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ABSTRACT 

     Concerted single nanowire (NW) absorption and emission spectroscopies have been used to 

measure Stokes shifts in the optical response of individual CdSe nanowires.  Obtained spectra 

are free of inhomogeneous broadening inherent to ensemble measurements.  They reveal, for the 

first time, apparent size-dependent NW Stokes shifts with magnitudes on the order of 30 meV.  

Given that an effective mass model previously used to explain CdSe nanowire excited state 

progressions predicts no sizable emission Stokes shift, we have investigated modifications to the 

theory to rationalize their existence.  This has entailed better accounting for the effects of crystal 

field splitting on NW band edge states.  What results are important changes to the spectroscopic 

assignment of NW band edge transitions that arise from the crossing of hole levels.  

Furthermore, these modifications simultaneously predict Stokes shifts with size-dependent 

magnitudes up to 20 meV.  However, quantitative agreement with experiment is only achieved 

by accounting for the role of exciton trap states.  Consequently, we conclude that CdSe NW 

Stokes shifts contain both intrinsic and extrinsic contributions—the latter arising from band edge 
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exciton potential energy fluctuations.  At a broader level, these concerted absorption and 

emission measurements have provided detailed insight into the electronic structure of CdSe 

NWs, beyond what could be obtained using either single particle absorption or emission 

spectroscopies alone. 

 

I. INTRODUCTION 

     II-VI semiconductor nanostructures are currently some of the most widely studied systems in 

modern nanoscience.  This is due to their distinctive size- and shape-dependent optical and 

electrical properties.1,2  Recent advances in the synthesis of high quality one-dimensional (1D) 

II-VI nanostructures have led to extensive studies of their optoelectronic properties3,4,5,6,7,8 as 

well as their use in diverse applications.9,10  In this regard, the anisotropic shape of these 

materials allows for efficient charge transport while quantum confinement leads to tunable 

electronic properties.  Both make II-VI nanorods (NRs) and nanowires (NWs) useful for 

photoconductive devices.11,12  Furthermore, their linearly polarized emission13 makes them useful 

in devices such as light emitting diodes and sensors.14 

     A thorough understanding of their photophysics, however, is essential to fully exploiting them 

in applications.  This, in turn, requires developing a better understanding of NR and NW 

electronic structure, which is well reflected in their linear absorption and emission spectra.  

Consequently, concerted absorption and emission measurements offer an effective means for 

probing confinement as well as dielectric environment induced variations of nanostructure 

electronic properties. 

     A notable example where such correlated measurements have been critical to establishing the 

electronic structure of low dimensional materials involves colloidal CdSe quantum dots 
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(QDs).15,16  Specifically, detailed ensemble absorption and emission studies have previously led 

to excellent agreement between theoretically-derived transition energies and experimental 

excitation spectra.  This has led to spectroscopic assignment of QD excitonic transitions as well 

as to observations of characteristic avoided crossings in their size-dependent spectra.16 

     Such studies have also been critical in explaining unusual properties of the emission.  This 

includes the existence of both resonant and non-resonant Stokes shifts, their widely differing 

magnitudes and their characteristic temperature-dependencies.17  Consequently, joint absorption 

and emission measurements have established that the photoluminescence (PL) from CdSe QDs 

arises from intrinsic fine structure states, resulting from crystal field splitting, nanocrystal shape 

asymmetry and the electron-hole exchange interaction.17,18  They do not appear to originate from 

extrinsic, surface-related states.19,20 

     Interestingly, the advent of shape-controlled syntheses has led to analogous observations of 

emission Stokes shifts in 1D materials.  Values as high as ~100 meV have been seen in CdSe 

NRs13 while values on the order of ~50 meV have been found for PbSe and CdSe NWs.21,22,23  

However, little work has been done to establish the intrinsic or extrinsic origin of these shifts 

given the inability of ensemble absorption and emission measurements to capture the true 

underlying optical response of these materials.  This stems, in part, from the structural, chemical 

and environmental heterogeneities inherent to chemically-synthesized ensembles, which exhibit 

size and shape polydispersities. 

     Single particle absorption and emission studies thus offer a way to circumvent this limitation.  

In this manner, exquisite details of NR or NW electronic structure can be revealed.  While single 

particle emission spectroscopy is a well-established technique,24,25,26 corresponding absorption 

measurements are difficult due to the relatively low absorption efficiencies of individual 
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particles.  Namely, NW cross sections on the order of σ~10-12 – 10-11 cm2 μm-1 imply that only 

~0.01 – 0.1% of incident light is attenuated in a single particle absorption experiment. 27,28   

     Recently, we have demonstrated the use of single particle, spatial modulation microscopy to 

acquire size-dependent extinction spectra of individual CdSe NWs29 and gold nanoparticles.30  

We have also used this technique to acquire chirality-dependent spectra of single walled carbon 

nanotubes.30  In the case of CdSe NWs, we have assigned observed transitions to predictions of a 

6-band effective mass model.29  This has, in turn, revealed the existence of room temperature 1D 

excitons29 as well as the size-dependent interplay between quantum confinement, dielectric 

contrast and carrier electrostatic interactions in NWs.  These spectroscopic assignments have 

been further corroborated by additional single NW absorption polarization anisotropy 

measurements we have made.31 

     In the current study, we use concerted single NW absorption and emission experiments to 

develop further insight into the electronic structure of CdSe NWs.  These combined 

measurements have enabled us to establish the existence of size-dependent Stokes shifts in CdSe 

NWs with radii a ~ 2–7 nm.  The presence of such Stokes shifts is notable since they are not 

predicted by an effective mass theory previously used to describe their size-dependent absorption 

spectra29 or their corresponding absorption polarization anisotropies.31   

     In what follows, we rationalize the existence of a CdSe NW Stokes shift.  Section II provides 

experimental details of our correlated single NW absorption and emission measurements.  

Section III describes work to explicitly incorporate the effects of crystal field splitting into the 

effective mass theory previously used to describe CdSe NW electronic states.  Subsequent 

implications on the assignment of NW optical transitions are discussed.  Finally, Section IV 
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quantitatively explains the magnitude of observed Stokes shifts, by including contributions from 

band edge exciton potential energy fluctuations.  Section V summarizes the study. 

 

II. EXPERIMENT AND RESULTS 

A. Nanowire sample characterization 

     Three CdSe NW ensembles with mean radii of ⟨ܽ⟩ ~2.5, ~3.7 and ~5.0 nm, were prepared 

using solution-liquid-solid (SLS) growth.5,6,32  For ⟨ܽ⟩ ~ 2.5 nm samples, a typical synthesis 

entailed mixing cadmium oxide (25 mg, 0.19 mmol), myristic acid (0.662 g, 2.9 mmol) and 

trioctylphosphine oxide (0.5 g, 1.3 mmol) in a three neck flask.  The contents were degassed at 

100 °C for 50 min, whereupon the temperature was raised to 250 °C under nitrogen.  A solution 

of 1 M trioctylphosphine selenide (25 μL, 25 μmol), 0.2 mL trioctylphosphine and 1 mM 

bismuth trichloride in acetone (25 μL, 25 nmol) was then injected into the vessel to initiate NW 

growth.  After 2 minutes, the reaction was quenched through rapid cooling.  Resulting NWs were 

recovered by centrifuging the reaction mixture.  Excess trioctylphosphine oxide was removed by 

washing the NW product 3-4 times with a 70:30 toluene:methanol mixture.  Recovered NWs 

were then stored in toluene.  Additional descriptions of SLS NW growth as well as details of the 

synthesis of ⟨ܽ⟩ ~3.7 and ~5.0 nm wires can be found in the literature6,32,33,34,35 and in the 

Appendix. 

     Figure 1 shows low and high magnification TEM images of representative ⟨ܽ⟩ ~2.5 nm CdSe 

NWs.  The wires possess narrow diameters as well as crystalline zincblende/wurtzite (ZB/W) 

phase admixtures.23  These phase admixtures appear in high resolution TEM images as twinning-

induced “zig-zag” lattice fringes in ⟨110⟩-oriented nanowires.  For [111] ZB growth direction 

NWs, fringes follow their longitudinal growth axis, as illustrated in Figure 1 (b).33  Additional 
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TEM micrographs of ⟨ܽ⟩ ~3.7 and ~5.0 nm CdSe NWs can be found in the Appendix (Figures 6 

and 7).  

 
FIG. 1. (a) Low magnification TEM image of an ⟨ܽ⟩ ~2.5 nm CdSe NW ensemble. (b) High magnification TEM 
image of an individual [111] growth direction CdSe NW, exhibiting ZB/W “zig-zag” fringes along its longitudinal 
axis. 

 

B. Single nanowire absorption and emission spectroscopy 

     Single nanowire extinction spectra were acquired using a supercontinuum light source 

(Fianium, SC450).  For most measurements, a home-built double prism monochromator (spectral 

range: 450-800 nm) was used to disperse the laser’s output.  This resulted in a prolate spot (~1 

μm long axis).  Later measurements employed a dispersive, dual crystal acousto-optic tunable 

filter (AOTF, Fianium).  This resulted in a tighter, diffraction-limited circular spot.  In all cases, 

the dispersed supercontinuum was passed through a sheet polarizer before being split into signal 

(30%) and reference (70%) beams with a 70/30 beam splitter.   

     Samples were prepared by drop-casting dilute nanowire suspensions onto flamed glass 

coverslips.  Samples were then placed atop an open-loop piezoelectric modulator (Nanonics), 

supported by a 3-axis closed-loop piezo stage (Physik Instrumente) which was, in turn, coupled 

to a 2-axis manual micrometer stage (Semprex).  A high numerical aperture dry objective (0.95 
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NA, Nikon) focused the signal beam onto the sample with the polarization parallel to the NW 

growth axis.  Low excitation intensities (I ≤ 400 W/cm2) were used since prior single NW 

absorption measurements have illustrated that NW excitonic transitions saturate when intensities 

exceed ~400 W/cm2.29  Transmitted light was collected with a second high NA, dry objective 

(0.75 NA, Zeiss), oriented collinear to the first.  The light was then focused onto the signal 

channel of an autobalanced photodiode (Newport, Nirvana 2007) with the reference beam 

focused onto the reference channel of the same detector. 

