly dis-
cuss the geometric principles behind this construction
and how to extract the variable pair (g, χ) from the field
theory by boundary twists generalizing the phase vari-
able φ to other symmetry classes.

In all one-dimensional cases the relevant fields are
‘maps’ Q : S1 → G/H from a circle (the quantum
wire compactified to a ring) into a Goldstone mode
manifold realized as the quotient of a full symmetry
group G over a group of conserved symmetry H, e.g.
G = GL(1|1) × GL(1|1) and H = GL(1|1) above. We
are putting quotes in ‘map’ because it is essential to in-
clude fields subject to boundary twist, i.e. configura-
tions that cannot be described in terms of smooth maps.
Also, in some cases, the Goldstone mode manifold in-
cludes a discrete Ising type sector ∼ Z2 which is non-
smooth by itself. A more geometric way to think of the
fields would be in terms of sections of a bundle struc-
ture, where the latter has S1 as its base, and G/H as
fibers. Within this setting, the emergence of boundary
twist means that we will be met with ‘nontrivial bundles’,
i.e. the ones that cannot be reduced to a product space
S1 × G/H. This is another way of saying that in the
presence of twist there are no globally continuous fields.
On the bundle structure, the group G acts as a local sym-
metry group, e.g. by the transformations T → TLTT

−1
R ,

(TL, TR) ∈ G = GL(1|1), which makes our theory a gauge
theory. The source fields employed to compute observ-
ables are gauge transformations by themselves, and they
do cause boundary twist. In more mathematical lan-
guage, one would say that the bundle is equipped with
a non-trivial connection, i.e. a twisted way of parallel
transportation. The absence of periodicity on the twisted
background can be equivalently described as the presence
of non-vanishing curvature or gauge flux. The theory
responds to the presence of such type of connection in
terms of deviations of the partition sum Z off unity, and
in this way the observable pair (g, χ) can be obtained.
The situation bears similarity to the quantum mechan-
ical persistent current problem, where the presence of a
magnetic flux (or twisted boundary conditions) leads to
flux-dependence of the free energy (corresponding to our
Z). In that context, the insertion of a full flux quantum
generates spectral flow, i.e. a topological response (sim-
ilar to our χ), while the probing of ‘spectral curvature’,
i.e. a second order derivative w.r.t. the flux generates a
dissipative response (’Thouless conductance’, similar to
our g).

The question then presents itself how the connection
yielding the observables should be chosen in concrete
cases. (In view of the dimensionality > 1 of the target
manifolds there is plenty of freedom in choosing twisted
connections, which nevertheless may yield equivalent re-
sults.) Below, we will approach this question in prag-
matic terms, i.e. we have an expression of the topolog-
ical invariants in terms of Green functions, these Green
functions can be represented in terms of Gaussian su-
perintegrals (cf. Eq. (10)) subject to a source, and that
source then lends itself to an interpretation as a gauge
field acting in the effective low energy field theory (cf.
Eq. (13).) While the concrete implementation of this
prescription depends on the symmetry class, and in par-
ticular on whether a Z or a Z2 insulator is considered38

the general strategy always remains the same. Likewise,
the extension of the source formalism to one yielding
the dissipative conductance is comparatively straightfor-
ward, as discussed in the specific applications below. We
finally note that the global gauge formalism can be gener-
alized to higher dimensions, Pruisken’s ‘background field
method’19 being an early example of a d = 2 implementa-
tion. For further discussion of this point see section VII.

H. Class BDI

We next extend our discussion to the one-dimensional
Z-insulator in the presence of time reversal, symmetry
class BDI. Class BDI can be viewed as a time reversal
invariant extension of class AIII discussed above. Read-
ers primarily interested in the much more profound differ-
ences between Z and Z2 insulators, are invited to directly
proceed to section V
Model Hamiltonian — Systems of this type are realized,
e.g. as N -channel lattice p-wave superconductors39 with
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the Hamiltonian

H =

L∑
s=1

[C†sH0,sCs + (C†sH1,sCs+1 + h.c.)], (23)

where the spinless fermion operators Cs = (cs,k, c
†
s,k)T

are vectors in channel and Nambu spaces with s being
site and k = 1, ..., N being channel indices. The on-site
part of the Hamiltonian, H0,s = (µ+ Vs)σ3 contains the
chemical potential µ and real symmetric inter-chain ma-
trices V kk

′

s . The Pauli matrices σi operate in Nambu
space. The inter-site term, H1,s = − 1

2 tsσ3 + 1
2∆sσ2,

contains nearest neighbor hopping, ts, and the order pa-
rameter, ∆kk′

s , here assumed to be imaginary for conve-
nience. Quantities carrying a subscript ‘s’ may contain
site-dependent random contributions. The first quan-
tized representation of H obeys the chiral symmetry
{P,H}+ = 0, with P = σ1 and the BdG particle-hole
symmetry σ1H

Tσ1 = −H. The combination of these two
results in the effective time-reversal symmetry HT = H.
In what follows we consider the simplest model of disor-
der in which ts = ∆s = t are non-random and diagonal in
the channel space while the matrices V kk

′

s are Gaussian
distributed as

〈V kk
′

s V k
′′k′′′

s 〉 = (w2/N)(δk′k′′δkk′′′ + δkk′′δk′k′′′), (24)

and the parameter w sets the strength of the disorder.
Field theory —

Due to the presence of both chiral and time-reversal
symmetry the Goldstone mode manifold of the effective
low-energy field theory in the BDI class spans the coset
space GL(2|2)/OSp(2|2)40 which can be parameterized in
terms of 4×4 matrices Q = T T̄ , where the ’bar’ operation
is defined as T̄ = τTT τT and τ = Pb⊗τ1+P f⊗iτ2. Here
Pb and P f are projectors on the bosonic and fermionic
space while τ -matrices operate in the so-called ’charge-
conjugation’ space. It is clear from this parametrization
that all matrices T obeying T̄ = T−1 form the subgroup
K = OSp(2|2) in the larger group G = GL(2|2) and do
not contribute to the Q-field, which thereby spans the
coset G/K. By considering rotations in the fermionic
sector only, one finds that Tff ∈ U(2)/Sp(2) ' U(1) '
S1. The non-trivial homotopy group π1(S1) = Z implies
the presence of winding numbers in the low-energy field
theory.

For our subsequent discussion we will need the
parametrization of the Goldstone manifold spanned by
8 coordinates, three of which, (y0, y1, y2) with y0 ∈ R,
y1 ∈ [0, 2π[, and y2 ∈ R+, play the role analogous to the
radial coordinates of the AIII manifold. It reads

Q = eWQe−W , Q =

(
Qb

Qf

)bf

(25)

where the ff-block Qf = e2iy1τ0 is parametrized by a com-
pact radial variable y1 and the bb-block is parametrized
by two hyperbolic radial variables y0,2 and one angle α,

Qb = e2y0 × eiατ3e2y2τ1e−iατ3 . (26)

The off-diagonal rotations mixing bosonic and fermionic
sectors have the form

W =

(
B

B̃

)bf

, B =

(
ξ ν
µ η

)
, (27)

where B is a matrix in charge-conjugation space depend-
ing solely on Grassmann angles and B̃ = iτ2BT τ1.

The field theory action of the BDI disordered system
has the same form as in the class AIII,

S[Q] =

L∫
0

dx

[
− ξ̃

16
str(∂xQ∂xQ

−1) +
χ̃

2
str(Q−1∂xQ)

]
,

(28)
and a sketch of its derivation is outlined in Appendix A 2.
The topological coupling constant is given by χ̃ =
i
2 tr(G+P∂kH), where the retarded Green’s function G+

has to be calculated within the SCBA. The concrete de-
pendence of χ̃ on the parameters defining the model (23)
will be discussed below.

The ’partition sum’ of the BDI system is again given be
Eq. (7), and its path integral representation reads Z(φ) =∫
DQ exp(−S[Q]), where the integral is over all smooth

realizations of the Q-field with fixed initial and final con-
figuration, Q(0) = 1 and Q(L) = diag(e2φ0 , e2iφ1)bf .
As in the AIII system its non-trivial content Ψ(φ,L) ≡
Z(φ,L)− 1 can be found from the solution of the trans-
fer matrix equation (15), which is now defined for three
radial coordinates y = (y0, y1, y2), with Jacobian

J(y) =
sinh(2y2)

16 sinh2(y0 − iy1 + y2) sinh2(y0 − iy1 − y2)
,

(29)
and vector potential A = 2χ̃(i, 1, 0)T . The partition sum
is obtained from the solution of the equation at the radial
configuration y = φ ≡ (φ0, φ1, 0).

The spectrum of the transfer matrix operator can be
found by analyzing the asymptotic of the eigenfunctions
ψl(y) at large values of variable y0,2. In this regime the
sinh-functions simplify to exponentials and the eigen-
functions ψl(y) show the same exponential profile. In
this way we find

ε(l0, l1, l2) = 1 + (l0 − 2iχ̃)2 + (l1 − 2χ̃)2 + l22, (30)

with l1 ∈ 2Z and l0,2 ∈ R.
Obtaining the initial value solution Ψ(φ,L) requires

the application of more elaborate techniques. The key is
to extend the super-Fourier analysis of Ref. [41] for the
three standard Dyson symmetry classes to the symme-
try classes presently under consideration. Relegating an
exposition of mathematical details to a subsequent pub-
lication, we here state only the main results. For any set
of radial coordinates y = (y0, y1, y2) the partition sum
can be written as a spectral sum analogous to Eq. (18)
for the class AIII system

Ψ(y, L) =
∑
l1∈2Z

∫
dl0dl2
(2π)2

µ(l)ψl(y)e−ε(l)L/2ξ̃. (31)
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Here l = (l0, l1, l2) denotes the set of quantum numbers,
and the measure µ(l) is found to be

µ(l) =
(πl2/8) tanh(πl2/2)

[l22 + (il0 + l1 − 1)2] [l22 + (il0 + l1 + 1)2]
. (32)

The functions ψl(y) appearing in the Fourier expan-
sion (31) are the generalized spherical eigenfunctions of
the Laplace-Beltrami operator on the coset space G/K.
They do not depend on the vector potential A ∼ χ̃. As
in the AIII case, the topological parameter enters the
solution Ψ(y, L) only through the χ̃-dependence of the
spectrum ε(l), Eq. (30).

While for arbitrary y the wave function ψl(y) cannot be
written in closed form, an integral representation due to
Harish-Chandra42 exists. The analysis of this represen-
tation greatly simplifies for the configuration of interest,
y = (φ0, φ1, 0). Using the Harish-Chandra integral rep-
resentation for ψl(φ) we obtain the generating function
F(φ), Eq. (8), as

F(φ) = 4 ∂φ1

∑
l1∈2Z

∫
dl0dl2
π2

µ(l)e(il1−l0)φ1e−ε(l)L/2ξ̃.

(33)
From this result the asymptotic values of χ(L) and g(L)

in the limit L/ξ̃ � 1 can be extracted, and we obtain
results qualitatively similar to those of the AIII system.
For example, far from criticality keeping the dominant
terms in the Fourier series (33) we find

χ(L) ' n+
1

4
sign(δχ)

√
ξ(χ̃)

πL
e−L/ξ(χ̃),

g(L) ' 1

2

√
ξ̃

πL
e−L/ξ(χ̃), (34)

where as before χ̃ = n + δχ and the localization length
ξ(χ̃) = ξ̃|χ̃− n− 1/2|−2.
Phase diagram —

For the model of the N -channel p-wave wire defined
above, the constant χ̃ = χ̃(µ,w) takes values in the in-
terval (0, N). Its explicit form can be found analytically
in limiting cases. Specifically, in the low energy limit
|µ− t| � t we obtain

χ̃(w, µ) =
N

4

(
3 +

(t− µ)t

w2

)
, (35)

while in the limit µ→ 0 and for any disorder strength w,

χ̃(µ = 0, w) = Nt2/2w2. (36)

Localization is avoided if χ̃(µ,w) = n+ 1/2, with integer
n ∈ [0, N−1], and the corresponding contour lines in the
(µ,w)-plane define boundaries between different phases
of the tAI with indices n and n + 1. The ensuing phase
diagram at N = 3 is shown in Fig. 5. Using Eq. (36) we
find that the phase transition points on the (µ = 0;w)
line are located at

wn = t(2N/(2n+ 1))1/2, (37)
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FIG. 5. Phase diagram of the BDI class 3-channel disordered
p-wave superconducting wire. Dashed lines show crossover
regions between band insulator (bI) and Anderson insulator
(AI) or tI and tAI phases, derived from the SCBA. Solid lines
correspond to half-integer values of the SCBA computed topo-
logical number χ̃ and mark boundaries between phases of dif-
ferent n. bI and AI have n = 0, while for tI and tAI n 6= 0.

.

where 0 ≤ n < N (cf. also Ref.18). Similarly, employing
relation (35) we find that the degenerate phase transition
point (µ,w) = (t; 0) on the clean system ordinate splits
into the set of N critical parabolas

µn(w) = t+
w2

t

(
3− 4n+ 2

N

)
. (38)

We have also compared the profiles of the χ = n +
1/2 contour lines obtained by SCBA evaluation of the
topological parameter against numerical transfer matrix
method. The excellent agreement was found, in spite of
the fact that strictly speaking the field theory approach
requiresN � 1. The diagram in Fig. 5 supports the qual-
itative discussion of the introductory section. In partic-
ular, one observes that somewhat counterintuitively the
increase of disorder strength w at fixed chemical poten-
tial µ may induce the quantum phase transition (and
thus delocalization!) from the trivial Anderson insulator
(n = 0) to the tAI (n = 1)43,44.

We conclude by noting that the physics of the class CII
quantum wire, governed by a chiral time-reversal invari-
ant Hamiltonian, with broken spin-rotation invariance,
is essentially similar to that of the AIII and BDI sys-
tems. A quantitative solution along the lines of the ones
discussed above can be formulated, but it does not add
qualitatively new information and we do not discuss it
here.
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V. Z2 INSULATORS

In many ways, the effective theories of the five classes
of topological quantum wires resemble each other. All
five can be described in terms of two parameter nonlin-
ear σ-models, and in all cases critical flows characterized
by the fixed point structure (1) are predicted. (Similar
parallels are observed in 2d, cf. section VII.) However,
there are also important differences notably between the
Z and Z2 representatives. The rule of thumb is that while
the topological textures responsible for the flow in the Z-
insulators are smooth – phase windings in 1d, instantons
in 2d – they are singular in the Z2 systems – point de-
fects in 1d, line defects in 2d. The Z2-wires considered
below are driven into a localized regime by a prolifera-
tion of kinks. Much like vortices in 2d (which have been
seen20 to play a similar role there), kinks are topological
in nature, however they cannot be described in terms of
a gradient-topological term. Its role is taken, rather, by
a fugacity term, i.e. a term describing the action cost of
individual kinks. The fugacity coefficient, ln(χ̃) assumes
the role of the θ-angle in the Z-insulators.

In the following we describe the construction and solu-
tion of the theory on the example of the class D quantum
wire, i.e. the spin-rotation and time- reversal symmetry
broken system currently under intense experimental and
theoretical scrutiny. We then generalize the treatment to
class DIII system.

A. Definition of the model

The Bogoliubov-deGennes Hamiltonian of class D
superconductor obeys the symmetry relation HT =

−σph
1 Hσph

1 , where the Pauli matrices act in particle-hole
space. One may perform unitary transformation to ‘real’
superpositions of particle and hole degrees of freedom –
the ‘Majorana’ basis – in which the symmetry assumes
the simple form H = −HT . We will work in this ba-
sis throughout, and model our system as a chain of L
coupled ‘dots’, s = 1, . . . , L where each dot represents a
disordered superconductor. The corresponding Hamilto-
nian reads

H =
∑
ss′

C†s [Hsδss′ + iW (δss′+1 − δs′s+1)]Cs′ , (39)

where Hs = −HTs is a matrix Hs = {Hkk′s } with ran-
dom contributions, and the inter-dot coupling matri-
ces, W = WT , are assumed to be non-random. With-
out loss of generality, we may choose a basis in which
W = diag(w1, . . . , w2N ) is diagonal.

B. Topological invariant

In the clean case, the Z2 invariant carried by the
system is defined as39 sgn (Pf(Hπ)/Pf(H0)), where Hq

is the first quantized Hamiltonian defined by the bilin-
ear form (39), and q is the wavenumber conjugate to
the index s. The definition may be generalized to one
working in the presence of disorder17 by interpreting the
L-site chain as one giant unit-cell of an infinitely ex-
tended system. Within this interpretation, the system
is described by a complicated Hamiltonian H ′ contain-
ing ∝ L bands, whose Brillouin zone is given by the
cutoff momentum 2π/L. The invariant is now given
by sgn(Pf(H ′π/L)/Pf(H ′0)). We may imagine the system

compactified to a ring, in which case the ratio is that
of Pfaffians of Hamiltonians in the presence/absence of
a half magnetic flux quantum threading the ring. That
flux picture is gauge equivalent to one where the phase
π picked up upon traversal of the ring is concentrated on
one of its links, i.e. we may obtain the invariant by tak-
ing the ratio sgn(Pf(Hπ)/Pf(H0)), where H0 ≡ H ′ and
Hπ differs from H0 by the sign inversion of one of the
bond matrices, e.g. W → −W , say, at the bond 0 → 1.
We will use this representation throughout.