     Extinction measurements were performed by moving the single NW in and out of the focused 

signal beam at 750 Hz.  Subsequent changes in the transmitted light intensity were measured 

using lock-in detection (Stanford Research Systems, SR830).  Both signal and reference readings 

then enabled wavelength-dependent, single NW extinction cross sections to be extracted.  

Additional details about these single NW absorption experiments can be found in Refs. 29 and 

31. 

     Single NW PL spectra were obtained by exciting individual wires with the linearly polarized 

output of either a 532 nm (Power Technology Inc.) or a 473 nm (Oxxius) diode laser.  The 

excitation spot was first enlarged to ~30 μm diameter by placing a f = 40 cm lens prior to the 

focusing objective’s back aperture.  Typical excitation intensities were I ~ 400 W/cm2.  NW 

emission was collected with the same objective and was passed through a 570 nm long pass filter 

(Chroma) before being imaged with a CCD/imaging spectrometer combination (DVC/Acton).  

All emission spectra were corrected for the spectrometer’s grating response. 
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FIG. 2.  (a) Absorption and emission spectra of three individual CdSe NWs with different radii (open blue circles 
and solid red lines respectively).  Also shown is the corresponding ensemble absorption (solid blue line) and 
emission (dashed red line) spectra. Data offset for clarity.  (b) Absorption and emission transition energies (symbols) 
plotted for different NW radii as functions of experimental 1Σ1/21Σe (α) energies.  Solid, dashed and dotted lines 
represent predictions of an effective mass model developed for ZB NWs.  The model assumes that the dielectric 
constants of the wire and the surrounding medium are εs = 6.1 and εm = 2.0 respectively. 
 

     Figure 2 (a) shows representative single NW absorption (open blue circles) and emission 

(solid red curves) spectra obtained from these measurements.  Spectra for three different NW 

radii (a ~2.8, 3.5 and 4.1 nm) are shown.  For comparison purposes, the corresponding ensemble 

(⟨ܽ⟩ ~ 2.5 nm) absorption (solid blue curve) and emission (dashed red curve) spectra have been 

provided.  Due to their small size, single NW extinction spectra essentially represent their 

absorption since scattering accounts for less than 5% of the extinguished light.27 

     All single-wire spectra exhibit resonances otherwise hidden in the corresponding ensemble 

absorption spectrum.  Specifically, three transitions, labeled α, γ and δ, are apparent in the wires 

shown in Figure 2 (a).  A fourth transition, β, is not always evident but occasionally appears as a 
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high energy shoulder to α.  Furthermore, in large diameter NWs, a 5th transition, ζ, is 

occasionally observed.  Transition energies are extracted by fitting each spectrum to a sum of 

Gaussians.29  Figure 2 (b) summarizes these energies by plotting experimentally-determined α, 

β, γ, δ, and ζ transition energies, across 43 individual NWs, all as functions of α’s energy. 

     We have previously accounted for the size-dependent evolution of these transitions4,29,31 using 

results from a 6-band effective mass model, first developed by Shabaev and Efros 36 for ZB NRs.  

Predictions from this model are plotted in Figure 2 (b) where solid, dashed, and dotted lines 

represent strong, moderate, and weak transitions.  The good qualitative agreement between 

experiment and theory has, in turn, enabled us to assign α, β, γ and δ to excitonic resonances with 

transitions denoted by term symbols originating in molecular physics.   

     We have previously suggested that α, β, and γ correspond to 1Σ1/21Σe, 1Σ3/21Σe, and 

1Σ1/2
HH1Σe respectively.29  However, ambiguity exists about the actual identities of β and γ.  

Namely, for β, we have alternatively suggested that it could be 2Σ1/21Σe.29  This stems from 

2Σ1/21Σe’s close proximity to β as well as from the fact that it is formally allowed under parallel 

polarized excitation.  By contrast, 1Σ3/21Σe is formally “bright” only under perpendicularly 

polarized excitation.31  Complicating this, predicted 2Σ3/21Σe energies are nearly degenerate with 

those of 2Σ1/21Σe though, like 1Σ3/21Σe, 2Σ3/21Σe is only formally active under perpendicularly 

polarized excitation.  Figure 2 (b) illustrates predicted 1Σ3/21Σe, 2Σ1/21Σe and 2Σ3/21Σe energies 

relative to β. 

     Subsequent single NW absorption polarization anisotropy experiments have suggested that 

1Σ3/21Σe is β since it possesses a sizable transition probability relative to either 2Σ1/21Σe or 

2Σ3/21Σe (see Appendix, Figure 8).  Furthermore, its theoretically-derived absorption 

polarization anisotropies (ρ) qualitatively agree with those seen experimentally.31  Theoretical ρ-
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values are evaluated using ߩ ൌ ൫|ܯ|||ଶ െ ଶ|||ܯ|ଶ൯/൫|ୄܯ| ൅  ଶ are|ୄܯ| ଶ and|||ܯ| ଶ൯, where|ୄܯ|

the squared transition matrix elements for parallel and perpendicularly polarized excitation 

respectively.31 

     Similar ambiguities exist with the assignment of γ given its close proximity to 1Π1/2
HH1Πe 

and 1Π3/21Πe.  This is illustrated in Figure 2 (b).  Qualitative correlation between the absorption 

polarization anisotropies for these states with experimental ρ-values also suggest that γ could 

originate from a mixture of both 1Π1/2
HH1Πe and 1Π3/21Πe.31  In general, though, the ZB model 

explains the coarse structure of the size-dependent transitions seen in our prior single CdSe NW 

absorption data.  

     At this point, what is notable is that the model does not predict a sizable Stokes shift in the 

emission from CdSe NWs.  Namely, it suggests that their band edge absorption and emission 

originate from the same 1Σ1/21Σe (i.e. α) transition, irrespective of size.  Figure 2 (a), by contrast, 

clearly shows that both ensemble and single wire spectra exhibit sizable Stokes shifts with values 

on the order of ~30 meV.  In particular, the ensemble data possesses a Stokes shift of 40 meV 

while the three single wire data exhibit shifts of 25 meV (a ~ 4.1 nm), 8 meV (a ~ 3.5 nm), and 

48 meV (a ~ 2.8 nm).  The latter single wire spectra thus establish that ensemble NW Stokes 

shifts observed here and in other CdSe wires22,23 do not arise from ensemble averaging. 

     Even more intriguing is that the compiled single wire data in Figure 2 (b) suggests a size-

dependence.  Specifically, NWs appear to show decreasing Stokes shifts with decreasing radius.  

This is better illustrated in Figure 3 (a) where extracted single wire shifts are plotted as a 

function of radius.  A link between 1Σ1/21Σe (α) energy and NW radius is made through a sizing 

curve compiled from ensemble literature data (see Appendix, Figure 9).6,32,34,37   
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FIG. 3. (a) Plot of size-dependent single CdSe NW Stokes shifts. (b) Absorption/emission comparison of three wires 
from the circled points in (a).  Data offset for clarity. 
 

     Figure 3 (a) first shows that NWs with ܽ ൐ 4 nm exhibit Stokes shifts that range from 20 to 

50 meV.  An average value is 29 meV (7.7 meV standard deviation).  The lower left corner 

shows a dashed line below which no experimental Stokes shifts are observed.  The origin of this 

line will be explained shortly.  Next, as a decreases a subset of wires begin to exhibit smaller 

Stokes shifts.  This culminates in the cluster of points near a~3 nm (1.88 eV), possessing near 

zero shifts.  Finally, beyond 1.88 eV and denoted by the rightmost shaded region in Figure 3 (a) 

(a < 3 nm), most wires possess Stokes shifts > 20 meV.  A general, upward trend can also be 

seen in the smallest NWs, despite the scatter in the data.  Figure 3 (b) highlights this 

nonmonotonic Stokes shift behavior by showing absorption and emission spectra associated with 

the circled points in Figure 3 (a). 

 

III. MODIFICATIONS TO THEORY 
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     The model we have previously used to assign transitions in the absorption of single CdSe 

NWs does not account for a significant emission Stokes shift.  Although a small offset of ~1-2 

meV is predicted due to fine structure in the 1Σ1/21Σe transition (resulting from the combined 

effects of crystal field splitting and the electron-hole exchange interaction36), such fine structure 

does not account for the 30-40 meV Stokes shifts seen in Figures 2, and 3. 

     To reconcile this discrepancy, we note that CdSe NWs are not purely ZB.  In fact, they 

contain ZB/W phase admixtures.23  Thus, to account for the partial W character of the wires, we 

incorporate an effective crystal field splitting parameter directly into the Luttinger-Kohn 

Hamiltonian used to describe CdSe’s valence band.38  The approach follows similar work by 

Efros and Lambrecht38 to explain observed emission polarization reversals seen in ZB and W 

GaAs/GaN NWs.39 

     The explicit introduction of crystal field splitting in the model does not affect CdSe’s 

conduction band.  Consequently, conduction band wavefunctions/energies are determined using 

a one band effective mass model.  Resulting electron wavefunctions take the form 

 ߰௡೐|௠|௘ ൌ ௠|ᇱ|ܬܽߨ√േଵ/ଶݑ ሺߙ௡೐|௠|ሻ |௠|ܬ ቀߙ௡೐|௠|ܽ ቁߩ ݁௜௠థ (1) 

where ݊௘ is a quantum number representing the electron level, m is its angular momentum 

projection onto the NW z axis, ܽ is the nanowire radius,  ݑേଵ/ଶ is the electron Bloch function,  ܬ|௠|ሺݔሻ is the |m|-th order Bessel function, ܬ|௠|ᇱ ሺݔሻ is its first derivative, ߙ௡೐|௠| is the Bessel 

function’s ݊௘-th root, ߩ is radius and ߶ is the azimuthal angle in cylindrical coordinates.  

Associated electron energies are 

|௡೐|௠ܧ ൌ ԰ଶߙ௡೐|௠|ଶ2݉ሺܧ௡೐|௠|ሻܽଶ 
(2) 
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where ݉ሺܧ௡೐|௠|ሻ is an energy-dependent effective mass (see Appendix).  Each electron level is 

subsequently labelled ݊௘Λ௘, where Λ௘ is a term symbol that denotes the state’s angular 

momentum projection onto the NW z axis [i.e. Σ (m = 0), Π (m = 1), Δ (m = 2), etc…].  The 

lowest conduction band electron state is therefore 1Σ௘. 

     Valence band levels are obtained by diagonalizing the modified Luttinger-Kohn Hamiltonian 

which incorporates the explicit crystal field splitting parameter, Δ (Δ = 25 meV40).  In what 

follows, only four of six bands in CdSe are considered since its split-off hole band resides 420 

meV above either the heavy or light hole bands.  The resulting Hamiltonian written in the hole 

Bloch function basis ቚଷଶ , ଷଶ඀ , ቚଷଶ , ଵଶ඀ , ቚଷଶ , െ ଵଶ඀ , ቚଷଶ , െ ଷଶ඀, is 

 

ܪ ൌ
ۈۉ
ۈۈۈ
ܲۇ ൅ ܳ െ ∆2 ܮ ܯ כܮ0 ܲ െ ܳ ൅ ∆2 0 כܯܯ 0 ܲ െ ܳ ൅ ∆2 െ0ܮ כܯ െכܮ ܲ ൅ ܳ െ ۋی2∆

ۋۋۋ
ۊ

 

 

 

(3) 

where the operators P, Q, L and M are expressed in terms of the momentum operators ݌௫,௬,௭ ൌെ݅԰׏௫,௬,௭ as follows: 

 ܲ ൌ ଵ௅2݉଴ߛ  ଶ݌

ܳ ൌ ௅2݉଴ߛ ሺ݌ଶୄ െ  ௭ଶሻ݌2

ܮ ൌ െ݅√3ߛ௅݉଴  ି݌௭݌

ܯ ൌ ௅2݉଴ߛ3√ .ଶି݌  

 

 

(4a) 
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In these expressions, ݉଴ is the electron rest mass, ߛ௅ and ߛଵ௅ are energy-dependent Luttinger 

parameters (see Appendix for explicit expressions) and 

ଶ݌          ൌ ௫ଶ݌ ൅ ௬ଶ݌ ൅ േ݌ ௭ଶ݌ ൌ ௫݌ േ ଶୄ݌  ௬݌݅ ൌ ௫ଶ݌ ൅  .௬ଶ݌

 

(4b) 

     Reducing Eq. 3 to block diagonal form (see Appendix) followed by subsequent 

diagonalization results in eigenfunctions composed of linear combinations of heavy and light 

hole-like Bloch functions (see Appendix).  Associated eigenvalues are 

ߣ ൌ ଵ௅ߛ߳ േ ට4ሺ߳ߛ௅ሻଶ െ ௅߳Δߛ ൅ ୼మସ  where ߳ ൌ ԰మ௞೓/೗೓మଶ௠బ .  These eigenvalues are subsequently 

inverted to obtain the following energy-dependent heavy and light hole-like wavevectors, ݇௛ and ݇௟௛ 

 ݇௛ଶ ൌ 2 ݉ ଴ ԰ଶ ێێۏ
ߣܮ1ߛۍ െ ܮߛ ቀΔ2ቁ ൅ ට4ܮߛଶߣଶ െ Δλܮߛܮ1ߛ ൅ ሺ2ܮ1ߛ െ ଶሻܮߛ3 Δଶ42ܮ1ߛ െ ଶܮߛ4 ۑۑے

ې
 

 

(5a) 

 ݇௟௛ଶ ൌ 2 ݉ ଴ ԰ଶ ێێۏ
ߣܮ1ߛۍ െ ܮߛ ቀΔ2ቁ െ ට4ܮߛଶߣଶ െ Δλܮߛܮ1ߛ ൅ ሺ2ܮ1ߛ െ ଶሻܮߛ3 Δଶ42ܮ1ߛ െ ଶܮߛ4 ۑۑے

  .ې

(5b) 

     Incorporating corresponding envelope parts of the wavefunction leads to heavy and light hole 

–like Bloch wavefunctions, Ψ௛,ி೥േ and Ψ௟௛,ி೥േ written as 

 Ψ௛,ி೥േ ൌ ଵଶቁథטሻ݁௜ቀி೥ߩଵଶሺ݇௛טி೥ܬଵுுܥ ฬ32 , േ 12඀ ൅ ሻ݁௜ቀி೥േଷଶቁథߩி೥േଷଶሺ݇௛ܬଶுுܥ ฬ32 , ט 32඀ 
Ψ௟௛,ி೥േ ൌ ଵଶቁథטሻ݁௜ቀி೥ߩଵଶሺ݇௟௛טி೥ܬଵ௅ுܥ ฬ32 , േ 12඀ ൅ ሻ݁௜ቀி೥േଷଶቁథߩி೥േଷଶሺ݇௟௛ܬଶ௅ுܥ ฬ32 , ט 32඀. 

 

(6) 
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Explicit expressions for the coefficients ܥଵ௅ு, ܥଶ௅ு, ܥଵுு, and ܥଶுு can be found in the Appendix.  

The + (–) superscript corresponds to solutions of the upper (lower) sub-block of the block 

diagonal form of Eq. 3 (see Appendix for block diagonal form) and ܨ௭ represents the hole’s total 

angular momentum projection onto the NW z axis.  Subsequently enforcing the system’s radial 

boundary condition (i.e. the envelope part of the wavefunction equals zero when ߩ ൌ ܽ) leads to 

desired hole wavefunctions, characterized by ܨ௭, and composed of linear combinations of Ψ௛,ி೥േ and Ψ௟௛,ி೥േ .  The lowest energy hole states obtained are therefore doubly degenerate |ܨ௓| ൌ ଵଶ 

and ଷଶ states.  Corresponding wavefunctions for |ܨ௓| ൌ ଵଶ are 

 ห՛ଵ/ଶൿ ൌ ܽ՛భ/మ ฬ32 , 12඀ ൅ ܾ՛భ/మ ฬ32 , െ 32඀ 
ห՝ଵ/ଶൿ ൌ ܽ՝భ/మ ฬ32 , െ 12඀ ൅ ܾ՝భ/మ ฬ32 , 32඀ 

 

(7a) 

with energy-dependent coefficients  

 ܽ՛భ/మ ൌ 1ඥ2ߨ ଵܰ ଶ⁄ ቈܥଵ௅ுܬ଴ሺ݇௟௛ߩሻ െ ቆܥଶ௅ுܬଶሺ݇௟௛ܽሻܥଶுுܬଶሺ݇௛ܽሻቇ  ሻ቉ߩ଴ሺ݇௛ܬଵுுܥ

ܾ՛భ/మ ൌ ߨଶ௅ு݁ଶ௜థඥ2ܥ ଵܰ ଶ⁄ ቈܬଶሺ݇௟௛ߩሻ െ ቆܬଶሺ݇௟௛ܽሻܬଶሺ݇௛ܽሻ ቇ  ሻ቉ߩଶሺ݇௛ܬ

 

 

(7b) 

 ܽ՝భ/మ ൌ ܽ՛భ/మ 

 ܾ՝భ/మ ൌ ܾ՛భ/మכ . 

 

 

For |ܨ௓| ൌ ଷଶ, corresponding wavefunctions are 

 ห՛ଷ/ଶൿ ൌ ܽ՛య/మ ฬ32 , െ 12඀ ൅ ܾ՛య/మ ฬ32 , 32඀ 
ห՝ଷ/ଶൿ ൌ ܽ՝య/మ ฬ32 , 12඀ ൅ ܾ՝య/మ ฬ32 , െ 32඀ 

 

(8a) 
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with associated energy-dependent coefficients 

 ܽ՛య/మ ൌ ߨଵுு݁ଶ௜థඥ2ܥ ଷܰ ଶ⁄ ቈܬଶሺ݇௛ߩሻ െ ቆ ଶሺ݇௟௛ܽሻቇܬଶሺ݇௛ܽሻܬ  ሻ቉ߩଶሺ݇௟௛ܬ

ܾ՛య/మ ൌ 1ඥ2ߨ ଷܰ ଶ⁄ ቈܥଶுுܬ଴ሺ݇௛ߩሻ െ ቆܥଵுுܬଶሺ݇௛ܽሻܥଵ௅ுܬଶሺ݇௟௛ܽሻቇ  ሻ቉ߩ଴ሺ݇௟௛ܬଶ௅ுܥ

 

 

(8b) 

 ܽ՝య/మ ൌ ܽ՛య/మכ  

 ܾ՝య/మ ൌ ܾ՛య/మ. 

 

 

Expressions for the normalization constants ଵܰ ଶ⁄  and ଷܰ ଶ⁄  can be found in the Appendix.  

Associated energies for |ܨ௓| ൌ ଵଶ and ଷଶ states are determined from solutions to the following 

characteristic equations: 

ଶሺ݇௛ܽሻܬ଴ሺ݇௟௛ܽሻܬଶுுܥଵ௅ுܥ  െ ଶሺ݇௟௛ܽሻܬ଴ሺ݇௛ܽሻܬଶ௅ுܥଵுுܥ ൌ 0           ቀ|ܨ௓| ൌ ଵଶቁ (9a) 

and  

ଶሺ݇௟௛ܽሻܬ଴ሺ݇௛ܽሻܬଶுுܥଵ௅ுܥ   െ ଶሺ݇௛ܽሻܬ଴ሺ݇௟௛ܽሻܬଶ௅ுܥଵுுܥ ൌ 0           ቀ|ܨ௓| ൌ ଷଶቁ. (9b) 

     Resulting hole states are then denoted using the term symbol ݊௛Λ௛ி೥ where ݊௛ is the hole 

level of a given parity4,29,36 and Λ௛ arises from the smaller of |݉| and |݉ ൅ 2|—absolute values 

of the envelope angular momentum projection onto the NW z axis [i.e. Σ (m = 0), Π (m = 1), Δ 

(m = 2), etc…].  Term symbols for the doubly degenerate, even parity, |ܨ௓| ൌ ଵଶ and ଷଶ states are 

therefore 1Σଵ/ଶ and 1Σଷ/ଶ. 