C. Field theory

In this section we introduce a partition sum for the
class D wire which is able to generate the conductance
and the Z2 topological invariant. To this end we consider
the super-Gaussian integral

Z =

〈∫
DΨ eiΨ̄G

−1Ψ

〉
, (40)

where Ψ = {Ψα,t
sk } is a super-vector field carrying site

indices (s, k), a super-index α = b, f distinguishing be-
tween commuting and anti-commuting indices, and a
two-component ‘charge conjugation’ index t = 1, 2. The
vectors Ψ̄ and Ψ are mutually dependent through the
symmetry relation

Ψ = τΨ̄T , τ = Pb ⊗ (iτ2) + P f ⊗ τ1, (41)

where τi are matrices acting in charge-conjugation space.
Further, G−1 ≡ i0τ3 − H comprises the retarded and
advanced Green functions. In Appendix B, we discuss
the relation of the symmetry structure (41) to the anti-
symmetry of the Hamiltonian, H = −HT .

As it stands, Z = 1 is unit normalized by supersym-
metry. To obtain useful information from the integral,
we couple it to a gauge field a = (φ, σ) ∈ R × Z2 com-
prising a U(1) phase variable φ and a Z2 variable σ = ±.
The former acts only in the bosonic sector of the theory,
α = b, and the latter in the fermionic sector α = f. The
field a is non-vanishing only on one link of the lattice,
which we choose to be the 0 ↔ 1 link. On this link, we
replace the hopping operator iW |0〉〈1|+ h.c. by

iW
(
Pbeφτ1 + P fτ

(1−σ)/2
1

)
|0〉〈1|+ h.c.

∣∣
φ→−φ. (42)
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We denote the Green function modified in this way as
Ga ≡ G(φ,σ). Notice that up to a unitary transformation
diagonalizing τ1 → τ3, the fermionic sector of G(0,−) com-
prises an unperturbed Green function (the eigenvalue +1
of τ3 ↔ τ1) G0 and one Gπ that contains a sign-inverted
hopping matrix element on the 0↔ 1 link (the eigenvalue
−1). Denoting the partition function defined for the su-
persymmetry broken Green function Ga, a 6= (0,+) as
Z(a) ≡ Z(σ)(φ), it is straightforward to verify that

χ ≡ Z(−)(0) =

〈
Pf(G−1

π )

Pf(G−1
0 )

.

〉
(43)

Indeed, the integral over the bosonic variables sandwich-
ing the unperturbed Green function at φ = 0 produce
a factor det(G−1

0 ) = Pf(G−2
0 ) in the denominator, while

the integral over the Grassmann variables gives a fac-
tor PfG−1

0 PfG−1
π in the numerator where the two fac-

tors come from the distinct eigenvalue sectors mentioned
above, and the integration over Grassmann variables pro-
duces Pfaffians (rather than determinants) because Ψ̄
and Ψ contain the same integration variables45. Factor
PfG0 in numerator and denominator cancels out, and we
are left with the expression above.

In section VI we show that

g = ∂2
φ

∣∣
φ=0

Z(+)(φ), (44)

i.e. the conductance is obtained by probing sensitivity of
the partition function w.r.t. a phase twist in the bosonic
sector (and unperturbed fermionic sector). The underly-
ing transformation, too, is ‘topological’ in that it changes
the boundary conditions in a way that cannot be removed
by unitary transformation. To summarize, the observable
pair (g, χ) can be obtained by exposing the partition sum
to a boundary changing gauge transformation which is
continuous/discrete in the bosonic/fermionic sector.

What makes the source a genuine gauge field is its
compatibility with the symmetry transformations of the
theory. The action is invariant under space-uniform
transformations Ψ → TΨ, Ψ̄ → Ψ̄T−1, where compat-
ibility with the symmetry of the Ψ-field requires that
TT = τT−1τ−1. This is the defining relation for the
super-group G = SpO(2|2), where the notation indicates
that (T bb)T = (iτ2)−1(T bb)−1(iτ2) is in the non-compact
group of real-symplectic 2 × 2 matrices, while (Tff)T =
τ−1
1 (Tff)−1τ1 is in the compact group of 2×2 orthogonal

matrices. We will see momentarily, that on the level of
the effective low energy theory, the symmetry group G of
transformations T gets broken to the group H of trans-
formations commutative with τ3, i.e. the Golstone mode
manifold is G/H, and (G/H)11 = O(2)/SO(2) ' Z2 re-
duces to a discrete set. On this fermion-fermion sector,
the source σ acts as a Z2 gauge field. In the boson-boson
sector, the gauge source is continuous. Later on, we will
see that the gauge conformity of the sources with the
symmetries of the theory plays an important role in the
solution of the latter.

D. Disorder average and low energy action

Following the same logic as in section IV D we now
perform averaging over the Gaussian disorder and intro-
duce Goldstone Hubbard-Stratonovich field to decouple
the ensuing Ψ4-term. Referring for technical details to
Appendix B, we here motivate the emerging effective
theory by symmetry considerations, conceptually analo-
gous to that of section IV D. The immediate consequence
of the disorder averaging is that the G symmetry gets
broken by an emergent self energy i0τ3 → i

2τ τ3 to the
subgroup H = GL(1|1) of transformations commutative
with τ3 matrix. The resulting Goldstone mode manifold
may be parameterized by Q = Tτ3T

−1, where T ∈ G.
This manifold has the topologically important property
of disconnectedness. To see this, we span the fermionic
bb-block of the symmetry group Gff ' O(2) by two dis-
connected set of matrices parameterized, respectively, as

T (±) ≡ τ
1
2 (1∓1)

1 eiφτ3 . This implies that the (11)-sector of
the Goldstone mode manifold contains only the two el-
ements T (±)τ3T

(±)−1 = ±τ3. One may switch from one
configuration to the other by the symmetry group ele-
ment τ1. These observations indicate that the field the-
ory contains Z2 kink excitations, which switch between
the two disconnected parts of the Goldstone manifold23.

For later reference, we note that a complete param-
eterization of the two Goldstone mode submanifolds is
given by

Q(±) = eWQ̃(±)e−W , (45)

where Q̃(±) = Q̃b ⊗ Pb + Q̃f(±) ⊗ P f is block-diagonal
in bf space with ff-block Q̃f(±) = ±τ3 and a bb-block
parametrized by one hyperbolic radial variable y and one
angle α as

Q̃b = eiατ3eyτ1τ3e
−yτ1e−iατ3 . (46)

The boson-fermion rotations are given by

W =

(
B

B̃

)bf

, B =

(
ξ
η

)
, (47)

where B is a matrix in τ -space, B̃ = −τ1BT iτ2, and ξ, η
are Grassmann variables.

After integration over the Ψ-fields the Goldstone
mode partition function assumes the form Z =∫
DQ exp{−

∑L
s=1 S(Qs, Qs+1)}, where S(Q,Q′) =

S̃(Q,Q′) + lnσ(Q,Q′), where σ is a sign factor to be
discussed momentarily,

S̃[Q,Q′] =
1

4

2N∑
k=1

str ln

(
1 +

t2k
4

(
{Q,Q′}+ − 2

))
, (48)

{ , }+ is the matrix anti-commutator, t2k =
4(πνwk)2/(1+(πνwk)2)2 is the kth of 2N intra-dot trans-
mission coefficients and ν is the DoS in the dot. Ac-
tions of this architecture universally appear in the de-
scription of granular (chain of dotes) matter32,46,47. A
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feature that sets the action apart from that of an or-
dinary quantum dot action is the presence of the sign
exp(lnσ(Q,Q′)) ∈ {1,−1}. The sign originates in the
fact that the integration over Grassmann variables actu-
ally produces a Pfaffian of the antisymmetric operator
in site, channel, and charge conjugation space defined
by the Gaussian action. That Pfaffian differs from the
square root of a determinant (the action S̃) if (i) the sys-
tem is in a topological phase, and (ii) the matrices Qs
and Qs+1 neighboring the link belong to different parts
of the manifold, i.e. if there is a kink sitting on the link.
If the system is topological, each such kink produces a
sign in the Pfaffian relative to the (positive) sign of the
determinant.

Keeping this subtlety in mind, we now turn to the dis-
cussion of the action contribution S̃. The presence of
kinks in the system invalidates an expansion of the log-
arithm in ‘smooth fluctuations’. To compute the action
cost of a kink on a link between the sites s0 and s0 + 1,
we consider a piecewise constant configuration with field
variables Q(+) and Q(−) ≡ T̃Q(+)T̃−1 at sites s ≤ s0 and
s ≥ s0 +1, respectively, where T̃ = Pb +P f⊗τ1 Substitu-
tion of this profile into the action then gives a vanishing
contribution from all links other than s0 → s0 + 1. The
discontinuity itself yields S̃s(Q

(+), Q(−)) = 1
2

∑
k ln(r2

k),

where r2
k = 1− t2k afford an interpretation as squared re-

flection amplitudes (cf. section VI). In the topologically
non-trivial case, the sign of the products of reflection co-
efficients is negative44,

∏
k rk < 0. This means that the

sign factor exp(lnσs), equally negative in the topological

case, in S = S̃ + lnσ can be accounted for by writing
S(Q(+), Q(−)) =

∑
k ln rk; for negative product of the

rk’s, this adds factor ±iπ to the positive action S̃, as re-
quired. Summarizing, the kink action yields a constant
Sk defined through

e−Sk ≡
2N∏
k=1

rk = det r̂ ≡ χ̃, (49)

Notice that |χ̃| ≤ 1. In the topological (non-topological)
case, χ̃ < 0 (χ̃ > 0).

The identification of the exponentiated kink action,
or kink fugacity, with the bare value of the topological
variable, χ̃, can be understood by representing the ref-
erence field configuration as . . . Q(+) ↔ Q(+) ↔ Q(+) ↔
Q(−) ↔ Q(−) ↔ Q(−) ↔ . . . . This can be identically
rewritten as . . . Q(+) ↔ Q(+) ↔ Q(+) − T̃ − Q(+) ↔
Q(+) ↔ Q(+) ↔ . . . , i.e. the kink amounts to the ap-
pearance of a τ1-matrix in the Grassmann sector on the
link s0 ↔ s0 + 1. This, on the other hand, is equiva-
lent to the substitution of the ‘topological source’ (43)
into the action. The source was designed in such a way
that in its presence the partition sum remains unchanged
(trivial superconductor), or changes sign (topological su-
perconductor). In the disordered case, the two options
χ̃ ∈]0, 1] and χ̃ ∈ [−1, 0[ are realized according to a cer-
tain distribution, i.e. we expect the presence of a source
to generate a real valued coefficient χ̃. The critical value

χ̃ = 0 means a complete blocking of kinks. At any
rate, the action cost of an individual kink is given by
Sk ≡ − ln(χ̃) = − ln(|χ̃|) + Θ(−χ̃)iπ where the phase iπ
is absent (present) in the trivial (topological) case. The
phase will be seen below to be crucial to the formation
of boundary states in the topological phase.

The gauged partition function Z(a) = Z(σ)(φ) is ob-
tained by evaluating the path integral subject to the
twisted boundary condition Q(0) = τ3 ⊗ 1bf , Q(L) =
diag(τ3e

2φτ1 , (−1)(1−σ)/2τ3)bf . This implies that the
path integral in the presence/absence of the external Z2

charge is the sum over trajectories with an odd/even
number of kinks.

Away from the kinks, the field configurations are
smoothly fluctuating, and a straightforward expansion of
the logarithm in Eq. (48) in long wavelength fluctuations
leads to

S[Q] = − ξ̃

16

∫
dx str(∂xQ∂xQ) + ln χ̃× nk, (50)

where the discrete index s is replaced by a continuum
variable x, nk is the number of kinks and the first term
describes the action of smooth field fluctuations in kink-
free regions of the system. Here, the ’bare’ dimensionless

localization length, ξ̃ = g =
∑2N
k=1 t

2
k, measured in units

of the inter-dot spacing coincides with the dot-to-dot to
conductance. We note, however, that the above action is
symbolic in that it does not specify boundary conditions
at the terminal points of segments were kinks occur. To
consistently treat the latter, one needs to retain the dis-
crete representation (48), as detailed in the next section.

For later reference, we notice that the action cost of a
configuration with n kinks, ln χ̃× nk can be represented
as

Stop[Q] = i
ln(χ̃)

π

∫ L

0

dx ∂xstr ln(T ). (51)

Indeed, a multi-kink configuration with kinks at xi, i =
1, . . . , nk can be parameterized as T (x) ≡ T̃ f(x)T (+)(x),
where T (+) generates fluctuations in the (+) sector of the
manifold, and f(x) =

∑nk

i=1 Θ(x−xi). Since detT (+) = 1

we have str ln(T ) = str ln T̃ f = − ln(−1)f = −iπf , and
hence Stop[Q] = ln χ̃× nk, as required.

The structure of the continuum representation (50)
makes the parallels and differences to the description
of the Z-insulators manifest. In all cases, the system
is described by a two-parameter field theory compris-
ing a standard gradient operator (the first term), and a
‘topological term’ determining the action cost of topolog-
ical excitations. However, unlike with the smooth phase
winding excitations of the Z-insulators, the latter are sin-
gular topological point defects, which means that the role
of the topological θ-terms is now taken by the fugacity
counting term. (A similar structure is found in 2d, cf.
section VII.) As with the AIII system, the bare values
of the coupling constants may be identified by probing
the response of a short system ξ̃ � L to the presence



16

of sources. Substitution of a single kink into the sys-

tem generates Z(−)(0) = χ
L�ξ
= χ̃ as discussed above.

Likewise, the substitution of a minimal configuration
Q(x) = Pb ⊗

(
eφ

x
L τ1τ3e

−φ xL τ1
)

+ P f consistent with the

source-twisted boundary condition defining Z(+)(φ) leads

to S[Q] = 1
2φ

2 ξ̃
L . Differentiating Z(+)(φ) ' exp(−S[Q]),

according to Eq. (44), one finds g ' ξ̃
L , which connects ξ̃

with the Drude conductance of a short chain.

E. Anderson localization

We now proceed to investigate how multiple-kink field
configurations affect properties of long wires, L� ξ̃. To
this end, let Zs(Q) denote the partition function for the
wire of length s with a fixed boundary field Qs = Q.
(The boundary condition at the other end of the wire
is set to Q1 = Λ ≡ τ3 ⊗ 1bf . For Q 6= Q1 this setup
equivalently describes a ring subject to boundary twist.)
Since Qs at the s-th dot may be on the either part of the
manifold, the partition function can be identified with a

two-component spinor Zs = (Z
(+)
s , Z

(−)
s )T . Provided one

knows the partition function for the system of length s,
the one for length s+ 1 is obtained as

Z
(σ)
s+1(Q(σ)) =

∫
DQ̃(σ̃) e−S(Q(σ),Q̃(σ̃)) Z(σ̃)

s (Q̃(σ̃)) , (52)

where σ, σ̃ = ±. As a result, the transfer matrix operator
acquires a structure of 2 × 2 matrix in the space of the
two sub-manifolds14 (in addition to acting on the Q-field
coordinates).

Its diagonal parts describe evolution of the field con-
fined to the (+) or (−) sub-manifolds, respectively. For
multichannel wires with g � 1 this evolution is slow on
the scale of one dot, and one may pass to the contin-
uum representation s→ x and Zs(Q)→ Z(Q, x). In this
approximation the diagonal parts of the transfer matrix
operator are the familiar Laplace-Beltrami heat-kernel
operators. For a particular set of coordinates on the two
sub-manifold given by Eqs. (45)–(47), the latter takes the
form of Eq. (15) with a single radial coordinate y. The
corresponding Jacobians are evaluated in Appendix B 2
and are given by

J (+)(y) = 2 coth y, J (−)(y) = 2 tanh y. (53)

They depend on the hyperbolic radial variable y, but
not on the angles α, ξ, η. Since the initial condition is
isotropic in angular variables, one may restrict oneself
to a radial partition function Z(Q, y) → Z(y, x). We
also note that in the absence of twisted boundary con-
ditions, y = 0, the supersymmetric normalization of the
functional integral implies Z(0, x) = (1, 0)T .