     Calculated energies for band edge electron and hole levels are plotted in Figure 4 (a).  What 

is important is that the predicted size-dependent behavior of these hole levels differs from that in 

the ZB model.  Namely, in the pure ZB case 1Σଵ/ଶ is the lowest hole energy level for all NW 

sizes.  Incorporating Δ into Eq. 3, however, results in 1Σଷ/ଶ being the lowest hole state for a > 3 
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nm with a reversal of 1Σଷ/ଶ and 1Σଵ/ଶ energies at a ~ 3 nm.  Consequently, for NWs with a < 3 

nm, 1Σଵ/ଶ is the lowest energy hole state.  These model differences are shown explicitly in 

Figure 10 of the Appendix.  

     At this point, to properly model NW optical transitions, Coulomb contributions to electron 

and hole energies must be explicitly considered.  This includes direct interactions between 

charge carriers as well as self-interactions with image charges generated in the surrounding 

dielectric medium.  Details about these calculations can be found in Refs. 4, 29, 36 and 41.  

When these electrostatic interactions are taken into account, we find that NW resonances (e.g. 

Figure 2) 4,29,36,41 are excitonic in nature with the lowest two band edge resonances of interest 

denoted as doubly degenerate 1Σ1/21Σe and 1Σ3/21Σe transitions. 
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FIG. 4. (a) Band edge electron (1Σe) and hole (1Σ1/2 and 1Σ3/2)  energies.  (b) Band edge excitonic energies plotted 
relative to the 1Σ1/21Σe energy.  (c) ZB and (d) W model predictions for transition energies.  The dielectric constants 
of the wire and the surrounding medium are assumed to be εs = 6.1 and εm = 2.0 respectively. 
 

     Figure 4 (b) shows calculated 1Σ1/21Σe and 1Σ3/21Σe energies plotted relative to the 1Σ1/21Σe 

energy.  For NWs with a < 3 nm, the ground excitonic transition is 1Σ1/21Σe (solid blue curve).  

The next higher transition is 1Σ3/21Σe (dashed red curve).  A crossing of the two levels occurs at 
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a ~ 3 nm and directly results from the hole state reversal in Figure 4 (a).  Consequently, for 

wires with a > 3 nm, 1Σ3/21Σe is the lowest predicted exciton transition.   

     We now highlight an important difference that arises between the predictions of the current 

(W) and former (ZB) models.  Figures 4 (c) and (d) show the first few excitonic transitions in 

either model superimposed atop the experimental data.  By comparing the two plots, it is 

immediately apparent that the main difference between the two models is their predicted 1Σ3/21Σe 

energies.  In the W model, 1Σ1/21Σe and 1Σ3/21Σe are nearly superimposed and reverse order at a 

~ 3 nm.  By contrast, in the earlier ZB model, 1Σ1/21Σe and 1Σ3/21Σe are much further apart and 

never cross. 

     Beyond this, the effects of crystal field splitting are less important for higher excited states.  

Figures 4 (c) and (d) show that higher energy transitions (e.g. 2Σ1/21Σe, 2Σ3/21Σe, 1Π1/2
HH1Πe, 

1Π3/21Πe and 1Π1/2
LH1Πe) maintain the same ordering in either model.  If anything, slight energy 

decreases occur for all transitions in the current model, bringing them in better agreement with 

the experimental data.  Hence, only band edge states are strongly perturbed by the effects of 

crystal field splitting. 

     The lower overall energy of 1Σ3/21Σe and the reversal of 1Σ1/21Σe and 1Σ3/21Σe for a > 3 nm 

affect earlier assignments of CdSe NW excitonic transitions [Figure 2 (b)].   In this regard, β 

was previously attributed to 1Σ3/21Σe.  The current model, however, suggests that 1Σ3/21Σe is too 

low in energy to account for β.  Instead, 2Σ1/21Σe and 2Σ3/21Σe are better suited for this.  Of these 

two nearly degenerate states, only 2Σ1/21Σe is formally bright under parallel polarized excitation.  

2Σ3/21Σe is active only when NWs are excited with perpendicularly polarized light.  Theoretical 

transition probabilities for these two states are shown in Figure 11 of the Appendix.  From this 

perspective, it would therefore seem that β should be attributed to 2Σ1/21Σe.  However, our 
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absorption polarization anisotropy experiments have also shown that β preferentially absorbs 

perpendicularly polarized light.31  Hence, at this point, we attribute β to unresolved 2Σ1/21Σe and 

2Σ3/21Σe transitions. 

     Next, we have previously attributed α to 1Σ1/21Σe.  However, Figure 4 (d) clearly shows that 

1Σ1/21Σe and 1Σ3/21Σe are close in energy and within kT of each other at room temperature 

[Figure 4 (b)].  Consequently, given the resolution of room temperature single NW absorption 

measurements, it would appear that α consists of unresolved 1Σ1/21Σe and 1Σ3/21Σe transitions.  

     Some hints of this exist in the experimental data.  Namely, Figure 12 (see Appendix) shows 

that only 1Σ1/21Σe
 is formally bright under parallel polarized excitation.  By contrast, 1Σ3/21Σe is 

only active under perpendicularly polarized excitation.31  Incorporating 1Σ3/21Σe into α would 

therefore mean that predicted absorption anisotropy values for this experimentally-observed 

transition should be smaller than those predicted by the pure ZB model—especially given that 

the ZB model considers α to be exclusively 1Σ1/21Σe.  In this regard, the W model predicts ρ = 

0.61 to 0.85 (for εm values between 2 and 1) while the ZB model predicts ρ = 0.88 to 0.96 (for εm 

values between 2 and 1).  Consequently, the W model is in better agreement with experimental α 

ρ-values, ⟨ߩ⟩ = 0.86.31  Similarly, attributing β to overlapped 2Σ1/21Σe and 2Σ3/21Σe transitions 

leads to predicted ρ-values of ρ = 0.38 to 0.74 (for εm values between 2 and 1, a = 3 nm).  This is 

again in better agreement with experimental β ρ-values of ⟨ߩ⟩ = 0.62, and is especially evident 

given that the ZB model predicts ρ = -1.31 

     Additionally, the close proximity of 1Σ1/21Σe and 1Σ3/21Σe is consistent with prior fine 

structure calculations conducted by Le Thomas et al. to explain unusual temperature-dependent 

lifetimes in CdSe NRs.42  Namely, they observe increasing lifetimes with increasing temperature 
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in narrow radii NRs with an opposite trend for larger radii NRs.  A crossover in behavior occurs 

about a critical radius of 3.7 nm.  This phenomenon is explained by a reversal of “bright” and 

“dark” exciton states, stemming from an analogous reversal of hole S1/2 and S3/2 states.  Results 

of the current model are also consistent with pseudopotential calculation by Zhao et al. to model 

shape-dependent band edge electronic states of wurtzite CdSe nanocrystals.43 

     At this point, we conclude that α consists of unresolved 1Σ1/21Σe and 1Σ3/21Σe transitions.  β 

is likewise attributed to unresolved 2Σ1/21Σe and 2Σ3/21Σe transitions.  Assignment of γ remains 

ambiguous and, as described earlier, could arise due to 1Π1/2
HH1Πe, 1Π3/21Πe or a combination 

of these transitions.  Table 1 summarizes these revised assignments. 

Table 1.  Spectroscopic assignment of single CdSe NW optical transitions 
Transition ZB model Current model 
α 1Σ1/21Σe 1Σ1/21Σe and 1Σ3/21Σe 
β 1Σ3/21Σe 2Σ1/21Σe and 2Σ3/21Σe 
γ 1Π1/2

HH1Πe and 1Π3/21Πe 1Π1/2
HH1Πe and 1Π3/21Πe 

 

     Notably, apart from the above spectroscopic revisions, the model rationalizes the existence of 

a CdSe NW Stokes shift.  Namely, because 1Σ1/21Σe is always the dominant absorbing state with 

parallel polarized light, it appears as α in Figures 2, 4 (c) and 4 (d).  Then despite being 

unresolved in α, 1Σ3/21Σe is the lowest excited state in a > 3 nm NWs.  Consequently, exciton 

relaxation can occur into 1Σ3/21Σe and, in the absence of thermal repopulation of 1Σ1/21Σe, leads 

to predicted Stokes shifts on the order of ~20 meV.  The W model thus predicts an intrinsic 

Stokes shift, which is the difference in energy between 1Σ1/21Σe and 1Σ3/21Σe [Figure 4 (b)]. 

     Next, Figure 4 (b) shows that as the NW radius decreases, the magnitude of this intrinsic 

shift approaches zero since 1Σ1/21Σe and 1Σ3/21Σe converge in energy and ultimately cross at a ~ 

3 nm.  No Stokes shift is therefore expected in a < 3 nm NWs.  This intrinsic size-dependent 
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Stokes shift is highlighted by the dashed line first shown in Figure 3 (a), which captures much of 

the qualitative behavior between a = 3 and 7 nm.  Notably, the W model does not account for 

their absolute magnitudes or for the behavior seen in a < 3 nm NWs. 

 

IV. EXCITON TRAP STATES 

     To explain quantitative discrepancies between experimental and theoretical Stokes shifts in a 

> 3 nm NWs and to explain the larger than expected values seen in narrow diameter wires, we 

invoke the role of exciton trap states.  Namely, after excitation, we posit that photogenerated 

excitons thermalize into local potential energy minima, which reside below either 1Σ3/21Σe or 

1Σ1/21Σe at the NW band edge.  These states likely arise from incomplete organic ligand surface 

passivation,44 or alternatively, stem from ZB/W phase admixtures previously shown to exist 

along the NW length.23,33  In either case, the appearance of exciton traps contributes to the 

intrinsic shifts seen in Figure 3 (a) and leads to larger than expected NW Stokes shifts. 

     Such band edge potential energy fluctuations have previously been invoked to explain 

features seen in low temperature emission spectra of individual CdSe NWs.  Specifically, an 

Urbach-like exponential tail of exciton trap states with a 1/݁ depth of ~18 meV has been used to 

explain the manifold of discrete (low temperature) resonances and low-energy (room 

temperature) spectral tails observed in CdSe NW emission spectra.22  Although the 

corresponding emission polarization properties of these states are not known, they likely lead to 

emission polarized primarily along the wire’s long axis given known NW dielectric 

properties.25,45,46 

     Qualitatively, the existence of such exciton traps with energies within the gap implies that 

subsequent emission will occur at energies lower than either 1Σ3/21Σe for ܽ ൐ 3 nm or 1Σ1/21Σe 
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for ܽ ൏ 3 nm.  In turn, experimental Stokes shifts will be larger than predicted and will reflect 

the energy separation between the dominant absorbing 1Σ1/21Σe state and these latter emitting, 

exciton trap states. 

     To model such trap-related contributions to the NW Stokes shift, we employ a framework 

previously used by Dunstan to explain the existence of apparent emission Stokes shifts in 

amorphous silicon.47,48  The model first ascribes a probability ଵܲ ൌ ݁ିకఢ for an exciton to 

thermalize into a trap state with an energy, ߳ or greater, below the band edge.  The parameter ଵక 

represents the average trap depth of the distribution.  Next, the probability that this trap 

represents a local minimum surrounded by N nearest neighbors with larger energies is 
ଶܲ ൌ ൫1 െ ݁ିకఢ൯ே

.47  Consequently, the joint probability that describes the likelihood of an 

exciton relaxing into an emitting, local minimum within the distribution is ܲ ൌ ଵܲ ଶܲ ൌ൫݁ିకఢ൯൫1 െ ݁ିకఢ൯ே
.   

     Figure 13 of the Appendix plots P for various N values.  In particular, it resembles an 

asymmetrically broadened Gaussian with a peak at 

 ߳௠௔௫ ൌ lnሺܰ ൅ 1ሻߦ . (10)

This energy is the most probable trap depth sampled by excitons within the distribution 

parameterized by N and ଵక.  Consequently, ߳௠௔௫ adds to the intrinsic Stokes shift between 

1Σ1/21Σe and 1Σ3/21Σe for wires with a > 3 nm.  For wires with a < 3 nm, it exclusively accounts 

for their Stokes shifts. 

     N represents the number of nearest neighbor—but higher energy—potential minima 

surrounding a given trap at ߳.  As such, it is ultimately linked to NW trap state densities (ρtrap).  
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Prior studies have suggested ρtrap-values of ρtrap ~  1.3 x 1019 cm-3 for CdSe NWs.49,50  However, 

we know of no experiment that directly quantifies ρtrap or which describes its size dependencies.    

Consequently, using ρtrap = 1 x 1019 cm-3 and nominal NW dimensions of a = 2 – 4 nm and l = 1 

μm, we estimate upper limit NW N-values ranging from N = 1 – 6.  Additional details of this 

calculation can be found in the Appendix.  

     Figure 5 shows traces of expected Stokes shifts for trap distributions characterized by N = 1, 

2, and 3 and ଵక = 18 meV (dashed blue lines).  The accompanying solid black line is the intrinsic 

Stokes shift predicted by theory [same trace shown in Figure 3 (a)].  Extrinsic trap state 

contributions thus readily add an additional ~ 12 – 25 meV to the theoretical shifts.  Resulting 

intrinsic + extrinsic shifts consequently capture the overall magnitude of the experimental Stokes 

shift seen in a ~ 3 – 7 nm CdSe NWs.   

     More importantly, the apparent size-dependent behavior seen in Figure 3 (a) is also 

rationalized. Namely, the model suggests that a Stokes shift should always exist in larger 

diameter wires, with the intrinsic contribution representing a lower limit in a > 3 nm NWs.  In 

this regard, what is notable in the experiment is that Stokes shifts significantly below the intrinsic 

theory line are never seen for a ~ 3 – 7 nm wires. 
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FIG. 5. (a) Plot of size-dependent single CdSe NW Stokes shifts (open red circles). Superimposed are predicted 
Stokes shifts, which contain intrinsic and extrinsic (N=1,2,3) contributions (dashed blue lines).  The solid black line 
represents intrinsic shifts predicted by the W model.  (b) Intrawire absorption (open blue circles) and emission (solid 
red lines) spectra taken from three different positions on a single a ~ 3.9 nm CdSe NW.  The inset shows the 
associated Stokes shift for each position.  Traces offset for clarity. 
 

     To further test this conclusion, we have conducted an additional single NW intrawire Stokes 

shift measurement by acquiring absorption and emission spectra from a single NW at different 

points across its length.  The motivation for this stems from the possibility that spatial 

heterogeneities exist in the optical response of individual wires.  Consequently, within the 

context of the current study, varying Stokes shifts, some smaller than the intrinsic theoretical 

limit, could potentially be averaged out in a single NW measurement which samples the wire’s 

entire response.  

     Figure 5 (b) shows initial results from this study, conducted on a single a ~ 3.9 nm NW.  

Absorption and emission traces have been acquired at 3 points across the NW length, separated 

by ~1 μm.  Analyzing resulting band edge absorption and emission energies subsequently leads 

to intrawire Stokes shifts, ranging from 22.4 to 26.7 meV.  An average Stokes shift is 24.3 meV 
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(1.79 meV standard deviation).  More relevantly, none of the measured shifts fall below the 

intrinsic theory limit shown in Figure 5 (a).  Thus, at this point, all of the experimental data 

corroborates predictions of the revised NW model described in Section III. 

     Finally, for NWs with a < 3 nm, no intrinsic contribution to the Stokes shift is predicted.  

Observed experimental shifts thus possess purely extrinsic origins.  Figure 5, however, shows 

that the N = 1, 2, and 3 lines do not fully capture apparent trends in the data, namely, an 

increasing shift with decreasing size.  Within the trap state analysis conducted, such an upwards 

trend can be rationalized if we assume that trap state densities arise, in part, from surface-related 

inhomogeneities/defects.  This is because increasing the surface-to-volume ratio in narrow 

diameter wires leads to correspondingly larger trap densities and, by association, larger N-values.  

An upwards trend in NW Stokes shifts thus results if a size-dependent N parameter, varying 

inversely with NW radius (i.e. ܰ ן ଵ௔), is assumed.   

     This assumption is not invoked, however, since the suggestion is highly speculative in the 

absence of additional information about NW trap state densities.  Furthermore, there exist other 

possible reasons for larger than expected Stokes shifts in narrow radii NWs.  For example, in the 

case where exciton fine structure exists, a small size-dependent contribution would add to the 

extrinsic shifts described above.  Alternatively, we have previously observed that a < 2.5 nm 

NWs occasionally adopt 112ۃതۄ growth directions.34  Consequently, such wires could possess an 

electronic structure different from the [111]/[0001] oriented wires considered here.  In this 

regard, a theoretical analysis of 112ۃതۄ NWs is involved and is beyond the scope of the current 

study. 

 

V. CONCLUSIONS 
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     Concerted single CdSe NW absorption/emission spectroscopy has revealed, for the first time, 

the existence of sizable NW Stokes shifts.  These shifts are not predicted by an existing effective 

mass theory previously used to explain size-dependent resonances in their linear absorption or in 

their associated absorption polarization anisotropies.  Consequently, modifications to the theory 

have been carried out to properly account for the effects of crystal field splitting, especially on 

NW band edge states.  In this way, we find that both the existence of CdSe NW Stokes shifts and 

their observed size-dependencies can be rationalized.  The model, however, requires extrinsic, 

trap-related contributions to quantitatively explain their magnitudes. 

     In tandem, these modifications to theory have led to significant revisions to the predicted 

ordering of NW band edge states.  This has required us to reassign experimental NW transitions.  

Namely, the ground exciton resonance (α) is now attributed to unresolved 1Σ3/21Σe and 1Σ1/21Σe 

transitions while β is likewise attributed to unresolved 2Σ1/21Σe and 2Σ3/21Σe transitions.  This 

reassignment yields better quantitative agreement with experimental absorption polarization 

anisotropies and simultaneously rationalizes the existence of an emission Stokes shift.  The use 

of concerted single nanostructure absorption and emission spectroscopy has therefore revealed 

detailed insights into the electronic structure of CdSe NWs beyond which could be obtained 

using more traditional ensemble and even single nanostructure spectroscopies. 
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APPENDIX 

A. Synthesis and characterization of nanowire samples 

 nm NWs 3.7 ~ ⟨ࢇ⟩ .1

     CdO (25 mg, 0.19 mmol), myristic acid (0.331 g, 1.45 mmol) and trioctylphosphine oxide 

(1.5 g, 3.9 mmol) were mixed in a three-neck flask.  The mixture was degassed at 100 °C for 50 

minutes after which the temperature was raised to 250 °C under nitrogen.  A solution of 1M 

trioctylphosphine selenide (25 µL, 25 µmol), 0.2 mL trioctylphosphine and 1 mM BiCl3 in 

acetone (25 µL, 25 nmol) was then rapidly injected into this solution to initiate NW growth.  The 

reaction was quenched through rapid cooling after 1 minute.  The resulting suspension was 

subsequently centrifuged to recover the synthesized NWs.  Excess surfactant was removed by 

washing the NW product 3-4 times with a 70:30 toluene:methanol mixture.  Recovered NWs 

were subsequently stored in toluene.  Representative low and high magnification TEM images 

are shown in Figure 6. 