The off-diagonal parts of the the transfer-matrix equa-
tion require a separate derivation, which may be found
in Appendix B 3. The resulting transfer-matrix problem

for the two-component spinor Ψ(y, x) ≡ Z(y, x)− (1, 0)T

takes the following form:

−ξ̃ ∂xΨ =

 1
2J(+) ∂yJ

(+)∂y −χ̃
√

J(−)

J(+) ∂y

−χ̃
√

J(+)

J(−) ∂y
1

2J(−) ∂yJ
(−)∂y

Ψ, (54)

where ∂xΨ = Ψs+1 − Ψs and Ψ =
(
Ψ(+),Ψ(−)

)T
. No-

tice that the kink-generating off-diagonal operator is
anti-Hermitian. Following the same strategy as in sec-
tion IV E, one needs to identify the (right-)eigenfunctions
Ψl(y) and eigenvalues ε(l) of the transfer operator. To
this end it is convenient to perform the Sutherland substi-

tution, Φ(±)(y, x) =
√
J (±)(y)Ψ(±)(y, x), which leads to

the following compact formulation of the transfer-matrix
problem:

−ξ̃ ∂xΦ̂ =

[
1

2
B̂2 + i χ̃ B̂

]
Φ̂, (55)

where the 2×2 first-order Hermitian operator B̂ is defined
as

B̂ =

(
B†

B

)
. (56)

Here we defined B(†) = −i∂y ± iA(y), where A(y) =
−1/ sinh 2y. Since the ‘potential’ A decays at y → ∞,
the eigenfunctions may be labelled by their asymptotic
behavior Φl(y) ∼ eily at y → ∞ (their exact form is
given in Appendix B 3), where l ∈ R. The corresponding
spectrum is given by:

ε(l) =
1

2
l2 + i χ̃ l, (57)

The key feature of the transfer-matrix problem (55)
is that it assumes the form of a supersymmetric imagi-
nary time Schrödinger equation. (This supersymmetry is
‘genuine’ and should not to be confused with the boson-
fermion structure used to facilitate the average over dis-
order.) In the parlor of supersymmetric quantum me-
chanics, the operator B is a ladder operator, and A the
corresponding super-potential. The fact that the latter is
an odd function indicates that the supersymmetry is un-
broken. As a result, the operator B†B must have a zero
energy eigenvalue ε(0) = 0, which is responsible for the
absence of localization, if χ̃ = 0. We conclude that the
criticality of the χ̃ = 0 class D model may be attributed
to its hidden SUSY structure (55). It is an intriguing
prospect if this disorder-induced supersymmetry in Z2

symmetry classes is related to the one recently found48

in connection with the dynamic fluctuations of the order
parameter in the quantum critical points of some clean
tI’s.

Also notice that the diagonal part of the transfer ma-
trix operator (55) consists of Hermitian operators B†B
and BB†, which have the form of the generalized Pöschl-
Teller Hamiltonians49:

−∂2
y −

λ(λ− 1)

cosh2 y
+
λ(λ+ 1)

sinh2 y
, (58)
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with λ = ±1/2, respectively. One may now show that
the eigenfunctions of the full problem (55) are not af-
fected by the finite fugacity χ̃ of the kinks (the spec-
trum (57) is, of course, sensitive to it). The situation
is exactly parallel to that in the Z symmetry classes,
where the topological term affects the spectrum, but not
the eigenfunctions. To show this denote the eigenfunc-

tions of the two Pöschl-Teller operators (58) as Φ
(±)
l (y),

for their exact expressions in terms of hypergeomet-
ric functions see Appendix B 3. It is easy to see that

B†Φ
(−)
l = ilΦ

(+)
l and BΦ

(+)
l = −ilΦ(−)

l (multiply the

equation B†BΦ
(+)
l = l2Φ

(+)
l from the left by the opera-

tor B, to obtain BB†(BΦ
(+)
l ) = l2(BΦ

(+)
l ), which means

that the function BΦ
(+)
l is proportional to an eigenfunc-

tion of the supersymmetric partner operator BB† with

the same eigenvalue l2, that is to Φ
(−)
l ). As a result the

spinor Φl ≡ (Φ
(+)
l ,Φ

(−)
l )T solves the full eigenvalue prob-

lem (55) with the eigenvalue (57) for any fugacity χ̃.
The proper solution of the transfer-matrix equation

may now be represented in terms of a spectral decompo-

sition as Ψ(φ,L) =
∑
l µ(l) Ψl(φ) e−ε(l)L/ξ̃, where the ex-

pansion coefficients µ(l) = 〈Ψl|Ψ(0)〉 = −
〈
Ψl|(1, 0)T

〉
=

−〈Ψ(+)
l |1〉 are determined by the constant offset (1, 0)T

(cf. the corresponding remarks in section IV E). Using

the explicit form of the eigenfunctions Φ
(±)
l (y) we find in

Appendix B 4 that

µ(l) = −
√

π

l tanh πl
2

. (59)

We finally recall that Z(φ,L) = Ψ(φ,L) + (1, 0)T to ob-
tain the partition sum as

Z(φ,L) =

(
1
0

)
+

∫
dl

2π
µ(l)Ψl(φ) e−ε(l)L/ξ̃. (60)

From this expression and using the explicit form of
the eigenfunctions (Appendix B 4), observables may now
readily be extracted. The topological number χ(L) is
given by Eq. (43), as χ(L) = Z(−)(0, L), resulting in:

χ(L) =
1

2

∫
dl coth (πl/2) sin(χ̃lL/ξ̃)e−l

2L/2ξ̃. (61)

One notices that at L → ∞, the variable χ approaches
sign(χ) = ±1 exponentially fast, indicating the stabiliza-
tion of a topologically trivial or non-trivial phase, respec-
tively. The conductance is obtained by differentiation of
the partition sum Z(+)(φ,L) with respect to the bound-
ary twist φ according to Eq. (44). As a result, one finds

g(L) =
1

8

∫
dl l coth (πl/2) cos(χ̃lL/ξ̃)e−l

2L/2ξ̃. (62)

From this expression it is straightforward to verify that
for χ̃ 6= 0 the conductance decreases exponentially with

-1.0 -0.5 0.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

0.5

Χ

g

FIG. 6. Flow of the conductance g and the kink’s fugacity χ
as a function of system size for class D system. Dots are for
values, L/ξ̃ = 1, 2, 4 . . . , 32.

the system size g(L) ∝ 1√
L
e−χ̃

2L/(2ξ̃). This shows that

the effective localization length

ξ = 2ξ̃/χ̃2 (63)

diverges towards the critical point χ̃ = 0. At the thresh-
old between the ordinary Anderson insulator and its
topological sibling, χ̃ = 0, the system is in the critical
delocalized state with g(L) ∼ 1/

√
L. The overall flow

diagram in the (g(L), χ(L)) plane is shown in Fig. 6.
Finally, it is interesting to note that the effective local-

ization length may be exponentially large close to critical-
ity. To show this consider a tunneling limit of dot-to-dot
couplings such that all t2k � 1 and at the same time g =∑2N
k=1 t

2
k � 1. In this case χ̃ = e

∑
k ln(1−t2k)1/2 ≈ e−g/2

and we obtain ξ ∼ ξ̃ eg, where g ∝ ξ̃ ∝ N . The fact that
the localization length in class D is exponentially large
in the number of channels was first realized by Gruzberg,
Read and Vishveshwara14 in the context of the transfer
matrix DMPK treatment. They have also gave a treat-
ment in terms of the supersymmetric spin chain and re-
alized that the corresponding transfer matrix equation
acquires a two-spinor form. It can be verified (although
this key point was not discussed in the original refer-
ence) that their transfer-matrix equation, too, encodes a
supersymmetry.

F. Boundary density of states

In the L → ∞ critical points χ = −1/1 the system
does/does not support a Majorana state at its ends. In
this limit, the bulk theory (by which we mean the bulk
theory off criticality) becomes purely topological: the
gradient term in (50) has scaled to zero, ξ → 0. In the
trivial phase of the χ = 1 – Anderson insulator, the story
ends here. In the tAI phase χ = −1 we are left with a
term counting kink fugacities in terms of a phase ac-
tion (51), at the fixed point, χ̃ = −1, the coefficient sim-
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plifies as i ln(χ̃)/π = −1 and the topological action may
be written as Stop[Q] = str (lnT (0)− lnT (L)), i.e. as the
sum of two boundary actions. These actions describe the
boundary Green function at zero energy. Generalization
to finite energies, E, is straightforward and leads to the
left boundary action (analogously for the right)

SL[Q] = − ε
2

str(Qτ3) +

(
1− χ

2

)
str ln(T ), (64)

where ε = π|E|/∆ξ as in the AIII system and χ = ±1
so that the form of the action is correct on both (AI and
tAI) localized phases. The density of state deriving from
this description has been computed36,50 and reads as

χ = 1 : ρ(ε) =
1

∆ξ

(
1 +

sin ε

ε

)
,

χ = −1 : ρ(ε) =
1

∆ξ

(
1− sin ε

ε
+ δ(ε)

)
. (65)

The δ-function in the second line is the topological Majo-
rana state. Notice, however (see Ref. [50] for further dis-

cussion), that in either case,
∫ ε0
−ε0 dε ρ(ε)

ε0�1
= 2ε0 + 1

2 , i.e.

the boundary accumulates an excess spectral weight of
1/2, which in the non-topological case is the consequence
of disorder generated quantum interference, and in the
topological case due to the Majorana partially ‘screened’
by a negative interference contribution.

G. Class DIII

Model Hamiltonian — Similarly to class D, class DIII
describes particle-hole symmetric, spin rotation non-
invariant superconductors. The difference with class D
is in the presence of time-reversal symmetry in class
DIII. The Hamiltonian obeys a particle-hole symme-

try, HT = −σph
1 Hσph

1 . Time reversal invariance re-
quires HT = σsp

2 Hσ
sp
2 . These symmetries can be com-

bined to obtain the chiral symmetry P †HP = −H with

P = σph
1 ⊗ σ

sp
2 . In the basis defined by this chiral struc-

ture, the Hamiltonian assumes the off-diagonal form

H ′ =

(
D

D†

)
, DT = −D. (66)

A generalization of the granular Hamiltonian (67) to the
DIII symmetric situation reads

H =
∑
ss′

C†−,s (Hsδss′ + iWδss′+1)C+,s′ + h.c., (67)

where C†±,s is a vector of creation operators on grain s
and the indices (+/−) refer to the chiral structure. The
2N × 2N matrix H = −HT is assumed to be random
Gaussian distributed, while the 2N × 2N hopping sym-
metric matrix, W = WT , is translationally invariant and
defines the non-random part of the Hamiltonian describ-
ing the inter-grain couplings.

Topological number — The definition of a topological
number follows the lines of the construction in class D.
We imagine the system closed to a ring and select one
particular bond where W ′ = iW |+, 1〉〈−, 0| is the hop-
ping matrix associated to this bond. Representing the
off-diagonal block of the Hamiltonian H in the chiral ba-
sis (66) as D = D′ + W ′, the matrix Dπ = D′ − W ′

represents a system with sign inverted hopping across
the bond. The topological number can be now defined as
sgn [Pf(Dπ)/Pf(D)]. We show in Appendix D 3 that in
the limit L → ∞ this ratio of Pfaffians is a real number
equal to ±1.
Field theory —The construction of a field theoretical par-
tition sum parallels that of Section V C for the class D
wire. Our starting point is a quadratic action S[Ψ̄,Ψ] =
1
2 Ψ̄(i0τ3 − H)Ψ, where Ψ is an eight component field

obeying the symmetry Ψ = σ1 ⊗ τ Ψ̄T , the matrix τ is
defined as τ = iτ2 ⊗Pb + τ1 ⊗P f , and Pauli matrices σi
act in the ‘chiral’ space defined by Eq. (66). Resolving
the chiral structure through Ψ = (Ψ+,Ψ−), we have a
continuous symmetry under transformations

Ψ̄+ → Ψ̄+TL, Ψ+ → T−1
R Ψ+

Ψ̄− → Ψ̄−TR, Ψ− → T−1
L Ψ−. (68)

Here TL,R are 4×4 matrices which act in the direct prod-
uct of bf and cc spaces and belong to the group SpO(2|2)
formed by all super-matrices of the type T−1 = τTT τ−1.
The full continuous symmetry group of the class DIII ac-
tion thus is G = SpO(2|2) × SpO(2|2), which as in the
chiral class AIII will be broken to a single copy SpO(2|2)
upon disorder averaging. A key feature of that manifold
is that, as in class D, it is disconnected: the compact
(fermionic) sector O(2) comprises fluctuations with de-
terminant ±1, which cannot be continuously connected.
Accordingly, the gauge symmetry group G acting on the
Goldstone mode manifold again contains a Z2 degree of
freedom, generating kinks between the two disconnected
components.

As before, we probe the system by insertion of topo-
logical gauge sources defined on one link 0↔ 1 only. To
this end, let us generalize the operator connecting the
corresponding sites as(

W
W †

)
→
(

TL(a)W
W †T−1

R (a)

)
. (69)

Here, TL(a), where a = (φ, σ), φ = (−iφ0, φ1)T , and σ =
±. While the general form of the transforming matrices
is defined as

TL(a) = e−φ0Pb + e−iφ1τ
(1−σ)/2
1 P f ,

TR(a) = eφ0Pb + eiφ1P f , (70)

we will later apply the specific configurations TL(0,−) =

T̃ ≡ Pb + P f ⊗ τ1, TR(0,−) = 1, and TR(φ,+) =
T−1
L (φ,+) = diag(eφ0 , eiφ1)bf . Notice that the trans-

formed operator lacks hermiticity, which indicates that
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the gauge transformations behind the insertion of the
source are non-unitary chiral transformations. Indeed, a
link modified as above can be generated by a transfor-
mation

TL/R,s = TL/R(a)Θ(s) + 1Θ(−s). (71)

The lattice-discontinuity across the 0 ↔ 1 link then
generates the modified hopping operator. For a finite
ring with periodic boundary conditions, the transforma-
tion above does not exist, implying that a single source
link can be shifted through the system (by a boundary-
consistent two-kink transformation), but not removed.
The gauge transformation is described by two continuous
variables φ, and one Z2 variable σ = ±, and we denote
the corresponding partition function by Z(a) ≡ Z(σ)(φ).

The sources above are constructed in such a way, that
for a = (0,−), TL(0,−) = Pb + P fτ1, while TR = 1,
i.e. in the fermionic sector the sourced link is replaced
by τ1. Arguing as in the class D case, the corresponding
partition function Z(−)(0) generates a product of Pfaffi-
ans with off-diagonal sector, D and Dπ, respectively (see
previous section). In other words,

χ = Z(−)(0) =

〈
Pf(Dπ)

Pf(D)

〉
. (72)

By contrast, for a = (φ,+), TL = eiφ. The link
modified by the continuous parameters φ is to yield
the conductance as in Eq. (9), i.e. with F(φ0) =
∂φ1

Z(+)(φ)
∣∣
φ1=−iφ0

, we have g = −i∂φ0
F(φ0)

∣∣
φ0=0

.

Low-energy action — The field manifold G/H =
SpO(2|2) comprises a non-compact bosonic sector Sp(2),
and the two-component O(2) in the fermionic sector. We
parameterize the full manifold as

T (±) = eW T̃ (±)e−W , T̃ (±) =

(
T̃ b

T̃ f(±)

)bf

.

(73)
The bosonic part is parametrized by one hyperbolic ra-
dial variable y0 and two angles ρ and α

T̃ b = ei(bτ++b∗τ−)ey0τ3e−i(bτ++b∗τ−) (74)

=

(
cosh y0 + cos 2ρ sinh y0 −ieiα sin 2ρ sinh y0

ie−iα sin 2ρ sinh y0 cosh y0 − cos 2ρ sinh y0

)
,

where ρ =
√
b∗b and eiα =

√
b/b∗, and matrices τi act in

charge conjugation space. The fermionic part is param-
eterized by a single compact radial variable y1 and may
be specified on the two parts of the group manifold

T̃ f(+) = eiy1τ3 , T̃ f(−) = τ1e
iy1τ3 . (75)

Notice that only the (+) manifold contains unit element
and thus constitutes a subgroup. The boson-fermion ro-
tations are parameterized by four Grassmann angular
variables ξ, η, ν, µ and restricted by the particle-hole sym-
metry W = −τWT τT ,

W =

(
B

B̃

)bf

, B =

(
ξ ν
µ η

)cc

, B̃ =

(
η −ν
µ −ξ

)cc

,

(76)

where B̃ = −τ1BT iτ2. A straightforward if somewhat
lengthy calculation yields the Jacobians of the transfor-
mation to the above system of polar integration variables
as

J (+) =
sin 2ρ

2

sinh2 y0

(cosh y0 − cos y1)2
, J (−) =

sin 2ρ

2
.

(77)
Finally, the supersymmetric action of the array, written
in terms of on-site group elements Ts acquires the form
(cf. Appendix D 3)

S[T ] =
1

4

L,4N∑
s,k=1

str ln

[
11 +

t2k
4

(
T−1
s Ts+1 + T−1

s+1Ts − 2
)]
,

(78)
where tk are transmission matrix eigenvalues. This ac-
tion is a counterpart of Eq. (48) for class D. When sub-
jected to a symbolic gradient expansion it takes the form
S[T ] = −(ξ̃/8)

∫
dx ∂xT

−1∂xT+ln χ̃×nk, where ξ̃ = g/2,

g =
∑4N
k=1 t

2
k is the inter-dot conductance, and the second

term represents the kink-action to be discussed momen-
tarily. However, as with the class D system, a consistent
treatment of kinks forces us to work with the granular
action (78). Following the same recipe as in the class
D case, we start by considering a configuration with one
kink, where Ts = 11, while Ts+1 = T̃ ≡ Pb + P f ⊗ τ1.
The corresponding contribution to the partition function
acquires the form

eS(1,T̃ ) =

2N∏
k=1

rk= Pf (r̂P ) ≡ χ̃ , (79)

where we took into account that all 4N eigenvalues rk =
±(1 − t2k)1/2 of the transmission matrix r̂ are Kramers
degenerate and thus its Pfaffian may be defined as the
product of 2N non-degenerate eigenvalues.