 
FIG. 6. (a) Low- and (b) high-magnification TEM images of an ⟨ܽ⟩ ~ 3.7 nm NW ensemble. 

 

 nm NWs 5.0 ~ ⟨ࢇ⟩ .2
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     CdO (25 mg, 0.19 mmol), myristic acid (0.331 g, 1.45 mmol) and trioctylphosphine oxide 

(2.5 g, 6.5 mmol) were mixed in a three-neck flask.  The mixture was degassed at 100 °C for 50 

minutes after which the temperature was raised to 250 °C under nitrogen.  A solution of 1M 

trioctylphosphine selenide (25 µL, 25 µmol), 0.2 mL trioctylphosphine and 2 mM BiCl3 in 

acetone (60 µL, 120 nmol) was then rapidly injected to initiate NW growth.  The reaction was 

allowed to proceed for 2 minutes before being quenched through rapid cooling.  Resulting NWs 

were recovered by centrifuging the suspension.  The recovered wires were subsequently purified 

by washing them 3-4 times with a 70:30 toluene:methanol mixture.  Obtained NWs were stored 

in toluene.  Figure 7 shows representative low and high magnification TEM images of the 

sample. 

 
FIG. 7.  (a) Low- and (b) high-magnification TEM images of an ⟨ܽ⟩ ~ 5.0 nm NW ensemble. 

 

B. Transition matrix elements for possible β transitions (ZB model) 

     To help assign β, the following squared transition matrix elements (|M|2) for 1Σ3/21Σe, 

2Σ3/21Σe and 2Σ1/21Σe, were calculated using the ZB model.31  Both parallel (||) and and 

perpendicular (⊥) polarized excitation were considered.  1Σ3/21Σe possesses the largest transition 
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matrix element for perpendicularly polarized light.  2Σ3/21Σe and 1Σ3/21Σe are also inactive (i.e. 

|M|2=0) under parallel polarized excitation.  

 
FIG. 8.  Squared transition matrix elements for 1Σ3/21Σe, 2Σ3/21Σe and 2Σ1/21Σe using the ZB model.  Dielectric 
constants of the wire and the surrounding medium are assumed to be ߝ௦ = 6.1 and ߝ௠ = 2.0 respectively. 
 

C. Sizing curve 

     A NW sizing curve has been constructed using ensemble literature data.6,32,34,37  This sizing 

curve relates NW radii, a, to the band edge (α) transition energy. 
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FIG. 9. Sizing curve correlating NW band edge (α) energy to radius. 

 

The data is fit with the equation, ܧ௕௔௡ௗ ௘ௗ௚௘ሺeVሻ ൌ  1.7440 ൅ ଴.ଶହ଻଴௔ ൅ ଴.ସ଼଴ଶ௔మ  where a is in nm.  

Single NW radii are estimated from experimentally determined band edge energies by inverting 

this equation to yield ܽሺnmሻ ൌ ି଴.ଶହ଻଴ିට଴.଴଺଺଴ିଵ.ଽଶ଴଼ൣଵ.଻ସସ଴ିா್ೌ೙೏ ೐೏೒೐ሺୣVሻ൧ଶൣଵ.଻ସସ଴ିா್ೌ೙೏ ೐೏೒೐ሺୣVሻ൧ . 

 

D. Modified theory 

1. Electron wavefunctions and energies 

     Electron wavefunctions and energies are obtained using a one-band effective mass 

model.4,29,36   Explicit expressions for ߰௡೐|௠|௘  and ܧ௡೐|௠| are given by Eqs. 1 and 2 in the main 

text.  The associated energy-dependent electron effective mass is 
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 ݉ሺܧ௡೐|௠|ሻ ൌ ݉଴1 ൅ 2݂ ൅ ௣3ܧ ൬ |௡೐|௠ܧ2 ൅ ௚ܧ ൅ |௡೐|௠ܧ1 ൅ ௚ܧ ൅ ∆ௌை൰ (A1)

and assumes ܧ௚ ൌ 1.74 eV (the ZB band gap energy at 293 K), ∆ௌைൌ 0.420 eV (the spin-orbit 

splitting in CdSe), a Kane energy parameter of ܧ௣ ൌ 19 eV and ݂ ൌ െ1.035.  The latter 

parameter accounts for remote band contributions.  Wavefunctions are denoted by the term 

symbol ݊௘Λ௘, where ݊௘ and Λ௘ are described in the main text. 

 

2. Hole wavefunctions and energies 

     The four band Hamiltonian for holes, which explicitly includes crystal field splitting, is given 

by Eqs. 3 and 4 of the main text.  Employed energy-dependent Luttinger parameters are 

ሻܧ௅ሺߛ  ൌ 0.54 െ ௚ܧ௣6ܧ ൅ ௚ܧ௣6ሺܧ ൅  ሻܧ

ሻܧଵ௅ሺߛ ൌ 2.14 െ ௚ܧ௣3ܧ ൅ ௚ܧ௣3ሺܧ ൅  .ሻܧ
 

(A2)

To further simplify Eq. 3, ݇௭ and ݌௭ are set to zero.  This ignores longitudinal kinetic energy 

contributions to hole energies.  Using ݌േ ൌ  േ݅԰݇, ୄ݌ ൌ ԰݇, and ߳ ൌ ԰మ௞మଶ௠బ  and re-ordering the 

basis to ቚଷଶ , ଵଶ඀ , ቚଷଶ , െ ଷଶ඀ , ቚଷଶ , െ ଵଶ඀ , ቚଷଶ , ଷଶ඀, results in the following block-diagonal form 

 

ܪ ൌ
ۈۉ
ۈۈۈ
ଵ௅ߛሺ߳ۇ െ ௅ሻߛ ൅ ∆2 െ√3ߛ௅߳ 0 0െ√3ߛ௅߳ ߳ሺߛଵ௅ ൅ ௅ሻߛ െ ∆2 0 00 0 ߳ሺߛଵ௅ െ ௅ሻߛ ൅ ∆2 െ√3ߛ௅߳0 0 െ√3ߛ௅߳ ߳ሺߛଵ௅ ൅ ௅ሻߛ െ ۋی2∆

ۋۋۋ
 .ۊ

 

(A3)
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Diagonalizing Eq. A3 yields the eigenvalues ߣ ൌ ଵ௅ߛ߳ േ ට4ሺ߳ߛ௅ሻଶ െ ௅߳Δߛ ൅ ୼మସ  with ߳ ൌ ԰మ௞೓/೗೓మଶ௠బ .  

݇௛and ݇௟௛ (Eq. 5, main text) are subsequently found by inverting λ. 

     Corresponding eigenvectors are,  

 Ψఒଵേ ൌ ቆܥଵ௅ுܥଶ௅ுቇ 

Ψఒଶേ ൌ ቆܥଵுுܥଶுுቇ 

(A4a)

 

(A4b)

where the superscript + (–) represents solutions to the upper (lower) sub-block.  The associated 

coefficients ܥଵ௅ு, ܥଶ௅ு, ܥଵுு, ܥଶுு are 

ଵ௅ுܥ  ൌ ௅߳௟௛ሻଶߛ௅߳௟௛ඨሺ√3ߛ3√ ൅ ቆെߛ௅߳௟௛ ൅ Δ2 െ ට4ሺ߳௟௛ߛ௅ሻଶ െ ௅߳௟௛Δߛ ൅ Δଶ4 ቇଶ 

ଶ௅ுܥ ൌ െߛ௅߳௟௛ ൅ Δ2 െ ට4ሺ߳௟௛ߛ௅ሻଶ െ ௅߳௟௛Δߛ ൅ Δଶ4ඨሺ√3ߛ௅߳௟௛ሻଶ ൅ ቆെߛ௅߳௟௛ ൅ Δ2 െ ට4ሺ߳௟௛ߛ௅ሻଶ െ ௅߳௟௛Δߛ ൅ Δଶ4 ቇଶ 
ଵுுܥ ൌ ௅߳௛ሻଶߛ௅߳௛ඨሺ√3ߛ3√ ൅ ቆെߛ௅߳௛ ൅ Δ2 ൅ ට4ሺ߳௛ߛ௅ሻଶ െ ௅߳௛Δߛ ൅ Δଶ4 ቇଶ 

ଶுுܥ ൌ െߛ௅߳௛ ൅ Δ2 ൅ ට4ሺ߳௛ߛ௅ሻଶ െ ௅߳௛Δߛ ൅ Δଶ4ඨሺ√3ߛ௅߳௛ሻଶ ൅ ቆെߛ௅߳௛ ൅ Δ2 ൅ ට4ሺ߳௛ߛ௅ሻଶ െ ௅߳௛Δߛ ൅ Δଶ4 ቇଶ. 

 

(A5a)

 

 

(A5b)

 

 

(A5c)

 

(A5d)

     At this point, envelope functions associated with the Block functions are introduced.  This 

yields Eq. 6 of the main text.  Resulting functions Ψ௛,ி೥േ  and Ψ௟௛,ி೥േ  are characterized by ܨ௭, the 
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total (Bloch + envelope) angular momentum projection onto the NW z-axis and are consistent 

with those of Efros,36 Lambrecht38 and Sercel and Vahala.51,52   

    Only hole functions of even parity are considered in what follows, given the electron’s even 

parity envelope.  Thus, only upper (lower) sub-block solutions, Ψ௛,ଵ/ଶା  and Ψ௟௛,ଵ/ଶା  (Ψ௛,ଷ/ଶି  and 

Ψ௟௛,ଷ/ଶି ), are used for ܨ௭ ൌ ଵଶ ቀଷଶቁ.  Subsequently enforcing the NW’s radial boundary condition 

yields NW hole wavefunctions which are linear combinations of Ψ௛,ி೥േ  and Ψ௟௛,ி೥േ . 

     For ܨ௭ ൌ ଵଶ, the corresponding wavefunction, ห՛ଵ/ଶൿ, is 

 ห՛ଵ/ଶൿ ൌ ௅ுΨ௟௛,ଵ/ଶାܥ ൅ ுுΨ௛,ଵ/ଶାܥ . (A6a)

with weighting factors ܥுு and ܥ௅ு.  Written in terms of hole Bloch functions, 

 ห՛ଵ/ଶൿ ൌ ܽ՛భ/మ ฬ32 , 12඀ ൅ ܾ՛భ/మ ฬ32 , െ 32඀. (A6b)

with 

 ܽ՛భ/మ ൌ ሻߩ଴ሺ݇௟௛ܬଵ௅ுܥ௅ுܥ ൅ ሻܾ՛భ/మߩ଴ሺ݇௛ܬଵுுܥுுܥ ൌ ሻ݁ଶ௜థߩଶሺ݇௟௛ܬଶ௅ுܥ௅ுܥ ൅ ሻ݁ଶ௜థ. (A7)ߩଶሺ݇௛ܬଶுுܥுுܥ

Applying the radial boundary condition (i.e. ห՛ଵ/ଶൿ ൌ 0 when ߩ ൌ ܽ) then results in the 

following characteristic equation whose roots are the energies of the ܨ௭ ൌ ଵଶ state 

ଶሺ݇௛ܽሻܬ଴ሺ݇௟௛ܽሻܬଶுுܥଵ௅ுܥ  െ ଶሺ݇௟௛ܽሻܬ଴ሺ݇௛ܽሻܬଶ௅ுܥଵுுܥ ൌ 0. (A8)

Given that the constraint also requires ܽ՛భ/మ ൌ 0 and ܾ՛భ/మ ൌ 0, 

ுுܥ  ൌ െܥ௅ு ஼మಽಹ௃మሺ௞೗೓௔ሻ஼మಹಹ௃మሺ௞೓௔ሻ. (A9)
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Substituting Eq. A9 into Eq. A7 and normalizing the wavefunction (Eq. A6b) leads to explicit 

expressions for ܽ՛భ/మ and ܾ՛భ/మ which are shown as Eq. 7b in the main text.  The associated 

normalization constant ଵܰ ଶ⁄  is  

 ଵܰ/ଶ
ൌ ܽଶ2 ଴ଶሺ݇௟௛ܽሻܬଵ௅ுଶሾܥ ൅ ଵଶሺ݇௟௛ܽሻሿܬ
െ ଵுுܥଵ௅ுܥ2ܽ ቆܥଶ௅ுܬଶሺ݇௟௛ܽሻܥଶுுܬଶሺ݇௛ܽሻቇ ቆെ݇௛ܬ଴ሺ݇௟௛ܽሻܬଵሺ݇௛ܽሻ ൅ ݇௟௛ܬଵሺ݇௟௛ܽሻܬ଴ሺ݇௛ܽሻ݇௟௛ଶ െ ݇௛ଶ ቇ
൅ ܽଶ2 ቆܥଶ௅ுܬଶሺ݇௟௛ܽሻܥଶுுܬଶሺ݇௛ܽሻቇଶ ଴ଶሺ݇௛ܽሻܬଵுுଶሾܥ ൅ ଵଶሺ݇௛ܽሻሿܬ
൅ ܽଶ2 ଶଶሺ݇௟௛ܽሻܬଶ௅ுଶሾܥ െ ଷሺ݇௟௛ܽሻሿܬଵሺ݇௟௛ܽሻܬ
െ ଶ௅ுଶܥ2ܽ ቆܬଶሺ݇௟௛ܽሻܬଶሺ݇௛ܽሻ ቇ ቆെ݇௛ܬଶሺ݇௟௛ܽሻܬଵሺ݇௛ܽሻ ൅ ݇௟௛ܬଵሺ݇௟௛ܽሻܬଶሺ݇௛ܽሻ݇௟௛ଶ െ ݇௛ଶ ቇ
൅ ܽଶ2 ቆܬଶሺ݇௟௛ܽሻܬଶሺ݇௛ܽሻ ቇଶ ଶଶሺ݇௛ܽሻܬଶ௅ுଶሾܥ െ  .ଷሺ݇௛ܽሻሿܬଵሺ݇௛ܽሻܬ

 

 

 

 

 

(A10)

     Wavefunctions and energies for ܨ௭ ൌ െ ଵଶ and ܨ௭ ൌ േ ଷଶ states can be analogously determined.  

Resulting expressions are shown in Eqs. 7 – 9 of the main text.  In this regard, the normalization 

constant, ଷܰ ଶ⁄ , for ܨ௭ ൌ േ ଷଶ states is 
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 ଷܰ/ଶ
ൌ ܽଶ2 ଴ଶሺ݇௛ܽሻܬଶுுଶሾܥ ൅ ଵଶሺ݇௛ܽሻሿܬ
െ ଶுுܥଶ௅ுܥ2ܽ ቆܥଵுுܬଶሺ݇௛ܽሻܥଵ௅ுܬଶሺ݇௟௛ܽሻቇ ቆെ݇௛ܬ଴ሺ݇௟௛ܽሻܬଵሺ݇௛ܽሻ ൅ ݇௟௛ܬଵሺ݇௟௛ܽሻܬ଴ሺ݇௛ܽሻ݇௟௛ଶ െ ݇௛ଶ ቇ
൅ ܽଶ2 ቆܥଵுுܬଶሺ݇௛ܽሻܥଵ௅ுܬଶሺ݇௟௛ܽሻቇଶ ଴ଶሺ݇௟௛ܽሻܬଶ௅ுଶሾܥ ൅ ଵଶሺ݇௟௛ܽሻሿܬ
൅ ܽଶ2 ଶଶሺ݇௛ܽሻܬଵுுଶሾܥ െ ଷሺ݇௛ܽሻሿܬଵሺ݇௛ܽሻܬ
െ ଵுுଶܥ2ܽ ቆ ଶሺ݇௟௛ܽሻቇܬଶሺ݇௛ܽሻܬ ቆ݇௛ܬଶሺ݇௟௛ܽሻܬଵሺ݇௛ܽሻ െ ݇௟௛ܬଵሺ݇௟௛ܽሻܬଶሺ݇௛ܽሻ݇௟௛ଶ െ ݇௛ଶ ቇ
൅ ܽଶ2 ቆ ଶሺ݇௟௛ܽሻቇଶܬଶሺ݇௛ܽሻܬ ଶଶሺ݇௟௛ܽሻܬଵுுଶሾܥ െ  .ଷሺ݇௟௛ܽሻሿܬଵሺ݇௟௛ܽሻܬ

 

 

 

 

 

(A11)

     Hole states are denoted by the term symbols ݊௛Λ௛ி೥, where ݊௛ and Λ௛ி೥ have been described 

previously in the main text.  Lowest energy |ܨ௭| ൌ ଵଶ and ଷଶ hole states are therefore represented 

by 1Σ1/2 and 1Σ3/2.  Figure 10 (a) shows resulting 1Σ1/2 and 1Σ3/2 energies obtained using the 

current model.  Figure 10 (b) shows corresponding energies calculated using the previous ZB 

model.4,29  From a comparison of the two plots, 1Σ1/2 is the lowest energy hole state for all NW 

radii in the ZB model while in the W case 1Σ1/2 and 1Σ3/2 cross at a ~ 3 nm.  Consequently, 1Σ3/2 

is the lowest energy hole state for wires with a > 3 nm.  
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FIG. 10.  Comparison of |ܨ௭| ൌ ଵଶ and ଷଶ hole energies in (a) ZB and (b) W CdSe NWs. 

 

E. Transition probabilities and associated absorption polarization anisotropies 

1. Transition probability calculation 

     Transition probabilities are estimated by evaluating the matrix element 

ܯ  ൌ ௡೐௸೐௘߰ۃ ࡭| · ෝ|߰௡೓௸೓ಷ೥௛࢖ (A12) ۄ

where ࡭ is the vector potential of the optical field and ࢖ෝ is the momentum operator.  ࡭ ·  ෝ can be࢖

written as ܣ଴ሺࢋො · ଴ܣ ෝሻ where࢖ ൌ ாబఠ  for a monochromatic plane wave53 and ࢋො  is a unit vector.  To 

take the light’s linear polarization into account, ࢋො · ࢠොࢋ ෝ is written as࢖ · ࢠෝ࢖ ൅ ොାࢋ · ෝି࢖ ൅ ොିࢋ ·  ෝା࢖

where 

ෝേ࢖  ൌ 1√2 ൫࢖ෝ࢞ േ  ൯࢟ෝ࢖݅

ොേࢋ ൌ ଵ√ଶ ൫ࢋො࢞ േ  .൯࢟ොࢋ݅

 

(A13)

 Eq. A12 then becomes 
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ܯ  ൌ ଴߱ܧ ർ߰௡೐௸೐௘ ቚࢋොࢠ · ࢠෝ࢖ ൅ ොାࢋ · ෝି࢖ ൅ ොିࢋ · ෝାቚ߰௡೓௸೓ಷ೥௛࢖ ඀. (A14)

     For the 1Σ1/21Σe transition, the electron wavefunction, ߰ଵஊ௘ , is explicitly given by 

 |߰ଵஊ௘ ⟩ ൌ ଴ܬ ቀߙଵ଴ ଴ᇱܬܽߨ√ቁߩܽ ሺߙଵ଴ሻ |ܵ⟩ ൌ ܿ|ܵ⟩ (A15)

where |ܵ⟩ is the electron’s Bloch function, ܿ is an even parity envelope function and spin 

up/down is implicitly assumed.  The associated ܨ௭ ൌ ଵଶ hole wavefunction is 

 ห՛ଵ/ଶൿ ൌ ܽ՛భ/మ ฬ32 , 12඀ ൅ ܾ՛భ/మ ฬ32 , െ 32඀. (A16)

Together with |߰ଵஊ௘ ⟩ this yields the corresponding transition matrix element 

ଵ/ଶܯ  ൌ ଵஊ௘߰ۃ ࡭| · |ෝ࢖ ՛ଵ/ଶۄ. (A17)