As in class D, we define a spinor partition function
Zs = (Z(+), Z(−))Ts , where Z(±) describes the evolution

of configurations starting at T0 = τ3 and ending at T
(±)
s

belonging to the same/opposite connectivity component.
The evolution of the two-component Zs is described by
the equation

Z
(σ)
s+1(T (σ)) =

∑
σ̃=±

∫
DT̃ (σ̃) e−S(T (σ),T̃ (σ̃)) Z(σ̃)

s (T̃ (σ̃)) ,

(80)
We now again pass to the continuum limit, Zs → Z(x)
in which the diagonal blocks of the 2 × 2 transfer op-
erator become the standard Laplace-Beltrami operators∑
ν=ρ,y0,y1

(J±)−1∂νJ
±∂ν on the corresponding sector of

the field manifold with Jacobians given by Eq. (77).
The off-diagonal parts are somewhat more intricate. It
turns out that the action S(T (+), T̃ (−)) is independent
of the compact radial variables y1, ỹ1 (while it still ex-
hibits conventional Gaussian confinement ∼ g(y0 − ỹ0)2

in the non-compact direction). As a result, the transfer
matrix operator becomes a non-local integral operator
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in the compact y1-direction. After Sutherland substitu-

tion Ψ(±)(y, x) = Φ(±)(y, x)/
√
J (±)(y) with J (±)(y) =

∂ρJ
(±)
∣∣
ρ=0

, it takes the form:

−ξ̃ ∂xΦ =

 ∂2
y0 + ∂2

y1 −χ̃
√

g

2π
∂y0

∫
dỹ1

−χ̃
√

g

2π
∂y0

∫
dỹ1 ∂2

y0 + ∂2
y1

Φ,

(81)
where we have denoted Φ = (Φ(+),Φ(−))T and the length

scale ξ̃ = g/2 (in units of inter-dot spacing). This
operator acts in the space of 2π periodic functions of

y1 (it is important that
√
J (±)(y) are periodic), which

may be written as Φ(±)(y) =
∑
l1

Φ
(±)
l1

(y0)eil1y1 , with
integer l1. The l1 6= 0 components are not affected
by the kinks at all. The corresponding eigenvalues are
ε(l0, l1 6= 0) = l20 + l21, where l0 ∈ R is a real quan-
tum number from the non-compact direction y0. On the

other hand, the Φ
(±)
0 (y0) spinor obeys the supersymmet-

ric quantum mechanics (55) with B(†) = −i∂y0 , i.e. with
zero super-potential A = 0, and renormalized fugacity
χ̃ → χ̃

√
2πg. The corresponding l1 = 0 eigenvalue is

ε(l0, 0) = l20 + il0 χ̃
√

2πg. The eigenfunctions are the

plane waves Φ
(σ)
l0,0

(y0) = 1√
2
eil0y0(1, σ)T , where σ = ±,

and again do not depend on the topological number χ̃.

We now use the solution of the transfer matrix prob-
lem to extract observables. The measure is given by
the overlap of the conjugated wave function with the
initial conditions, µ(l) = −〈Ψ̂l|(1, 0)T 〉. It leads to

µ(l) = −2il0/(l
2
0 + l21), l1 6= 0, and µ(l0, 0) =

√
2i/l0

in case of l1 = 0. It is clear that all components but
l1 = 0 decay exponentially on the scale given by the bare
localization length ξ̃ ∼ g. Hereafter we thus focus ex-
clusively on l1 = 0 component, relevant for longer wires
L� ξ̃. The corresponding partition sum spinor is given
by

Z(φ,L) = (1, 0)T +

∫
dl0
2π

µ(l0, 0)Ψl0,0(2φ)e−ε(l0,0)L/ξ̃,

(82)
where we put the radial coordinates to be y = 2φ, i.e.
given by the boundary condition at x = L. Its (−)
component yields the renormalized fugacity as χ(L) =
Z(−)(0, L), Eq. (72). Referring for the details to Ap-
pendix C 3, we give below only the final result

χ(L) = erf
(
χ̃
√
πL
)
. (83)

For L → ∞ the renormalized fugacity exponentially ap-
proaches χ → sign(χ̃) = ±1, indicating topologically
trivial and non-trivial phases correspondingly. In turn,
the conductance evaluated with the help of relation (9)
takes the form

g(L) = 4

√
g

πL
e−πg χ̃

2L/2ξ̃. (84)

We see that the average localization length, defined as

ξ =
2ξ̃

πg χ̃2
=

1

πχ̃2
, (85)

diverges towards the critical point χ̃ = 0, resulting in
the critical delocalized state with g(L) ∼ 1/

√
L. At the

same length scale ξ the mean topological number χ(L),
Eq. (83), approaches its quantized values ±1. The corre-
sponding flow diagram on (g(L), χ(L)) plane is qualita-
tively identical to the one in the class D shown in Fig. 6.

VI. SCATTERING THEORY APPROACH

In this section we discuss a relation of the SUSY parti-
tion function to the scattering matrix approach for meso-
scopic wires. More precisely, we establish a formal equiv-
alence of Z(φ,L) to the generating function of transmis-
sion eigenvalues for the wire of finite length L connected
to external leads. In classes AIII and DIII, this enables us
to get additional insights on localization/delocalization
phenomena in topological 1d wires which go beyond the
studies of conductance and average topological number.
This section contains only the detailed statement of our
results while its derivation is relegated to Appendix D.

We start with a summary of the relevant definitions
made in previous sections. Our main object of study, the
partition sum Z(φ), was defined as the disorder averaged
ratio of the fermionic vs. bosonic determinants,

Z(+)(φ) =

〈
ZF (φ1)

ZB(φ0)

〉
=

〈
det1/ν (i0+τ̂ −H(φ1))

det1/ν (i0+τ̂ −H(−iφ0))

〉
.

(86)
The phase dependent Hamiltonian here is the result of
non-local gauge transformation,

Hss′(φ) = e−iφs ĵSHss′e
iκφs′ ĵS , κ = ±1, (87)

where the sign κ = +1 for class D and κ = −1 (i.e. the
chiral gauge transform) is to be chosen for other classes
(AIII, BDI and DIII). For Z2-insulators τ̂ = τ3 and
ν = 2. In the case of Z-insulators, τ̂ = 1 and ν = 1.
The appearance of 1/ν power stems from the doubling
procedure which was required for the proper construction
of the path integral in the case of BdG classes D and
DIII. The generator ĵS is related to the conserved current
which choice depends on the symmetry class. The phase
φs = 0 for sites with s ≤ 0 and φs = φ if s ≥ 1. For
the lattice model with the nearest neighbor hopping the
phase dependent part of H(φ) is localized on a single link
0↔ 1. The generator jS of the symmetry current reads

ĵS = P, classes AIII, BDI;

ĵS = τ cc
1 , class D; (88)

ĵS = Pτ cc
3 , class DIII.

Here P always denotes the parity operator, {P,H}+ = 0,
and τ matrices operate in charge-conjugation space. The
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’minus’ component of the partition sum relevant for Z2-
insulators will be discussed later.

The partition sum (86) cast into the language of su-
persymmetric functional field integral was studied above.
Our goal here is to relate Z(φ) to the scattering matrix
of the disordered wire. More precisely, we assume that
the system is now open to the external world rather than
closed into the ring, meaning that the wire is connected to
left/right leads. Then for any given realization of disor-

der potential the scattering (Ŝ) and transfer (M̂) matri-
ces of dimension 2N ′×2N ′ can be defined with N ′ being
the number of scattering channels. For classes AIII, BDI
and D we have N ′ = 2N where the factor 2 is due to
sub-lattice (AIII) or particle-hole index (if classes BDI
and D refer to spinless fermions). In the spinfull case
and for class DIII one has N ′ = 4N due to spin and p/h
quantum numbers. With the use of DMPK theory both
Ŝ and M̂ can be reduced to the canonical form13–15. For
the transfer matrix this representation takes the form

M̂ =

(
V

V ′†

)(
coshλ sinhλ
sinhλ coshλ

)(
U ′

U†

)
, (89)

where λ = diag(λ1, . . . , λN ′) is the set of so-called Lya-
punov exponents and U, V, U ′, V ′ ∈ U(N ′) are unitary
matrices. Each exponent λk defines the transmission co-
efficient t2k = 1/ cosh2 λk of the k-th transport channel.

Note that the flux conservation condition, M†σRL3 M =
σRL3 , which stems from the hermicity of the underlying

Hamitonian Ĥ, is met by such form of M̂ . The presence
of other non-unitary symmetries (time-reversal, particle-
hole or parity) in the system puts additional constrains

on the transfer matrix M̂ . They are specified by the
basis dependent matrices UT , UC and P . To proceed
one should augment original spinors by the left/right
grading, Ψ = (ψR, ψL, ψ̄

T
L , ψ̄

T
R), to define the scattering

states. This in turn requires the corresponding extension
of the two symmetry matrices. Namely, UT = σRL1 ⊗ UT
becomes the proper matrix for time-reversal symmetry
and P = σRL1 ⊗ P should stand for the parity oper-
ator. Then time-reversal and particle-hole symmetries
require UT M̂ U−1

T = M̂∗ and UCM̂ U−1
C = M̂∗, respec-

tively, while the parity symmetry implies PM̂ P = M̂ ,
see e.g. Ref. [13].

In application to the DMPK decomposition the chi-
ral symmetry in Z-classes leads to relations U ′ = U†P
and V ′ = V †P . Besides that in chiral class BDI as well
in class D it is advantageous to work in Majorana ba-
sis where the particle hole symmetry is the transposition
(HT = −H) with UC = 1. This reduces all rotation
matrices to orthogonal ones, {U, V, U ′, V ′} ∈ SO(N ′). In
class DIII the ancestor BdG Hamiltonian has the symme-

try matrices UC = σph
1 ⊗ 1sp, UT = 1ph ⊗ σsp

2 and P =
UCU

−1
T . The choice of Majorana representation trans-

forms them to UC = 1 and P = UT = σph
3 ⊗σ

sp
2 . In such

basis channels’ transformations V,U ′ become orthogonal
matrices, {V,U ′} ∈ SO(N ′), defining the other two rota-
tions according to V ′T = P V P and UT = P U ′P . It is

worth mentioning here that the eigenvalues of any trans-
fer matrix, e±λk , always occur in inverse pairs. Moreover,
in class DIII they are 2-fold degenerate pairs (Kramers’
degeneracy).

The symmetries of M̂ listed above are strictly valid
only at zero energy. Hence, when evaluating the deter-
minant of the inverse Green’s function G−1

φ = iδτ̂−H(φ),
we have to assume that a symmetry breaking term iδτ̂
is present only in the leads. This means that δs ≡ 0
for cites with 0 ≤ s ≤ L (inside the wire) and δs → 0+

otherwise. With such regularization at hand det(G−1
φ )

is expressible via the set of Lyapunov exponents {λk}.
Following Nazarov28 we have accomplished this program
using the method of quasiclassical Green’s functions with
the ’twisted’ boundary conditions in the leads. The de-
tails of the calculations are presented in Appendix D,
here we proceed further with the discussion of results.

For two Z-classes we have found

Z(φ) =

〈
N ′∏
k=1

cosh(λk + iφ1)

cosh(λk + φ0)

〉
, (90)

while for Z2 topological wires the analogous ’plus’ parti-
tion sum reads

Z(+)(φ) =

〈
N ′∏
k=1

(
cosh(λk + iφ1) cosh(λk − iφ1)

cosh(λk + φ0) cosh(λk − φ0)

)1/2
〉
.

(91)
In order to extract the physical observable we introduce
the generating function (GF)

F(φ0) = ∂φ1Z
(+)(φ)

∣∣
φ1=−iφ0

(92)

= ν−1〈tr((−∂φ1H)Gφ1)〉
∣∣
φ1=−iφ0

,

where the very last equality follows directly from
Eq. (86). We see that GF is the zero energy expectation
value of the symmetry current defined on a link (0, 1)

with the help of the operator ÎS = −∂φ1
H(φ1). It is

worth mentioning here that due to gauge invariance the
position of the source φ0 can be shifted to any link. In
this way one can define the current ÎS at each point of
the wire. Thus obtained ÎS is the conserved Noether’s
symmetry current and its average value is some analyt-
ical function of φ0 which is independent of the actual
choice of the link.

Using now Eqs. (90, 91) we find

F(φ0) = i

N ′∑
k=1

〈
tanh(φ0 + λk)

〉
, Z -classes. (93)

F(φ0) = i

N ′∑
k=1

〈
sinh 2φ0

cosh 2λk + cosh 2φ0

〉
, Z2 -classes.

Following further the recipe (9) we first of all check that

g(L) = −iF ′(0) =

N ′∑
k=1

〈
1

cosh2 λk

〉
(94)
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is the (thermal) conductance at scale L, as expected. In
application to the SUSY σ-model calculations such proce-
dure works for three classes with the P -symmetry: AIII,
BDI and DIII. In class D the low-energy field theory
does not have the continuum phase φ1 in the fermionic
sector and the evaluation of the generating function F
introduced in Eq. (92) becomes problematic. However,
by setting φ1 = 0 one finds from Eq. (90) the series ex-
pansion

Z(+)(φ0, φ1 = 0) = 1 +
1

2
g(L)φ2

0 +O(φ4
0), (95)

which proves that Eq. (44) is the conductance in this
symmetry class.

As for the topological number χ, we start from Z-
insulators. According to the definition (9) we find

χ(L) =
1

2
ImF(0) =

1

2

N ′∑
k=1

〈
tanhλk

〉
(96)

In the trivial AI phase the number of positive and neg-
ative λ’s is equal and hence χ = 0. In the tAI phase all
Lyapunov exponents satisfy |λn| � 1 and the topological
number approaches an integer. In this phase the num-
ber of positive λ’s does not coincide with the number of
negative ones. An integer χ changes by ±1 if any of λ’s
changes sign when crossing the line of quantum phase
transition. Exactly at the transition point the minimal
Lyapunov exponent is zero, λmin = 0, and hence χ takes
a half-integer value.

The situation is more intricate for Z2-wires where we
have to know Z− partition sum to find the topological
number χ. In class D one can identify

Z(−) = Z(+)(φ0 = 0, φ1 = π/2), (97)

as the partition function of a kink’s configuration. The
proof can be found in Appendix D 2. With the use of
Eq. (90) this argument leads to:

χ(L) =
〈 N ′∏
k=1

tanhλk

〉
. (98)

In the class DIII we have obtained the same result with
the only difference that the product now is taken over
N ′/2 = 2N Lyapunov exponents, where each Kramers’
degenerate eigenvalue λk is taken into account only once
(cf. Appendix D 3).

We note that Eqs. (96) and (98) can be written in the
basis independent form,

χ(L) =
1

2
〈tr(r̂P )〉, classes AIII, BDI; (99)

χ(L) = 〈det(r̂)〉, class D; (100)

χ(L) = 〈Pf(r̂P )〉, class DIII, (101)

where r̂ is the reflection matrix of the wire. Deep in the
localized phase, L� ξ , the average topological number
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FIG. 7. Average density of Lyapunov exponents ρ(φ) in the
class AIII disordered wire in the case of χ̃ = 0 shown for
L/ξ̃ = 1 (weak localization — grey line), L/ξ̃ = 4 (black line)

and L/ξ̃ = 32 (strong localization — solid read line) and in

the case of χ̃ = 1/2 for L/ξ̃ = 32 (dashed read line).

χ saturates to integer value. In this limit it coincides with
the topological number Q introduced by Beenakker and
co-workers43. Relations (99-101) follow from the DMPK
decomposition of the scattering matrix

Ŝ =

(
U

V

)(
tanhλ (coshλ)−1

(coshλ)−1 − tanhλ

)(
U ′

V ′

)
,

which gives for the reflection matrix r̂ = U tanhλU ′. In-
deed, employing the symmetry constrains discussed pre-
viously we can state that r̂P = U tanhλU† in classes
AIII and BDI and thereby Eq. (99) reduces to (96). In
class D one has detU = detU′ = 1, by construction, so
that Eq. (100) is in agreement with Eq. (98). Finally,
in class DIII there is a basis where the parity operator

should factorize into the product P =
⊗2N

k=1 Σy where in
the k-th block the corresponding Lyapunov exponent λk

is double degenerate. Hence r̂P = U
(⊗2N

k=1 λkΣy

)
UT

and the Pfaffian of this antisymmetric matrix simplifies
to Eq. (98) where one substitutes N ′ → N ′/2 = 2N .

The generating function F(φ0) can be used to recover
the average density of Lyapunov exponents29,

ρ(−φ) =

N ′∑
k=1

〈
δ(φ+ λk)

〉
=

1

2π

(
F(φ− iπ/2)−F(φ+ iπ/2)

)
. (102)

From our SUSY calculations ρ(φ) is available analytically
in two symmetry classes, AIII and DIII. In the class AIII
disordered wire, using the Poisson resummation formula,
we have obtain from Eq. (18) the following result,

ρ(φ;L) =
ξ̃

4L
+
∑
n>0

(−)n
e−π

2n2ξ̃/L

2π2n

× cos
(
2πn(φξ̃/L− χ̃)

)
sinh

π2nξ̃

L
. (103)
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The plot of this density, which shows the typical crystal-
lization of Lyapunov exponents, is shown in Fig. 7. We
note the periodic dependence on χ̃. At χ̃ = n + 1/2 the
central peak is located at φ = 0 signaling the delocalized
critical state. In the above result one should assume that
the phase variable is limited to φ ∈ (−NL/ξ,NL/ξ),
where N is the number of channels.

In the class DIII, using Eq. (82), one finds for the two
minimal Lyapunov exponents the following average dis-
tribution

ρ(φ;L) = 2

∫
dl0
π2

sinhπl0
l0

cos(2l0φ0)

× cos

(√
2πg χ̃ l0 ×

L

ξ̃

)
ε−l

2
0L/ξ̃, (104)

which is normalized to
∫
ρ(φ;L)dφ = 2. To quantify

the crossover from the weak to strong localization in
this distribution it is useful to introduce the renormal-
ized bare fugacity v = χ̃

√
2πg. The average localization

length (85) then reads as ξ = 4ξ̃/v2, which is paramet-

rically longer than ξ̃ in the limit v � 1. Figure 8 shows
that at L � ξ the ’crystallization’ of two minimal Lya-
punov exponents occurs, with the most probable φ’s be-
ing ±L/ξ∗. Interestingly, the new length scale, ξ∗ = ξ̃/v
(typical localization length), is parametrically different
from ξ (the average localization length) if v � 1. In
the localized regime the length scale ξ∗ is defined by
〈ln g(L)〉 ' −L/ξ∗. The main contribution to the av-
erage of conductance, 〈g(L)〉 =

∫
dφ ρ(φ;L), however,

come from the tails of the distribution ρ(φ;L) around
φ = 0 resulting in the different length scale ξ for the
exponential decay 〈g〉 ∼ e−L/ξ, such that in the close
proximity to criticality one has ξ � ξ∗. The same con-
clusion has been reached in Ref. 14 on the basis of DMPK
approach. Equation (104) also shows that for v = 0 the
maximum of the distribution is always located at φ = 0,
corresponding to a perfectly transmitting channel, t = 1.
This is the origin of the delocalization in the absence of
kinks. On the contrary, at χ̃ 6= 0 and large L the perfect
transmission is exponentially suppressed, signifying the
localization.

VII. COMPARISON TO 2d

A. The Z-insulator classes: A,C, D

Historically, the first tI under consideration was the 2d
integer quantum Hall effect. The importance of the static
disorder in IQHE class A tI was emphasized right from
the beginning (the reason being that the singular spectral
of the clean bulk Landau level would not sit comfortably
with observed data). The interplay of topological quan-
tization and Anderson localization in the system found
a powerful description in terms of Pruisken’s low energy
field theory19 already in 198x. In its subsequent super-
symmetric formulation51 the Pruisken theory is described
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FIG. 8. Average density of two minimal Lyapunov exponents
ρ(φ) in the class DIII wire shown for the bare value of the

renormalized fugacity v = 0.2 (see the text) and L/ξ̃ = v, 1, 8

(grey, black and read lines, resp.). In the limit L � ξ � ξ̃
(strong localization — red line) the minimal exponents ’crys-
tallize’ around values ±L/2ξ∗.

by the effective action,

S[Q] =
1

8

∫
d2x [−g̃ str(∂µQ∂µQ) + χ̃εµνstr(Q∂µQ∂νQ)] ,

(105)

where g̃ = σ0
xx and χ̃ = σ0

xy are the bare ( Drude) values
of longitudinal and Hall conductivities, respectively and
Q = Tτ3T

−1 takes values in the super-Riemannian space
U(2|2)/U(1|1)×U(1|1).

The Pruisken theory shows striking parallels to that
of the 1d class Z – tI’s discussed above: (i) the theory
assumes the form of a nonlinear σ-model containing a
topological θ-term (the second term in the action). (ii)
Upon increasing length scales, the two parameters in the
action renormalize according to Eq. (1). (iii) The renor-
malization of the topological parameter χ is driven by
a proliferation of topological excitations in the system,
which in 2d are instantons on the fermionic target space,
Qff ∈ U(2)/U(1)×U(1) ' S2, the two-sphere. These ex-
citations assume the role of the ‘phase’ windings’ in the
1d context. (iv) For generic values χ̃ /∈ Z + 1

2 , the flow
towards an insulating configuration g = σxx = 0 implies
a restoration of the full symmetry under G = U(2|2)
in the bulk. At the same time, the θ-term at its fixed
point coupling χ ∈ Z becomes a boundary action of
Wess- Zumino type51, which describes the gapless propa-
gation of boundary modes. (v) The observables (g, χ) can
be extracted from the theory by coupling to topological
sources, Pruisken’s background field method19.

However, unlike the 1d Z-systems, the critical physics
of the IQHE system has not been quantitatively de-
scribed beyond the weak coupling (large g) perturbative
regime. The theory describing the QH fixed point, must
be conformally invariant, a feature the Pruisken model
lacks. One therefore expects a metamorphosis towards a
conformally invariant fixed point theory along the flow
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on the (g,Z + 1/2) critical surfaces. However, both the
fixed point theory and the conversion mechanism were
not identified so far.

The situation is different in the case of the class C
topological insulator. This system, too, is described by
a theory with Pruisken type action (105), the difference
lying in the target space which now is OSp(2|2)/U(1|1).
All points (i)-(v) above remain valid as they stand, with
the added feature that the critical point is under con-
trol: it has been shown10 that the class C quantum Hall
transition belongs to the percolation universality class,
which implies that its CFT is under control. By con-
trast, the class D system, another 2d class Z topological
insulator, is not fully understood: as discussed above the
class D field manifold contains two disjoint sectors. In
2d, the ensuing Z2 leads to the emergence of Ising type
criticality. It is believed23, that this leads to the forma-
tion of a tri-critical point separating a topological and a
non-topological insulator phase, and a (thermal) metal
phase. For further discussion of this system, we refer to
the literature23,52

B. The Z2-insulator classes: AII, and DIII

Above we found that the 1d insulators of type Z and
Z2, respectively were different in the nature of their topo-
logical structures: smooth instanton excitations vs. topo-
logical point defects. A similar dichotomy appears to be
present in 2d. While the class Z quantum Hall insulators
of class A, C, D admit instantons as discussed in the pre-
vious subsection, a pioneering study20 of Fu and Kane
(KF) on the Z2 spin quantum Hall effect suggests that
vortices with the point-like singularity in the middle are
the relevant topological excitations of the system. The
role of the θ-term is taken by a contribution to the action
ln χ̃×nv, where nv is the number of vortices. At critical-
ity, the vortex fugacity vanishes χ̃→ 0, and the resulting
zero-vortex theory, 2d nonlinear σ-model belonging to
the symplectic (AII) symmetry class exhibits delocalized
behavior, expected of the critical system. The situation
is a little more complicated due to the fact that a 2d
system with vortices admits a Kosterlitz-Thouless tran-
sition. The analysis of KF indeed suggests that the KT
transition points are positioned relative to the χ̃→ 0 axis
in such a way as to extend the metallic critical surface
to a metallic phase (for further discussion of this point,
we refer to the original reference [20]). Further, the KF
analysis is based on a replica framework, in which the
vortices are phase windings between select replicas. In
view of the non-perturbative nature of these excitations,
an adaption of the approach to the mathematically more
rigorous framework of supersymmetry seems worthwhile.
However, the topological structure of the corresponding
supersymmetric field manifold, does not seem to support
vortices, at lest not in the most obvious sense. Further
work is required to better understand this point. In this
context, it is worth mentioning the pivotal role of vor-

tices played in metal-insulator transition governed by the
topological Anderson localization in the two-dimensional
disordered fermionic systems of chiral symmetry classes,
as it was recently suggested by König et al.21 We finally
note that the 2d DIII system — the time reversal in-
variant but spin rotation non- invariant Z2 topological
superconductor – has not been addressed so far. How-
ever, the structure of its field manifold suggests that as
in class AII topological point defects will be present.

We conclude that the list (i)-(iv) of 1d–2d analogies
formulated above essentially generalizes to the 4 Z2 sys-
tems. The main difference between the Z and the Z2

insulators is that the role of smooth instantons is taken
by point defects, and that of field theoretical θ-terms by
fugacity terms. Without further discussion, we also note
that the smooth/point-like dichotomy pertains to the re-
alization of the topological sources, required to read out
observables.
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Appendix A: Field theory of Z-insulators

We outline here the derivation of the field theory ac-
tions for classes AIII and BDI and discuss the self-
consistent Born approximation (SCBA).

1. Class AIII

The supersymmetric action of the N -channel disor-
dered quantum wire corresponding to the microscopic
model with the Hamiltonian (2) written in terms of the
spinor ψ = (ψ+, ψ−),

S = −
∑
s

(
µ ψ̄−,sψ+,s + t ψ̄−,s−1ψ+,s + h.c.

)
+ Sdis,

Sdis = −
∑
s,kk′

(
ψ̄s+1,kR

kk′

s+1,sψs,k′ + h.c.
)
, (A1)

where ψs = ψ+,s/2 for s even and ψs = ψ−,(s−1)/2 for s

odd. Averaging e−Sdis over the Gaussian fluctuations of
disorder (3) one obtains the effective action containing
the spatially local quartic term,

S̃dis =
2w2

N

∑
s

str
(
g++
s g−−s

)
, (A2)
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where we have introduced bilinears gαβs =
∑
k ψα,s,k ⊗

ψ̄β,s,k. This term can be decoupled with the use of Hub-
bard-Stratonovich transformation by introducing two
auxiliary 2×2 matrix fields Q±s = Q1,s± iQ2,s operating
in the bf-space. Integrating further over the ψ-fields, the
partition sum assumes the form Z =

∫
DQ± exp(−S[Q]),

where

S[Q] =
N

2w2

∑
s

str(Q+
s Q
−
s ) + str ln

(
i0−Q+ −ĥ+

−ĥ− i0−Q−

)
.

(A3)

Here ĥ± are block matrices of the disorder independent
Hamiltonian which in momentum space become h±(q) =
µ+ te±iq.

Derivation of the sigma-model proceeds by subjecting
the effective action S[Q] to the saddle point analysis and
identifying the soft Goldstone modes around the saddle
point. Saddle point equations are known to be equivalent
to the self-consistent Born approximation (SCBA) with
the saddle point playing the role of the self-energy. In
the present case they can be easily resolved by the ansatz
Q± = −iΣ0σ0, where Σ0 ∈ R. The solution of the SCBA
equation,

−iΣ0 = w2 tr 〈s|(iΣ0 − Ĥ0)−1|s〉, (A4)

is analyzed in the next subsection. Here Ĥ0 = ĥ+σ+ +

ĥ−σ−, and the trace is taken with respect to the chi-
ral space. Solving this equation, results in Σ0(µ/t, w/t),
which is a function of microscopic parameters in H0 and
the disorder strength w.

To identify the soft modes we substitute iQ+
s = Σ0Ts

and iQ−s = T−1
s Σ0 to find that

S[T ] = str ln

(
iΣ0T −ĥ+

−ĥ− iT−1Σ0

)
= str ln

(
−iΣ0 ĥ+ + T−1[ĥ+, T ]

ĥ− −iΣ0

)
, (A5)

where the last equality results from the gauge trans-
form of the sdet. Notice that for a uniform in space
T -field the action S[T ] is extremal and thus GL(1|1) is
the Goldstone manifold of our problem and the field Ts,
when slowly varying in space, is the soft-mode fluctua-
tion. One also observes that S[TLTT

−1
R ] = S[T ] which

shows that the full symmetry group of the initial prob-
lem is G = GL(1|1) ⊗ GL(1|1), which is then broken to
G/GL(1|1) after disorder averaging.

At the next step we expand the action S[T ] in a gra-
dient ∂xT (x) assuming this field is changing slowly on
the lattice scale and thus passing to the continuum limit
s → x. To deal simultaneously with momentum and
coordinate dependence of operators under the str we
use the Moyal formula (’star’ product) (A ? B)(x, q) =

A exp{i(
←−
∂x
−→
∂q −

←−
∂q
−→
∂x)/2}B to evaluate the convolution

of any two operators. Expanding the ’star’ product in
gradients we get

T−1[h+, T ] ' −iv+(q)T−1∂xT +O(∂3
xT ) (A6)

with the complex ’velocities’ v±(q) = ∂qh±(q)
∣∣
∆=t

=

±it e±iq. The further expansion of S[T ] up to second or-
der in the field Φx = T−1∂xT gives the low-energy field
theory30 with the action (13).

The microscopic value of the bare localization length
ξ̃ is expressed in terms of velocity correlation function.
Its exact value is of no importance for our consideration.
In the limit of the weak disorder, w � t ∼ µ, one can
estimate ξ̃ ∼ Na(t/w)2 where a is a lattice constant.

For the bare topological coupling constant one finds
χ̃ = i〈GR−+(q)v+(q)〉q (with GR = (iΣ0 − Ĥ0)−1 being
the retarded SCBA Green’s function), which can be also
written in the symmetrized form

χ̃ =
i

2
〈tr(GR(q)P∂qH)〉q. (A7)

It shows the relation of the bare topological topological
number to the fictitious ’chiral’ persistent current, de-
fined by the operator ĵc(q) = P v̂(q).

With the use of the q-representation the SCBA,
Eq. (A4), takes the form

1 = 2w2

∫ π

−π

dq

2π

1

Σ2
0 + t2 + µ2 + 2µt cos q

. (A8)

Performing the integration with the help of the residue
theorem in a complex plane of a variable z = eiq, the
SCBA is reduced to 1 = 2w2/D, where

D =
(
Σ2

0 + (t− µ)2
)1/2 (

Σ2
0 + (t+ µ)2

)1/2
. (A9)

From here Σ0 can be explicitly found by resolving the
quadratic equation. In the limit of small staggering and
relatively weak disorder, i.e. at |t− µ| � w � t, it reads
Σ0 = 1/2τ ' w2/t. Introducing the velocity v = at

one finds for the bare localization length ξ̃ ∼ Nvτ ∼
Na(t/w)2 as stated in the main text.

Finally, substituting the SCBA Green’s function into
Eq. (A7), one obtains the bare topological number

χ̃ =
N

2

(
1 + (t/w)2 −

√
1 + t2µ2/w4

)
. (A10)

In the limit of small staggering it is simplified to

χ̃ =
N

2

(
1 +

(t− µ)t

w2

)
, |t− µ| � w � t. (A11)

This bare topological number χ̃ can be used to find the
critical lines/surfaces of phase transition from the equa-
tion χ̃(µ, t, w) = n+ 1/2 with n ∈ Z. The corresponding
lines are plotted in Fig. 4 for N = 3.

2. Class BDI

Derivation of the sigma-model action in the class BDI
system proceeds along the same lines as for the class AIII.
We start from the Hamiltonian (23) and transform it to
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the ’chiral’ basis where it has the block off-diagonal form,

Ĥ = Ĥ0 + V̂ σ1. Here Ĥ0 = ĥ+σ+ + ĥ−σ− and the

operators ĥ± in the q-space read ĥ±(q) = −(t+ cos q)±
i∆ sin q.

To construct the path-integral representation of Z we
consider the Gaussian action S[ψ, ψ̄] = ψ̄(i0 − Ĥ)ψ and
following the doubling procedure detailed in sec. V C rep-
resent the former in the form, S[Ψ] = 1

2 Ψ̄(i0 − Ĥ)Ψ,

where in class BDI the spinor Ψ̄ = (ψ̄, σbf
3 ψ

T ), Ψ = τΨ̄T

and the charge-conjugation matrix τ = P0⊗τ1+P1⊗iτ2.
Subsequent disorder averaging over the Gaussian random
matrices V̂s at each site s produces the quartic term

S̃dis =
w2

2N

∑
s

str (σ1gs)
2
, gs =

∑
k

Ψk
s ⊗ Ψ̄k

s . (A12)

This quadratic in gs form can be now decoupled by four
2 × 2 super-matrix fields P1,2 and Q± acting in the cc-
space, which is useful to combine into the single matrix
R with the structure in the chiral space,

R =

(
Q+ P1

P2 Q−

)
. (A13)

By doing so we obtain the following representa-
tion for the disorder averaged partition sum, Z =∫
D(Ψ;R) exp (−S[Ψ, R]) with the action

S[Ψ, R] =
N

16w2
str(σ1R)2 − i

2
Ψ̄(i0− Ĥ0 −R)Ψ. (A14)

This action is gauge invariant under the T -rotations from
the super-group G = GL(2|2) operating in the cc space.
Namely, the transformation of the spinors

Ψ→
(
T̄−1

T

)
Ψ, Ψ̄→ Ψ̄

(
T−1

T̄

)
, (A15)

with the simultaneous transformation of matrix fields,
Q+ → TQ+T̄ and Q− → T̄−1Q−T

−1 (we remind that
the involution is defined as T̄ = τTT τT ) leaves the action
S invariant.