When written out, ܯଵ/ଶ becomes 

ଵ/ଶܯ  ൌ ଴߱ܧ ൤ർܿቚܽ՛భ/మ඀ ർܵฬࢋොࢠ · ࢠෝ࢖ ൅ ොାࢋ · ෝି࢖ ൅ ොିࢋ · ෝାฬ࢖ 32 , 12඀
൅ ർܿቚܾ՛భ/మ඀ ർܵฬࢋොࢠ · ࢠෝ࢖ ൅ ොାࢋ · ෝି࢖ ൅ ොିࢋ · ෝାฬ࢖ 32 , െ 32඀൨ 

 

(A18)

where the second term in this expression vanishes since ർܿቚܾ՛భ/మ඀ ൌ 0.  Consequently, 

ଵ/ଶܯ  ൌ ாబఠ ർܿቚܽ՛భ/మ඀ ർܵቚࢋොࢠ · ࢠෝ࢖ ൅ ොାࢋ · ෝି࢖ ൅ ොିࢋ · ෝାቚ࢖ ଷଶ , ଵଶ඀. (A19)

At this point, using54 

 ฬ32 , 12඀ ൌ ฬ√݅6 ሾሺܺ ൅ ܻ݅ሻ ՝ െ2ܼ ՛ሿඁ 
(A20)

we obtain 

ଵ/ଶܯ  ൌ ாబ௜ఠ√଺ ർܿቚܽ՛భ/మ඀ ࢠොࢋ|ܵ⟩ · ࢠෝ࢖ ൅ ොାࢋ · ෝି࢖ ൅ ොିࢋ · ෝା|ሺܺ࢖ ൅ ܻ݅ሻ ՝ െ2ܼ ՛⟩. (A21)
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Finally, if the incident light is polarized parallel to the wire’s ݖ-axis, the transition matrix 

element ܯଵ/ଶצ  reduces to 

צଵ/ଶܯ  ൌ െ2ܧ଴݅߱√6 ർܿቚܽ՛భ/మ඀ ⟨ܵ ՛ ࢠොࢋ| · ܼ|ࢠෝ࢖ ՛⟩ (A22)

where ⟨ܵ ՛ ܼ|ࢠෝ࢖| ՛⟩ is the Kane matrix element (ܭ௉) and ݁௭ ן cos  the angle between ߠ with ,ߠ

the light polarization vector and the NW z axis.  For ߠ ൌ 0°, we obtain 

 หܯଵ/ଶצ หଶ ൌ ௉ଶ3ܭ2 ൬ܧ଴߱൰ଶ ቚർܿቚܽ՛భ/మ඀ቚଶ. (A23)

Alternatively, if the light is polarized perpendicular to the NW z axis, the associated transition 

matrix element, ܯଵ/ଶୄ , is 

ଵ/ଶୄܯ  ൌ ଴݅߱√6ܧ ൽܿቤܽ՛భమඁ ොାࢋ|ܵ⟩ · ෝି࢖ ൅ ොିࢋ · ෝା|ሺܺ࢖ ൅ ܻ݅ሻ ՝⟩ ൬ ௠ߝ௠ߝ2 ൅ ௦൰ଶߝ
 

ൌ ଴݅߱√6ܧ ർܿቚܽ՛భ/మ඀ ݁ା√2 ൫ൻܵ ՝ ห࢖ෝ࢞|ܺ ՝⟩ ൅ ⟨ܵ ՝ หܻ࢟ෝ࢖| ՝ൿ൯ ൬ ௠ߝ௠ߝ2 ൅  .௦൰ଶߝ
(A24)

with ⟨ܵ ՝ ܺ|࢞ෝ࢖| ՝⟩ and ൻܵ ՝ ห࢖ෝ࢟หܻ ՝ൿ both Kane matrix elements (ܭ௉), and ߝ௦ and ߝ௠ the 

dielectric constants for the wire and the surrounding medium respectively.  Furthermore, |݁ା|ଶ ൌ |௘఼|మଶ ൌ ୱ୧୬మఏଶ .  Consequently, for ߠ ൌ 90° we obtain 

 หܯଵ/ଶୄ หଶ ൌ ௉ଶ6ܭ ൬ܧ଴߱൰ଶ ቚർܿቚܽ՛భ/మ඀ቚଶ ൬ ௠ߝ௠ߝ2 ൅ ௦൰ଶ. (A25)ߝ

     Transition matrix elements for 1Σ3/21Σe are obtained analogously and are 

 หܯଷ/ଶצ หଶ ൌ 0 

หܯଷ/ଶୄ หଶ ൌ ௉ଶ2ܭ ൬ܧ଴߱൰ଶ ቚർܿቚܾ՛య/మ඀ቚଶ ൬ ௠ߝ௠ߝ2 ൅  .௦൰ଶߝ
 

(A26)
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Expressions for 2Σ1/21Σe and 2Σ3/21Σe transition probabilities are derived in an identical manner 

using corresponding 2Σ1/2 and 2Σ3/2 hole state envelope functions. 

     Calculated squared transition matrix elements for 2Σ1/21Σe and 2Σ3/21Σe transitions are shown 

in Figure 11.  The plot reveals that 2Σ1/21Σe possesses the largest overall transition probability 

under parallel polarized excitation.  By contrast, 2Σ3/21Σe is dark under the same conditions.  For 

perpendicularly polarized light, both 2Σ1/21Σe and 2Σ3/21Σe possess similar transition 

probabilities. 

 
FIG. 11. Squared transition matrix elements for 2Σ1/21Σe and 2Σ3/21Σe under parallel (||) and perpendicularly (٣) 
polarized excitation.  Dielectric constants of the wire and the surrounding medium are assumed to be ߝ௦ = 6.1 and ߝ௠ = 2.0 respectively. 
 

     Analogous squared transition matrix elements for 1Σ1/21Σe and 1Σ3/21Σe, are shown in Figure 

12.  For parallel polarized light, 1Σ1/21Σe possesses the largest overall transition probability.  

1Σ3/21Σe is dark under the same conditions.  For perpendicularly polarized light, 1Σ3/21Σe 

possesses a transition probability larger than that for 1Σ1/21Σe. 
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FIG. 12.  Squared transition matrix elements for 1Σ1/21Σe and 1Σ3/21Σe under parallel (||) and perpendicularly (٣) 
polarized excitation.  Dielectric constants of the wire and the surrounding medium are assumed to be ߝ௦ = 6.1 and ߝ௠ = 2.0 respectively. 
 

2. Calculation of effective absorption polarization anisotropies for overlapped transitions 

     The modified theory described above predicts that 1Σ1/21Σe and 1Σ3/21Σe possess similar 

energies [see Figure 4 (d), main text].  Consequently, α likely represents an unresolved mixture 

of these two states.  We thus model α’s polarization parameter, ρ, using a composite anisotropy 

(ρc) given by  

௖ߩ  ൌ ሺ|ܯ௖צ|ଶ െ ௖ୄܯ| |ଶሻቀหܯ௖צหଶ ൅ ௖ୄܯ| |ଶቁ 
(A27)

where |ܯ௖צ|ଶ and |ܯ௖ୄ |ଶ are composite squared transition matrix elements under parallel and 

perpendicularly polarized excitation.  Specifically, 
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ଶ|צ௖ܯ|  ൌ ቚܯଵஊభ/మଵஊ೐צ ቚଶ ൅ ቚܯଵஊయ/మଵஊ೐צ ቚଶ
 (A28)

and 

௖ୄܯ|  |ଶ ൌ ቚܯଵஊభ/మଵஊ೐ୄ ቚଶ ൅ ቚܯଵஊయ/మଵஊ೐ୄ ቚଶ
 (A29)

for 1Σ1/21Σe and 1Σ3/21Σe.  Consequently, we find α absorption anisotropy values of ߩ௖ = 0.61 to 

0.85 (for ߝ௠ values between 2 and 1 and ߝ௦ = 6.1). 

     The composite anisotropy value for β, which is attributed to unresolved 2Σ1/21Σe and 2Σ3/21Σe 

transitions, is likewise evaluated using 

ଶ|צ௖ܯ|  ൌ ቚܯଶஊభ/మଵஊ೐צ ቚଶ ൅ ቚܯଶஊయ/మଵஊ೐צ ቚଶ
 (A30)

and 

௖ୄܯ|  |ଶ ൌ ቚܯଶஊభ/మଵஊ೐ୄ ቚଶ ൅ ቚܯଶஊయ/మଵஊ೐ୄ ቚଶ. (A31)

For ߝ௠ values between 2 and 1, ߝ௦ = 6.1  and a = 3 nm, we find ߩ௖-values ranging from ߩ௖ = 0.38 

to 0.74. 

 

F. Exciton trap states 

     As described in the main text, the probability for an exciton sampling a trap with an energy ߳ 

below the band edge is given by  

 ܲ ൌ ൫݁ିకఢ൯൫1 െ ݁ିకఢ൯ே. (A32)

The resulting distribution resembles an asymmetrically broadened Gaussian.  It is illustrated 

below for different N values. 
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FIG. 13.  Trap state probability distribution for N = 1, 2, 3, 4 and 1/ξ=18 meV. 

 

     To estimate N, the number of traps an exciton samples within its Bohr radius is first 

evaluated.  Assuming the bulk exciton Bohr radius of CdSe (ܽ஻ = 5.6 nm15), a trap density of 

ρtrap = 1 x 1019 cm-3 and a NW length of l = 1 μm, we find 

 ܰ ൌ ρ୲୰ୟ୮ሺ2ܽߨଶܽ஻ሻ. (A33)

Then, using a = 2 – 4 nm yields N values of N = 1 – 6.  These values represent upper limits since 

actual localized exciton Bohr radii are likely to be smaller.  Furthermore, a NW length of l=1 μm 

is assumed whereas experimental samples consist of wires with l >> 1 μm. 
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