Next we perform the Gaussian integral over the Ψ-
fields and reduce the partition function to the form Z =∫
DR exp(−S[R]), where

S[R] =
N

16w2
str(σ1R)2 +

1

2
str ln(i0− Ĥ0 −R). (A16)

Extremizing this action, one obtains the saddle pointR =
Σ̂ ≡ iΣ0+Σ1σ1, where two components of the self-energy
Σ0,1 ∈ R are to be found from the SCBA equation,

iΣ0 = w2tr〈s|(i0− Ĥ0 − Σ̂)−1|s〉, (A17)

Σ1 = w2tr〈s|(i0− Ĥ0 − Σ̂)−1σ1|s〉. (A18)

We give its solution in the following subsection. The self-
energy Σ̂ is just one particular saddle of the action S[R].
Other possible extrema follow from the gauge invariance

of the action under T -rotations. They generate the man-
ifold of saddle points parametrized as

R =

(
iΣ0 T T̄ Σ1 1

cc ⊗ 1bf

Σ1 1
cc ⊗ 1bf iΣ0 (T T̄ )−1

)
, (A19)

The super-matrix T is an element of the linear super-
group G = GL(2|2). We see, however, that the subgroup
of matrices T ′ satisfying the constraint T̄ ′T ′ = 1 does
not affect the trivial saddle point. All matrices T ′ form
the complex supergroup H = OSp(2|2). Factoring out
this subgroup we conclude that essential rotations are
T ∈ G/H = GL(2|2)/OSp(2|2), which is the manifold
of the soft (Goldstone) modes of the supersymmetric σ-
model in the BDI symmetry class.

Similar to class AIII the final form of the σ-model (28)
follows from the gradient expansion of the action S[T ]
with a smoothly varying matrix field T (x) where

S[T ] = (A20)

1

2
str ln

(
−iΣ0 ĥ+ + Σ1 + ∆h+

ĥ− + Σ1 + ∆h− −iΣ0

)
.

Here we have defined ∆h+ = T−1[ĥ+, T ] and ∆h− =

T̄ [ĥ−, T̄
−1], cf. Eq. (A5). As a result of the gradient

expansion one obtains the action (28) which is the func-

tional of the field Q = T T̄ with the same estimate for ξ̃
and the same formal result (A7) for the bare topological
number as in the case of class AIII system.

We now discuss the SCBA and derive the bare topo-
logical coupling constant χ̃ for the model of disordered
multi-channel p-wave superconducting wire. Transform-
ing the self-consistent Green’s function to the momentum
representation, using the explicit model form of Ĥ0 and
introducing the notation µ̃ = µ−Σ1 one obtains two cou-
pled SCBA equations (we limit ourselves to the special
point t = ∆ only)

Σ0 = 2w2

∫ π

−π

dq

2π

Σ0

Σ2
0 + µ̃2 + t2 + 2µ̃t cos q

,

Σ1 = 2w2

∫ π

−π

dq

2π

µ̃+ t cos q

Σ2
0 + µ̃2 + t2 + 2µ̃t cos q

. (A21)

After q-integration, with the use of the function D de-
fined above in Eq. (A9) (where the substitution µ → µ̃
is assumed), these equations are reduced to the coupled
system of algebraic ones,

Σ0 =
2w2Σ0

D
, (A22)

Σ1 =
w2

µ− Σ1

(
1 +

(µ− Σ1)2 − Σ2
0 − t2

D

)
.

It follows from the 1-st equation that D = 2w2, which
then can be used to express Σ0 via Σ1 using the 2-
nd equation. After these steps, employing the relation
D = 2w2 once again, one arrives to the quartic polyno-
mial equation for Σ1 which can be solved numerically.
The self-energy Σ̂ can be further used to find the SCBA
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topological number χ̃. For the given model of p-wave
disordered wire we have found from Eq. (A7)

χ̃(w, µ) =
N

2

(
1 +

t2 − Σ2
0 − (µ− Σ1)2

2w2

)
. (A23)

The above results can be simplified for the chemical
potential in a close vicinity of the band edge, |µ− t| � t,
and at weak disorder, w � t. In this limit one can set
D̃ ' 1. By defining the scattering rate as 1/τ = Nw2/t
and the detuning from criticality µ̄ = µ−t, we have found

Σ0 =

√
3

2

(
1

τ
− µ̄

3

)1/2(
1

τ
+ µ̄

)1/2

,

Σ1 = − µ̄
2
− 1

2τ
(A24)

in the range µ̄ ∈ (−1/τ, 3/τ) which is the interval of a
non-vanishing mean DoS on the level of SCBA. Under
the same assumptions the result (A23) for the bare topo-
logical number is simplified to its approximate value (35)
stated in the main text.

Appendix B: Field theory of class D

1. The Gaussian representation (40)

For the sake of completeness, we here briefly describe
how the symmetries characterizing the Gaussian integral
representation (40) are derived. The starting point is a
‘plain’ Gaussian super integral representation

Z =

〈∫
d(ψ̄, ψ) eiψ̄(G+)−1ψ

〉
, (B1)

where ψ = (ψb, ψf) is a vector comprising bosonic and
Grassmann variables with components ψα = {ψαs,k}. No-

tice that the symmetry HT = −H implies (G+)T =
−G−. To see, how these symmetries entail an effective
symmetry of the integration variables, we write

ψ̄(G+)−1ψ =
1

2
(ψ̄(G+)−1ψ + ψ̄(G+)−1ψ) =

=
1

2

(
ψ̄(G+)−1ψ + (ψ̄(G+)−1ψ)T

)
=

=
1

2

(
ψ̄(G+)−1ψ − ψTσbf

3 (G−)−1ψ̄T
)
≡

≡ Ψ̄

(
(G+)−1

(G−)−1

)
Ψ ≡ Ψ̄G−1Ψ, (B2)

where

Ψ̄ ≡ 1√
2

(ψ̄,−ψTσbf
3 ),

1√
2

Ψ =

(
ψ
ψ̄T

)
. (B3)

In the second line, we used that the number ψ̄(G+)−1ψ is
equal to its transposed, and in the third that the trans-
position of a Grassmann bilinear form ψ̄1(G+)−1ψ1 =

−ψ1T (G+)−1T ψ̄1T introduces an extra minus sign. The
two component structure introduced in Eq. (B3) de-
fines the space of τ -matrices. From the structure of
Ψ and Ψ̄, one reads out the symmetry (41), and that
G−1 = i0τ3 −H.

2. Jacobians

Here we calculate Jacobians on the two parts of the
manifold. To this end we write Q(±) = eWQ̃(±)e−W ,
Eq. (45), and differentiate over parameters. In doing
it we choose to stay near zero Grassmanns for sim-
plicity, since Jacobians are expected to be Grassmann-
independent dQ(±) = [dW, Q̃(±)]+dQ̃(±) and dQ(±)−1 =

[dW, Q̃(±)−1] + dQ̃(±)−1. The metric is given by

dg = −1

8
str
(
dQdQ−1

)
(B4)

= −1

8
str
(

[dW, Q̃][dW, Q̃−1]
)
− 1

8
str
(
dQ̃dQ̃−1

)
Substituting the parametrization (45-47), one finds for
the “plus” manifold

dg(+) = dy2 + sinh2 2y dα2 + 2ηξ sinh2 y (B5)

and therefore

J (+) =
√

Sdetg(+) =
sinh 2y

sinh2 y
= 2 coth y (B6)

In a similar way, for “minus” part of the manifold one
finds

dg(−) = dy2 + sinh2 2y dα2 − 2ηξ cosh2 y. (B7)

The minus sign in the last term implies the opposite sign
of the Grassmann measure.

J (−) =
√

Sdetg(−) =
sinh 2y

cosh2 y
= 2 tanh y (B8)

3. Transfer Matrix

Our goal is to calculate transfer matrix element be-

tween two neighboring grains e−S(Q(α),Q̃(β)), where α, β =
± denote two parts of the manifold, and

S(Q, Q̃) =
1

4

2N∑
k=1

str ln

[
1 +

t2k
4

({Q, Q̃}+ − 2)

]
. (B9)

This operator acts on the two-component spinor wave
function Ψ(Q̃) = Ψ(β)(ỹ), which is assumed to de-
pend only on the radial variable ỹ, but not on the
bosonic angle α̃ or Grassmann variables η̃, ξ̃. The en-
tire angle/Grassmann dependence is thus restricted to
the transfer matrix element and may be integrated out
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explicitly. We thus define the radial part of the transfer
operator as

R(αβ)(y; ỹ) =

∫
dα̃

2π
dη̃ dξ̃ (β)J (β)(ỹ) e−S(Q(α),Q̃(β)),

(B10)
where factor (β) reflects opposite sign of the Grassmann
measure on the (−) manifold. As a result of the angular-
rotational invariance the element Q(α) = Q(α)(y) may
be assumed to be pure radial as well (i.e. taken e.g.
at zero angles). We now substitute such Q(α)(y) and

Q̃(β)(ỹ, α̃, η̃, ξ̃) into the action (B9) and find:

S = g
[
S

(αβ)
0 (y; ỹ, α̃) + η̃ ξ̃ F (αβ)(y; ỹ, α̃)

]
, (B11)

where S
(αβ)
0 is the part of the action which does not con-

tain Grassmanians and g =
∑
k t

2
k � 1. We then expand

egη̃ ξ̃F
(αβ)

to the first order, integrate over Grassmann
variables and obtain

R(αβ)(y; ỹ) = g

∫
dα̃

2π
(β)J (β)(ỹ)F (αβ) e−gS

(αβ)
0 . (B12)

The straightforward, though lengthy, calculation yields:

S
(±±)
0 =

1

4
cosh 2y cosh 2ỹ (B13)

− 1

4
cos 2α̃ sinh 2y sinh 2ỹ − 1

4

' 1

2
(ỹ − y)2 +

α̃2

2
sinh 2y sinh 2ỹ,

and

S
(±∓)
0 = − ln χ̃+ S

(±±)
0 , (B14)

where we have defined the kink fugacity,

χ̃ = ±
2N∏
k=1

(1− t2k)1/2 (B15)

In the limit g � 1 the angular integration is dominated
by the saddle point at α̃ = 0, while the radial one by
ỹ = y. We thus restrict ourselves to the vicinity of these
saddle points, where

F (++)(y; ỹ, 0) = sinh y sinh ỹ cosh(ỹ − y),

F (−−)(y; ỹ, 0) = − cosh y cosh ỹ cosh(ỹ − y),

F (+−)(y; ỹ, α̃) = cosh ỹ sinh y sinh(ỹ − y)

− α̃2

2
sinh 2y sinh 2ỹ +O(α̃3),

F (−+)(y; ỹ, α̃) = − cosh y sinh ỹ sinh(ỹ − y)

− α̃2

2
sinh 2y sinh 2ỹ +O(α̃3),

and in the off-diagonal terms we kept a term ∝ α̃2.
We first evaluate α̃ integral in the Gaussian approxi-

mation near α̃ = 0:

R(++) =

√
g

2π

√
coth ỹ

coth y
cosh(ỹ − y)e−g(ỹ−y)2/2.

Integrating over ỹ in the saddle point approximation
yields unity in agreement with SUSY normalization.
Similar calculation works for R(−−). Going beyond this
approximation, requires expanding pre-exponential fac-
tors, including wave factions, to second order in δy =
ỹ−y. This leads to standard Laplace-Beltrami operators
1
2 (J (±))−1∂y(J (±)∂y).

We turn now to the off-diagonal parts. The off-
diagonal fermionic F -factors, being calculated at the sad-
dle point α̃ = 0 and ỹ = y yield zero F (±∓)(y; y, 0) = 0.
This is again a manifestation of the SUSY normalization.
One has to go thus beyond the saddle point approxi-
mation, keeping the deviations from the saddle point.
This way one finds for the off-diagonal components of
the transfer operator

R(+−)(y; ỹ) ' −χ̃
√

g

2π
e−g(δy)2/2

[
− 1

2g

1

cosh2 y

+ tanh y δy +
(δy)2

2 cosh2 y

]
, (B16)

R(−+)(y; ỹ) ' −χ̃
√

g

2π
e−g(δy)2/2

[ 1

2g

1

sinh2 y

+ coth y δy − (δy)2

2 sinh2 y

]
, (B17)

where we kept the expansion up to the second order in
δy = ỹ− y. We now consider how these operators act on
the radial wave function

Ψ(±)(ỹ) = Ψ(±)(y) + ∂yΨ(±)(y) δy +O(δy2). (B18)

In view of the relation∫
dỹe−g(δy)2/2(δy)2/

∫
dỹe−g(δy)2/2 = g−1,

the zeroth order term Ψ(±)(y) does not contribute. This
is again a manifestation of SUSY normalization, which
manifests itself as a cancellation of subleading terms
originating from α̃2 and (δy)2. The remaining terms
come solely from ∂yΨ(±)(y) δy and term linear in δy in
Eqs. (B16) and (B17). Upon Gaussian integration over
δy, this yields

R(+−)Ψ(−) = − χ̃
g

tanh y ∂yΨ(−) = − χ̃
g

√
J (−)

J (+)
∂yΨ(−),

R(−+)Ψ(+) = − χ̃
g

coth y ∂yΨ(+) = − χ̃
g

√
J (+)

J (−)
∂yΨ(+).

Introducing continious space derivative as ∂xΨ = Ψs+1−
Ψs = [R̂ − 1]Ψ, one may write in the matrix form:

−ξ̃∂xΨ̂ =

 1
2J(+) ∂yJ

(+)∂y −χ̃
√

J(−)

J(+) ∂y

−χ̃
√

J(+)

J(−) ∂y
1

2J(−) ∂yJ
(−)∂y

( Ψ(+)

Ψ(−)

)
.

(B19)

Notice that Ψ̂ = const manifestly nullifies the right hand
side in accord with the SUSY normalization.
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After the Sutherland substitution: Φ(±) =
√
J (±)Ψ(±)

one finds:

ξ̃∂xΦ̂ =

(
− 1

2∂
2
y + V (+)(y) χ̃

[
∂y −A(−)(y)

]
χ̃
[
∂y −A(+)(y)

]
− 1

2∂
2
y + V (−)(y)

)
Φ̂,

(B20)

where A(±)(y) = ∂y
√
J (±)/

√
J (±) = ∓2λ/ sinh 2y and

V (±)(y) =
∂2
y

√
J (±)

2
√
J (±)

= −λ(λ∓ 1)

2 cosh2 y
+
λ(λ± 1)

2 sinh2 y
(B21)

are modified Pöschel-Teller potentials49 with λ = 1/2.
Equation (B20) may be rewritten in the manifestly su-
persymmetric form (55), (56).

Looking for the “stationary” solutions in the form

Φ̂(y, x) = Φ̂l(y)e−ε(l)x/ξ̃, one finds for the spectrum of
the transfer matrix operator ε(l) = l2/2 + i χ̃ l, where l
labels the eigenfunctions according to their asymptotic
behavior Φ̂l ∼ eily. The supersymmetric form (55), (56)
of the transfer matrix operator insures that the eigen-
functions do not depend on the fugacity χ̃ and are those
of the modified Pöschel-Teller potentials (B21). Their
explicit form is given by49

Φ
(+)
l =

1√
N+
l

2F1

(
1− il

2
, 1− il

2
, 2; 1−z

)
(1− z)3/4z−il/2

Φ
(−)
l =

−i√
N−l

2F1

(
1− il

2
,− il

2
, 1; 1−z

)
(1− z)1/4z−il/2,

where z = 1/ cosh2 y and N±l are l-dependent normal-

ization constants. To find N+
l one should explore the

asymptotic of Φ(+) at y → +∞, which corresponds to
z → +0, where

2F1

(
1− il

2
, 1− il

2
, 2; 1−z

)
∼ Γ(il)

Γ2(1 + il/2)
+

Γ(−il)zil

Γ2(1− il/2)
,

and since z ∼ 4e−2y at y → +∞ one finds

Φ
(+)
l (y) ∼ 1√

N+
l

{
Γ(il)eil(y−ln 2)

Γ2(1 + il/2)
+ c.c.

}
. (B22)

Requiring the asymptotic condition

Φ
(±)
l (y) ∼ cos(ly + δ±l ), (B23)

at infinity with δ±l being some phase shifts, one finds

N+
l =

∣∣∣∣ 2 Γ(il)

Γ2(1 + il/2)

∣∣∣∣2 =
8 tanh

(
πl
2

)
πl3

,

N−l =

∣∣∣∣∣ 2 Γ(il)

Γ
(
il
2 + 1

)
Γ
(
il
2

) ∣∣∣∣∣
2

=
2 tanh

(
πl
2

)
πl

.

where N−l is found in the similar way. We note that the

phase shifts satisfy δ−l = δ+
l + π/2 and hence

Φ
(−)
l (y) ∼ −i cos(ly + δ−l ) ∼ i sin(ly + δ+

l ), y → +∞.

The latter asymptote is consistent with the mutual rela-
tion between two solutions Φ+

l and Φ−l of Pöschel-Teller
potential, namely:

(BΦ
(+)
l )/(−il) ∼ ∂yΦ

(+)
l /(il) ∼ i sin(ly + δ+

l ) ∼ Φ
(−)
l ,

as it should be.

4. Observables

We start by evaluating the measure,

µ(l) = −〈(1, 0)|Ψl〉 =

∫ +∞

0

dy
√
J (+)(y) Φ

(+)
l (y) (B24)

Using the explicit form of Φ(+)(y) and changing the vari-
able of integration to u = tanh2 y, one obtains

µ(l)=
−1√
2N+

l

∫ 1

0

du (1− u)−1−il/2
2F1

(
1− il

2
, 1− il

2
, 2;u

)

=
−1√
2N+

l

× 4

l2
= −

√
π

l tanh πl
2

.

The wave function with the proper initial, i.e. x = 0,
conditions is given by

Ψ(y, x) =

(
1
0

)
+

∫
dl

2π
µ(l)

(
Φ

(+)
l (y)/

√
J (+)

Φ
(−)
l (y)/

√
J (−)

)
e−ε(l)x/ξ̃

Let us first focus on the (−) component and evaluate
the renormalized topological number χ(L) = Ψ(−)(0, L).
Evaluating the limiting value

lim
y→0

Φ
(−)
l (y)/

√
J (−)(y) = −i/

√
2N−l ,

we obtain

χ(L) =

+∞∫
0

dl coth

(
πl

2

)
sin

(
χ̃lL

ξ̃

)
e−l

2L/(2ξ̃). (B25)

In the limit of long system, L� ξ = 2ξ̃ χ̃−2, one finds

χ(L) ' sign χ̃

(
1−

√
ξ

πL
e−L/ξ

)
. (B26)

Therefore the topological number approaches exponen-
tially the quantized limiting value ±1, which indicates
topologically trivial/non-trivial phase.

To evaluate the renormalized conductance we use
g(L) = ∂2

yΨ(+)(y, L)
∣∣
y=0

to obtain

g(L) =
1

4

+∞∫
0

dl l coth

(
πl

2

)
cos

(
χ̃lL

ξ̃

)
e−l

2L/(2ξ̃)

∝ 1√
L
e−L/ξ, (B27)
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in the limit L � ξ. Therefore, unless χ̃ = 0, the con-
ductance is exponentially small, indicating the Anderson
insulator nature of the class D quasi-1d system.

Appendix C: Field theory of class DIII

1. Jacobians

We start by evaluating Jacobians on two disconnected
parts of the group manifold. Following Eq. (73) we

parametrize the group element as T (±) = eW T̃ (±)e−W

and further find the metric on the group in the cho-
sen coordinates. As in class D we choose to stay
near zero Grassmans, since in what follows we will
need only the Grassmann independent part of Jaco-
bians. Using dT (±) = [dW, T̃ (±)]+dT̃ (±) and dT (±)−1 =

[dW, T̃ (±)−1] + dT̃ (±)−1, the metric is given by

dg = −1

2
str
(
dTdT−1

)
(C1)

= −1

2
str
(

[dW, T̃ ][dW, T̃−1]
)
− 1

2
str
(
dT̃dT̃−1

)
For “plus” manifold one finds

dg(+) = dy2
0 + dy2

1 + sinh2 y0

(
dα2 sin2 2ρ+ 4dρ2

)
− 4(1− cos y1 cosh y0)(ηξ + µν)

− 4 sin y1 sinh y0

(
sin 2ρ(eiαηµ+ e−iανξ)

+ i cos 2ρ(ηξ − µν)
)

(C2)

which results in

J (+) =
√

Sdetg(+) =
1

2

sin 2ρ sinh2 y0

(cosh y0 − cos y1)2
(C3)

Here one should regard ρ as an angular variable, while
y0 and y1 are radii. The reason the Jacobian depends
on the angle ρ is the chosen parameterization, where the
commuting angles b, b∗ are treated separately from the
Grassmann ones. Here sin 2ρdρ ≈ 2ρdρ ∼ db∗db can be
understood as a part of the plane angular measure.

In a similar way in the case of “minus” part of the
manifold one finds

dg(−) = dy2
0 + dy2

1 + sinh2 y0

(
dα2 sin2 2ρ+ 4dρ2

)
− 4

(
ηξ + µν − cosh y0

(
e−iy1µξ + eiy1ην

))
(C4)

and the Jacobian reads

J (−) =
√

Sdetg(−) =
1

2
sin 2ρ (C5)

2. Transfer matrix

Our goal here is to evaluate a transfer matrix ele-

ment between two neighboring dots e−S(T (α),T̃ (β)), where
α, β = ± refer to the two disconnected parts of the man-
ifold, and

S(T, T̃ ) =
1

4

2N∑
k=1

str ln
[
1+

t2k
4

(T−1T̃ + T̃−1T −2)
]
, (C6)

which is a discrete version of the continuous action
str
(
∂xT

−1∂xT
)
. Similar to class D, this operator acts

on the wave function Ψ(β)(T̃ ), which in turn is assumed
to be angle-independent. We thus define the radial trans-
fer operator

R(αβ)(y; ỹ) =

∫
dΩ̃(β)J (β)(ỹ, ρ̃) e−S(T (α),T̃ (β)), (C7)

where dΩ̃(β) = β(2π)−2dα̃dρ̃dν̃dξ̃dµ̃dν̃ is the angular
measure. Because of the invariance of the action under
T -rotations the group element T (α) = T (α)(y) may be
chosen to be pure radial and independent on angles α, ρ
and Grassmanns. We now evaluate the action (C6) on

such T (α) and T̃ (β). The result has the structure

S = g
[
S

(αβ)
0 (y; ỹ, Ω̃) + F

(αβ)
2 (y; ỹ, Ω̃) + F

(αβ)
4 (y; ỹ, Ω̃)

]
where S0 contains only commuting variables, while F2 is
bilinear and F4 is quartic in Grassmanns and g =

∑
k t

2
k

is the dot-to-dot conductance. We then expand

e−g(F2+F4) = 1− g(F2 + F4) +
g2

2
F 2

2 (C8)

up to the non-vanishing second order. Because of our
assumption g � 1, only the last term of this expansion
should be retained. We denote 1

2F
2
2 = F × ν̃ξ̃µ̃ν̃, which

happens to be independent of angle α̃. Integrating fur-
ther over Grassmanns one arrives at

R(αβ)(y; ỹ) =
g2

2π

∫
dρ̃(β)J (β)(ỹ, ρ̃) (C9)

×F (αβ)(y; ỹ, ρ̃) e−gS
(αβ)
0 (y;ỹ,ρ̃).

Direct evaluation leads to the following result for the di-
agonal actions,

S
(±,±)
0 =

1

4
cosh y0 cosh ỹ0 (C10)

− 1

4
cos 2ρ̃ sinh y0 sinh ỹ0 −

1

4
cos(y1 − ỹ1)

' (y0 − ỹ0)2 + (y1 − ỹ1)2

8
+
ρ̃2

2
sinh y0 sinh ỹ0,

and the kink’s actions

S
(±,∓)
0 = − ln χ̃ (C11)

+
1

4
cosh y0 cosh ỹ0 −

1

4
cos 2ρ̃ sinh y0 sinh ỹ0

' − ln χ̃+
(y0 − ỹ0)2

8
+
ρ̃2

2
sinh y0 sinh ỹ0.
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Notice that, there is always a strong Gaussian confine-
ment for angle ρ̃ ≈ 0 and non-compact radius ỹ0 ≈ y0.
On the other hand the compact radius is confined for di-
agonal elements ỹ1 ≈ y1, but is not confined at all for
the off-diagonals. In fact the action in this case is alto-
gether independent of compact radii. Due to such con-
finement one may evaluate the diagonal fermionic parts
F (±±)(y; ỹ, ρ̃) at ỹ0 = y0, ỹ1 = y1 and ρ̃ = 0. This yields:

F (++)(y; y, 0) =
1

4
(cosh y0 − cos y1)2

F (−−)(y; y, 0) = −1

4
sinh2 y0. (C12)

Notice that J (+)F (++) = −J (−)F (−−). The rela-
tive minus sign suggests that the Grassmann measure
on the ’minus’ manifold comes with the relative mi-
nus sign with respect to ’plus’ part. Calculating then
ρ̃, and ỹ integrals in the saddle point approximation,
one finds that both diagonal operators are identities,
R(++)(y; ỹ) = R(−−)(y; ỹ) = 1. This is a mani-
festation of SUSY normalization. Going beyond this
approximation, requires expanding pre-exponential fac-
tors, including wave functions, to second order in devia-
tions. This leads to standard Laplace-Beltrami operators
(J (±))−1∂ν(J (±)∂ν), where ν = (y0, y1), on the two sub-
manifolds.

We turn now to the off-diagonal parts. The off-
diagonal fermionic factors, being calculated at the sad-
dle point ỹ0 = y0 and ρ̃ = 0 (and arbitrary y1, ỹ1) yield
zero F (±∓)(y; ỹ, 0) = 0. This is again a manifestation
of the SUSY normalization. One has to go thus beyond
the saddle point approximation, expanding both F (±∓)-
factor and the wave function to the first order in devia-
tions from the saddle point (expanding F (±∓)-factor to
the second order does not help, in view of SUSY normal-
ization, while expanding the wave-function to the second
order does not help in view of F (±,∓)(y; ỹ, 0) = 0). The
only non-zero first order deviation in F (±,∓) is in ỹ0− y0

direction, which is found from

F (−+)(y; ỹ, 0) = −1

4
(cosh ỹ0 − cos ỹ1)

× sinh y0 sinh(ỹ0 − y0),

F (+−)(y; ỹ, 0) =
1

4
(cosh y0 − cos y1)

× sinh ỹ0 sinh(ỹ0 − y0). (C13)

Keeping only the linear variation δy0 = ỹ0− y0 one finds
from here the off-diagonal components of the transfer op-
erator,

R(+−)(y; ỹ) = − χ̃g

4
√
J (y)

e−g(δy0)2/8 δy0, (C14)

R(−+)(y; ỹ) = − χ̃g
4

√
J (ỹ) e−g(δy0)2/8 δy0,

where we have introduced

J (y) =
sinh2 y0

(cosh y0 − cos y1)2
. (C15)

We now consider how these operators act on the radial
wave function Ψ(β)(ỹ). Expanding to the first order in
δy0 and integrating over ỹ0 (Gaussian integration) and
over ỹ1, one finds

R(+−)Ψ(−) = − χ̃(2/πg)1/2√
J (y)

∂y0

∫
dỹ1Ψ(−)(ỹ), (C16)

R(−+)Ψ(+) = −χ̃(2/πg)1/2 ∂y0

∫
dỹ1

√
J (ỹ)Ψ(+)(ỹ).

Notice that if Ψ(+) = const then
∫
dỹ1

√
J (ỹ) = π is ỹ0-

independent and thus R(−+)const = R(+−)const = 0, in
agreement with SUSY normalization. Introducing finally
the space derivative, ∂xΨ = Ψs+1 −Ψs = [R− 1]Ψ̂, one
deduces the transfer equation in the matrix form,

ξ̃∂xΨ̂=

(
−J−1∂ν(J ∂ν) v√

J (y)
∂y0
∫
dỹ1
2π

v∂y0
∫
dỹ1
2π

√
J (ỹ) −∂ν∂ν

)(
Ψ(+)

Ψ(−)

)
,

where ξ̃ = g/2, ν = y0, y1, and v = χ̃
√

2πg. The off-
diagonal operator is differential in non-compact radius
y0 and integral (minus first derivative) in compact ra-
dius y1. After performing the Sutherland transformation,
Φ(+) =

√
JΨ(+) and Φ(−) = Ψ(−), this transfer equation

is reduced to Eq. (81) discussed in Sec. V G.

3. Observables

The measure is given by as

µ(l) = −〈Ψl|(1, 0)〉. (C17)

Here Ψl is the eigenfunction of the transposed transfer
matrix operator, the former playing a role of the ’bra’
vector orthogonal to the ’ket’ state Ψ̂l, as it is not difficult
to verify. One finds

µ(l) =
2il0
l20 + l21

; µ(l0, 0) = −
√

2i/l0. (C18)

The l1 6= 0 components are not affected by kinks and
leads to exponentially decaying with x terms. We thus
focus exclusively on l1 = 0 term. With the help of spec-
tral decomposition (82) one finds

Ψ0(y, L) = (1, 0)T (C19)

+ i

∫
dl0
πl0

eil0y0
[(
J−1/2(y) cos(vl0L/ξ̃)

−i sin(vl0L/ξ̃)

)]
e−l

2
0L/ξ̃.

The fugacity at scale L is given by χ(L) = Ψ(−)(0, L),

χ(L) =

∫
dl0
πl0

sin

(√
2πg χ̃l0L

ξ̃

)
e−l

2
0L/ξ̃ = erf

(
χ̃
√
πL
)
.

(C20)
We keep now the (+) part of the wave function and pro-
ceed with evaluation of the generating function,

F(φ0, L) = ∂φ1
Ψ(+)(2φ,L)

∣∣∣
φ1=−iφ0

(C21)

= 2

∫
dl0
π

1

l0
e2il0φ0 cos(vl0L/ξ̃) e

−l20L/ξ̃.
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Based on the relation (102), it gives the average density
of the Lyaponov exponents, ρ(φ0, L), in accordance with
Eq. (104). To evaluate the conductance one can use two
complementary relations,

g(L) =

∫
dφ0

ρ(φ0, L)

cosh2 φ0

= −i∂φ0F(φ0, L)
∣∣∣
φ0=0

. (C22)

Both representations lead to the result (84),

g(L) = 4

∫
dl0
π

cos(vl0L/ξ̃) e
−l20L/ξ̃ = 4

√
g

πL
e−π χ̃

2L.

(C23)

Appendix D: Scattering theory

In this appendix, using the analog of quasiclassical
Eilenberger method of superconductivity, we show how
the partition function Z(φ) is related to the set {λn} of
Lyapunov exponents.

1. Chiral classes AIII and BDI

To define the scattering matrix of the chain we choose
to connect it to two leads, which are described by the
gapless Hamiltonian of the same symmetry class as the
random Hamiltonian of the disordered chain. For the
class BDI chain described by the random Kitaev’s model
it can be achieved by setting ∆ = 0 in the leads. Es-
sentially the same model of the leads can be also used in
case of class AIII if one identifies the p/h grading of the
spinors with the +/− grading due to the bipartite unit
cell of the AIII chain. In the lattice representation such
model reads

Hlead = µ
∑
l

(ψ̄+,lψ−,l + ψ̄−,lψl,+) (D1)

− t

2

∑
l

(ψ̄+,l+1ψ−,l + ψ̄+,l−1ψ−,l + h.c.).

Assuming µ < t we accept the long wave approximations
in the leads and approximate

HL,Rlead '
∫ 0,L

∓∞
dx ψ̄+

(
µ− t− ∂2

x/2m
)
ψ− + h.c., (D2)

here b is a lattice constant and a mass m = 1/(tb2).
Introducing the spinor structure ψ = (ψ+, ψ−)T in the

sublattice space (+/−), the parity operator becomes P̂ =
σ±3 . The leads’ Hamiltonian is exactly the same as in
class BDI with the only difference that Pauli matrices
operate in Majorana basis. The subsequent discussion
will be more transparent if we rotate the basis in AB
subspace so that Pauli matrices are permuted according
to cyclic rule, σ±1 → σ±3 and etc. In this new basis P̂ =
σ±1 . One further linearizes the leads’ Hamiltonian around

Fermi-momentum kF =
(
2m(µ − t)

)1/2
by representing

ψ±(x) ∼ ψR±e±ikF x +ψL±e
∓ikF x and doubles the number

of spinor’s components, ψ = (ψR+, ψ
L
+, ψ

R
−, ψ

L
−)T , in order

to accommodate right and left modes. In this way we
obtain

HL,Rlead ' −iv
∫ 0,L

∓∞
dx ψ̄ σRL3 ⊗ 1± ∂xψ, (D3)

(with velocity v = kF /m) and at the same time the par-

ity operator transforms into P = P̂ ⊗ σRL1 . Let us now
subject H to the gauge transform, H → eiξPHeiξP . In-
troducing the gauge field Ax = ∂xξ associated with the
the parity current, the transformed Hamiltonian of the
leads takes the form

HL,Rlead[ξ] = v

∫ 0,L

∓∞
dx ψ̄ σRL3

(
−i∂x⊗1±+PAx

)
ψ. (D4)

From here the (second quantized) parity current oper-

ator ÎP can be found in accordance with the standard
definition, ÎP = δH/δAx, which yields to

ÎP = vψ̄σRL3 Pψ. (D5)

We now aim to find the general form of the expec-
tation value of the parity current ÎP in terms of the
transfer matrix M . Our method is adapted from the
Nazarov’s ’circuit theory’46 (see also Ref. [53]). Intro-
ducing the Green’s function in the leads, Gnm(x, x′) =
−i〈ψn(x)ψ̄m(x′)〉, where m,n are channel indices, the
current becomes

IP (θ) = −iv lim
x→x′

tr
(
σRL3 PG(x, x′)

)
(D6)

In what follows we use the quasiclassical approach and
introduce the Green’s function Q(x) at the coinciding
spatial points,

Qnm(x) = lim
x→x′

{
2i(vnvm)1/2Gnm(x, x′)σRL3

− sign(x− x′)δnm
}
, (D7)

where we have taken into account that each channel can
be characterized by its own velocity. The Q-function
is normalized, Q(x)2 = 1, and satisfies the Eilenberger
equation,

i∂xQ(x) +
[
i0+ σRL3 + PAx, Q(x)

]
= 0, (D8)

with the boundary conditions Q(x)
∣∣∣
x→±∞

= σRL3 ⊗ 1±.

The role of infinitesimal term which breaks the chi-
ral symmetry is to provide the boundary conditions at
infinities. The parity gauge field Ax can be now elimi-
nated at the expense of twisted boundary conditions in
the left lead. Using the freedom in the choice of Ax we
set Ax = θ × η′(x), where η(x) denotes any smooth step
function on atomic scale at the crossection where the
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FIG. 9. Disordered wire of symmetry class AIII connected to
two normal terminals which are described by the Eilenberger
functions Q±. The Q-matrix at the boundaries between the
wire and terminals is denoted by QL and QR. The counter
η(x) which ’measures’ the parity current jP is located close
to the left end of the wire.

parity current is ’measured’ as shown in Fig. 9. Abbre-
viating by Q̃L = Q(−0) the Green’s function before the
’counter’ and by QL = Q(+0) the one at the left end of
the wire after the ’counter’, we see that the Eilenberger
equation (D8) yields

QL = eiθP Q̃L e
−iθP . (D9)

Let us also denote by QR = Q(L) the Green’s function
at the right end of the wire. It is related with the left
configuration QL by the transfer matrix,

QR = MQLM
−1. (D10)

This relation is central to the whole discussion. It obvi-
ates the need of solving the complicated Shrödinger equa-
tion with a disorder potential in the wire substituting the
latter by the ‘black box’ characterized by the transfer ma-
trix. As shown in Refs. [46 and 53], the configurations
QR,L satisfy the following boundary conditions

(1+Q−)(1− Q̃L) = 0, (D11)

(1−QR)(1+Q+) = 0, Q± = σRL3 ⊗ 1±,
where Q± are asymptotic configurations. If one further

expresses Q̃L in terms of QL, see Eq. (D9), one arrives
at the ’twisted’ boundary conditions,

(1+Q−(θ)) (1−QL) = 0, (D12)

(1−QR) (1+Q+) = 0.

We have introduced here the rotated asymptotic config-
uration at the left

Q−(θ) = eiθP
(
σRL3 ⊗ 1±

)
e−iθP

=

(
cos 2θ −iP̂ sin 2θ

iP̂ sin 2θ − cos 2θ

)
RL

(D13)

and used that P = P̂ ⊗σRL1 . To proceed one can use the
relation (D10) and the new boundary conditions (D12)
in order to find the general expression for QR,L in terms
of the transfer matrix M and asymptotic configurations
Q±(θ),

QR = 1+
2

Q+ +MQ−(θ)M−1
(1−Q+),

QL = 1+ (1−Q−(θ))
2

Q−(θ) +M−1Q+M
. (D14)

The derivation of this result can be found in Ref. [53]
and we do not repeat it here. The parity current when
expressed in terms of Q-matrix becomes

IP (θ) = −1

2
tr
(
P̂ σRL1 QL

)
= −1

2
tr
(
P̂ σRL1 QR

)
(D15)

Since this current is conserved the result should not de-
pend in which of the two terminals it is evaluated.

Our next goal is to relate IP (θ) with the Lyapunov
exponents λn. We observe that Q−(θ) can be factorized

as Q−(θ) = RQ̃−(θ)R where Q̃−(θ) = e2iθσRL
1 σRL

3 and

R = diag(1, P̂ )RL. A similar decomposition holds for the
transfer matrix if one takes into account Eq. (89), M =

RM̃R with M̃ = V eλσ
RL
1 U ′. We finally note that the

parity operator in Eq. (D15) can be represented as P =
P ⊗ σRL

1 = RσRL
1 R. Hence such factorization enables us

to write IP (θ) = − 1
2 tr
(
σRL1 Q̃L

)
, and the parity operator

P̂ acting in the sublattice space (±) can be dropped out

from the subsequent manipulations. Noting that Q̃−(θ)

can be found via M̃ by means of the relation (D14), with

M being substituted for M̃ , and using the unitarity of
matrices V,U ′, we find

IP (θ) =

N ′∑
k=1

tanh (λk + iθ) . (D16)

Comparing now two definitions (92) and (D6), we can
read off from here the generating function F(φ0) =
iIP (−iφ0) and arrive to the result (93).

2. Class D

We outline here the proof of relations (91) and (98) for
the class D disordered wire.

The way to derive the ’plus’ partition sum Z(+)(φ),
Eq. (91), is completely analogous to the one for chiral
classes AIII and BDI considered above and we only sketch
the main steps. The generator of the conserved sym-
metry current is given by τ cc

1 . Hence the Eilenberger
equation corresponding to the gauge transformed Hamil-
tonian reads

i∂xQ(x) +
[
i0+ σRL3 ⊗ τ cc3 + τ cc

1 Ax, Q(x)
]

= 0, (D17)

where we set Ax = θ × δ(x). At variance with Z-classes
the Q-matrix here is defined in the direct product of the
chiral- and the cc-spaces. The twisted asymptotic left
configuration here assumes the form

Q−(θ) = σRL3 ⊗
(
eiτ

cc
1 θτ cc3 e−iτ

cc
1 θ
)
, (D18)

cf. with Eq. (D13), while the right one reads Q+ =
σRL3 ⊗τ cc3 (the appearance of the matrix τ cc3 here is rooted
in the construction of the field integral for class D sys-
tem, see sec. V C). The generating function (92) at the
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specific disorder realization can be further found from the
relation F(φ0) = (i/4)tr(τ cc1 QL)

∣∣
θ=−iφ0

with the matrix

QL at the left end of the wire given by Eq. (D14). When
evaluating this expression one can use the fact that con-
figurations Q−(θ) and Q+ have the trivial diagonal struc-
ture in the channel space. This means that the transfer
matrix in Eq. (D14) can be taken in the block-diagonal
form by omitting U and V orthogonal rotations which
mix the eigen-channels. In this way one arrives at the fi-
nal result for the generating function depending only on
the set of λ’s,

F(φ0) = i

N ′∑
k=1

sinh 2φ0

cosh 2λk + cosh 2φ0
, (D19)

in agreement with Ref. [29]. It enables one to con-
struct the bosonic partition sum using the relation

i∂φ0
lnZ

(+)
B (φ0) = F(φ0). Choosing the normalization

Z(+)
B (0) = 1, it can be cast into the form

Z(+)
B (φ0) =

N ′∏
k=1

(
1 + t2k sinh2 φ0

)1/2
, tk = 1/ coshλk,

(D20)
from where the fermion partition sum follows as

Z(+)
F (φ1) = Z(+)

B (iφ1). With the help of basic trigono-

metric identities one then finds for their ratio, Z(+)(φ) =

Z(+)
F (φ1)/Z(+)

B (φ0), the result (91).
Let us now evaluate the ‘minus’ partition function

Z(−). It was defined in sec. V C as a response of the sys-
tem to the insertion of the Z2 gauge ‘flux’ τ cc1 on a single
bond (0, 1). We have also stressed that the gauge trans-
formation ψ1 → τ1ψ

1, ψ̄1 → ψ̄1τ1 can be used to shift
such source to any other link. In particular, applying it to
all cites s with s ≤ 0 the τ1-flux can be shifted to the left
infinity. This transformation also changes the sign of the
infinitesimal convergence factor in the fermionic sector of
the path integral, i0 τ cc1 → (−i0)τ cc1 , which is important
to keep in mind as long as one considers an open system
(a wire connected to the left/right lead). On the level of
Eilenberger equation this swaps the left asymptotic Q-
matrix in the ff-sector, i.e. Q− = −Q+ = −σRL3 ⊗ τ cc3 .
As one can now see from Eq. (D18) such boundary con-
ditions are equivalent to setting φ1 = π/2 and thereby
the identity (97) is proved.

3. Class DIII

Let us now extend the quasiclassical treatment intro-
duced in the previous two sections to the class DIII sys-
tem. In doing so we consider a more general model where
impurity scattering is present not only in the wire but
also in the leads. It will serve us twofold purpose. First,
we will justify the general form of the grained action S[T ],
see Eq. (78) or (C6). Second, we will obtain the partition
functions Z(±)(φ) in terms of Lyapunov exponents using
the action S calculated for a specific choice of matrix T .

To this end we consider two dots or two leads (we re-
fer them later as ‘terminals’), connected by a scattering
region (‘junction’) which is assumed to be completely de-

fined by its transfer matrix M̂ obeying all required sym-
metries specific for the class DIII, see Sec. VI for de-
tails. Depending on the situation, by the ’junction’ we
understand the wire of a length L itself or just a contact
between two dots. For a given M̂ we then perform a
disorder averaging in the terminals in the framework of
SCBA. Introducing further two matrices T1,2 ∈ SpO(2|2),
which parametrize the Goldstone fluctuations in the ter-
minals, and following the standard root outlined in Ap-
pendix VIII, one arrives at the following action

S[T1, T2] =
1

2
str ln

(
iΣ0 τ

cc
3 T (x) −D
−D† iΣ0T

−1(x) τ cc3

)
,

(D21)
Here T (x) = T1,2 depending on whether x lies in the
L/R terminal, Σ0 is the imaginary part of a SCBA self-
energy (Σ0 = 0 inside the junction), and the operator
D defined in Eq. (66) should be renormalized by the
real part of a self-energy. The precise form of SCBA
equations will not be important for the subsequent dis-
cussion. We only comment here that we imagine the
SCBA scheme being performed separately for each ter-
minal along the route of RMT approach36, and adding
afterwards an inter-grain non-random hopping matrix W
to the operator D, see Eq. (67). By construction, the ma-
trix T enters the low-energy action as the element of the
coset space T = T−1

R TL, see Eq. (68). In other words
T ∈ SpO(2|2) ⊗ SpO(2|2)/SpO(2|2) ' SpO(2|2), thus
the Goldstone manifold becomes isomorphic to the sin-
gle copy of the group SpO(2|2).

Subjecting the Hamitonian H to the gauge transform
one obtains the phase dependent action Sφ[T1, T2]. It is
given by Eq. (D21) with the phase dependent Hamilto-
nian Hφ = H ′ +W ′φ (we refer the reader to our previous

discussion in Sec. V G). By virtue of the gauge invariance
the flux dependence can be removed from the junction to
the left terminal, which yields

Sφ[T1, T2] =
1

2
str ln

(
iΣ0τ

cc
3 Tφ(x) −D′
−D′† iΣ0T

−1
φ (x) τ cc3

)
,

(D22)
where the rotated field Tφ(x) is defined as

Tφ(x) = e−iτ
cc
3 φ(x)T (x)e−iτ

cc
3 φ(x), (D23)

with φ(x) = diag(−iφ0, φ1)bf if x belongs to the left ter-
minal and φ(x) = 0 otherwise. Let us also denote by

T1(φ) = e−iτ
cc
3 φ T1e

−iτcc3 φ = Tφ(x)
∣∣
x∈L (D24)

the rotated configuration in the left terminal.
In fact, the action Sφ[T1, T2] depends only on the group

element T12 = T1(φ)T−1
2 but not on each of the two fields

separately. To see that we introduce the Green’s function
Gφ[T1, T2] such that Sφ = 1

2 str lnG−1
φ and subject the
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former to a global similarity transformation,

G−1
φ =

(
τ cc3

T2

)
G−1
φ

(
T−1

2

τ cc3

)
, (D25)

which preserves the structure of the action since the ro-
tations involved have unit super-determinant. Explicitly,
the transformed Green’s function takes the form

Gφ[T12] =

(
iΣ0 T12(x) −D′
−D′† iΣ0 T

−1
12 (x)

)−1

, (D26)

with T12(x) being the step-like in space field defined by
relations T12(x)|x∈R = 1 and T12(x)|x∈L = T12. The
above form (D26) of the Green’s function is valid in the
chiral basis where the parity operator P = σ3. It is ad-
vantageous to rewrite Gφ in the basis independent form.

Introducing the (step-like) element Ω̂(x) = −i lnT12(x)
from the Lie superalgebra g = gl(2|2) one obtains

Gφ[T12] =
(

Σ̂(x)−H
)−1

,

Σ̂(x) = iΣ0 exp{2iP ⊗ Ω̂(x)}. (D27)

We have used here that P 2 = 1 and matrices P and Ω
act in different subspaces.

To evaluate the action Sφ[T12] = 1
2 ln sdetGφ[T12] we

introduce the auxiliary parameter t ∈ [0, 1] and define the

field T t12(x) = eitΩ̂(x). By rescaling the algebra element Ω
in Eq. (D27) in the same way one obtains the t-dependent
Green’s function Gφ[T t12] and the action Sφ[T t12], where
T t12 = T t12(x)|x∈L is the T -field in the left terminal. Our
subsequent strategy to find this new action will be the
same as for other symmetry classes. First of all, using the
quasiclassical approach, we find the average t-dependent
symmetry current IΩ(t), and later on with the help of this
current reconstruct the action. To this end we put the
gauge source on the link 0 ↔ 1 (it can be thought of as
the boundary between the left terminal and the junction)
by changing the corresponding hopping matrix,

W ′ →W ′t =

(
eitΩ̂w′

w′†eitΩ̂

)
, (D28)

where Ω̂ = Ω̂(x)|x∈L = −i lnT21 is the ‘angle’ in the
left terminal. We use it to define the average symmetry
current according to the relation

IΩ(t) := i∂tSφ[T t12] = − i
2

str
(

(∂tHt)
∣∣
t=0

Gφ[T t12]
)
,

(D29)
with Ht = H ′+W ′t . The first equality here is a definition
and the second one follows from the gauge invariance.

Following the logic of the quasiclassical approach let
us now linearize the Hamitonian in the terminals around
zero energy, H → HL,R, and reduce the equation of
motion for the Green’s function Gφ[T t12] to the Eilen-
berger equation. In the Majorana basis one has HL,R =

−ivσRL3 ⊗ 1cc ∂x, and the definition of Eilenberger Q-
function is given by Eq. (D7). The Eilenberger equa-
tion (D17) itself is get modified because of the presence
of the self-energy in the terminals and takes the form

i∂xQ(x) + i(Σ0/v)
[
Ξ̂(x), Q(x)

]
= 0, (D30)

where P = P ⊗ σRL1 is the parity operator and

Ξ̂(x) = σRL3 e2itP⊗Ω̂(x) = e−itP⊗Ω̂(x)σRL3 eitP⊗Ω̂(x).
(D31)

The last representation here is valid since {P, σRL3 }+ = 0.

The presence of σRL3 Pauli matrix in the self-energy Ξ̂
stems from the original definition of the Q-matrix (D7)

and leads to the normalization Ξ̂2(x) = 1. It is clear that

the matrix Ξ̂ will fix the t-dependent boundary conditions
in the terminals for such Eilenberger equation,

Q−(t) = e−itP⊗Ω̂σRL3 eitP⊗Ω̂, Q+ = σRL3 . (D32)

With this understanding we proceed further with the
evaluation of a symmetry current IΩ(t) in terms of the
field T t12 and the Lyapunov exponents λk. The quasiclas-
sical approximation of the lattice representation (D29)
for this current has the form

IΩ(t) = −1

2
str
(
(P ⊗ Ω̂)QL

)
, (D33)

with QL being the Green’s function (D14) right at the
boundary of the left terminal and the junction. We note
that the SCBA self-energy Σ0 does not enter into QL
and QR. In analogy with Z-class calculations we ob-
serve that the configuration Q−(t) admits the factoriza-

tion Q−(t) = R Q̃−(t)R where Q̃−(t) = σRL
3 e2i(σRL1 ⊗Ω̂)t

and R = diag(1, P̂ )RL. The transfer matrix M can
be put in the same form if one takes into account its
DMPK decomposition (89) and the class DIII symme-
tries of the rotation matrices, cf. Sec. VI for these de-

tails. We thus writeM = RM̃R where M̃ = V eλPσ
RL
1 U ′.

We finally note that the symmetry current generator in
Eq. (D33) can be represented as P ⊗ Ω̂ = P ⊗σRL

1 ⊗ Ω̂ =

R(σRL
1 ⊗ Ω̂)R. Thereby we are able to write IΩ(t) =

1
2 str

(
(σRL1 ⊗ Ω̂) Q̃L

)
, where Q̃L has to be found using

Eq. (D14), with M being changed to M̃ and Q−(θ) being

changed to Q̃−(t). Obviously, the orthogonal rotations
V and U ′ do not enter the final result for the current.
Proceeding in basis where P is diagonal we obtain

IΩ(t) =
1

2

∑
σ=±

N ′/2∑
k=1

str
(

Ω̂ tanh
(
σλk − iΩ̂t

))
. (D34)

The sum over index σ is due to ±1 eigenvalues of the
parity operator P and the sum over k extends over the
set of Lyapunov exponents without taking into account
their Kramers degeneracy. Using trigonometry this result
can be cast into the form

IΩ(t) = −1

2

N ′∑
k=1

str

(
iΩ̂ sin(2Ω̂t)

cosh 2λk + cos(2Ω̂t)

)
, (D35)
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which is of the same type as our preceding class D re-
sult (D19). From here the action is found via relation

Sφ[T12] = −i
∫ 1

0
dt IΩ(t) that yields

Sφ[T12] =
1

4

N ′∑
k=1

str ln
(

11− t2k sin2 Ω̂
)
. (D36)

With the help of ansatz

4 sin2 Ω̂ = 2(1− cos 2Ω̂) = 2− T1(φ)T−1
2 − T2T

−1
1 (φ)

the final form of the action reads

Sφ[T12] = (D37)

1

4

N ′∑
k=1

str ln

[
11 +

t2k
4

(
T1(φ)T−1

2 + T2T
−1
1 (φ)− 2

)]
,

cf. Eq. (78).
With this result the evaluation of the partition func-

tions Z± = e−S
±

becomes particularly simple. Setting
T1 = T2 = 11 and keeping a non-vanishing angle φ one
obtains the relation (91). On other hand, the choice
T1 = Pb +P fτ cc1 and T2 = 11 gives the desired result (98)
for the kink’s action.
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