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We calculate the energy spectrum of a Dirac double layer, where each layer has the Dirac electronic
dispersion, in the presence of a tilted magnetic field and small interlayer tunneling. We show that the
energy splitting between the Landau levels has an oscillatory dependence on the in-plane magnetic
field and vanishes at a series of special tilt angles of the magnetic field. Using a semiclassical analysis,
we show that these special tilt angles are determined by the Berry phase of the Dirac Hamiltonian.
The interlayer tunneling conductance also exhibits an oscillatory dependence on the magnetic field
tilt angle, known as the angular magnetoresistance oscillations (AMRO). Our results are applicable
to graphene double layers and thin films of topological insulators.

PACS numbers: 73.50.Jt,71.70.Di

I. INTRODUCTION

Recently there has been considerable interest in the
effects of a magnetic field in materials with the Dirac
dispersion in electronic energy spectrum1. Most stud-
ies focus on a perpendicular magnetic field applied to a
two-dimensional (2D) Dirac material, e.g., graphene2 or
the surface of a topological insulator (TI). The Landau
quantization of Dirac fermions produces the unconven-
tional quantum Hall effect3, which is often taken as an ex-
perimental signature of Dirac fermions in the system4,5.
In addition, a number of papers consider the case with
an in-plane component of the magnetic field6–17. The
in-plane component produces a relative shift in momen-
tum space of the Dirac cones in adjacent layers. This
effect results in unusual energy spectrum and depen-
dence of the interlayer tunneling current on the mag-
netic field6–9,12. Magnetoresistance and tunneling spec-
troscopy for the in-plane magnetic field were measured in
thin films of TIs10,11, a graphite mesa12, and a graphene
double layer13. A relative twist of the layers in a graphene
bilayer also produces an effect similar to the in-plane
magnetic field14,18,19. The Landau levels in a tilted mag-
netic field were studied for graphene multilayers15,16. An
unusual dependence of the resistance on the magnetic
field orientation was found in a bulk TIs17.

The oscillatory dependence of resistance on the orien-
tation of a tilted magnetic field, called the angular mag-
netoresistance oscillations (AMRO), was first observed in
organic conductors20. AMRO are characteristic for lay-
ered materials, such as organic conductors21, intercalated
graphite22,23, Sr2RuO4

24–26, and high-Tc cuprates27–29

(see more references in Refs. [30–32]). AMRO are man-
ifested as resistivity oscillations periodic in tan θ =
By/Bz, where the tilt angle θ is expressed in terms of
the in-plane By and out-of-plane Bz components of the
magnetic field. The effect is distinct from the usual quan-
tum oscillations, which are periodic in 1/Bz = 1/B cos θ.

(a)

(b)

FIG. 1. (color online) (a) Double layer of thickness d in the
tilted magnetic field B = (0, By, Bz). The out-of-plane mag-
netic field Bz induces the in-plane cyclotron motion of the
radius Rc. Interference between the two orbits is controlled
by the flux of the in-plane magnetic field By through the
Aharonov-Bohm area shown as the shaded rectangle. (b)
Semiclassical electron orbits in momentum space in the two
layers are shifted by q = eByd. Interference between the or-
bits is controlled by the shaded areas Sp. Both real (a) and
momentum (b) space pictures show that the interlayer tun-
neling w is suppressed at the magic angles θN in Eq. (1).

Although AMRO were originally studied for an infinite
layered crystal33, it was later shown that the effect ex-
ists even for two layers30. AMRO can be interpreted in
terms of the interlayer Aharonov-Bohm (AB) effect in
the following way31,32. Consider a double layer of the
distance d between the layers in the tilted magnetic field
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B = (0, By, Bz), as shown in Fig. 1(a). The perpen-
dicular magnetic field Bz induces cyclotron motion of
the radius Rc = pF /eBz in each layer, where pF is the
Fermi momentum, and e is the electron charge. The cy-
clotron diameter 2pF and the interlayer distance d form
the area SAB = 2Rcd shown by the shaded rectangle in
Fig. 1(a). The flux of the in-plane magnetic field By
through this area determines the interference condition
BySAB = 2π~(N + const)/e between electron trajecto-
ries involving in-plane cyclotron motion and interlayer
tunneling. For materials with the parabolic electronic
energy spectrum, destructive interference suppresses in-
terlayer tunneling31 at the following “magic” angles θN

pF d tan θN = ~
(
πN − π

4

)
, N = 1, 2, . . . (1)

Alternatively, the same condition can be obtained in the
momentum space p = (px, py). The in-plane magnetic
field By shifts the relative momenta of the Fermi circles
in the adjacent layers by6,8

∆px = q = x̂eByd, (2)

as illustrated in Fig. 1(b). The perpendicular magnetic
field Bz induces cyclotron motion indicated by the ar-
rows, and interference between the two circular orbits
is controlled by the shaded areas Sp ≈ 2pF q shown
in Fig. 1(b). The Onsager-like interference condition
Sp/eBz = 2π~(N + const) gives Eq. (1) as well.

Although many Dirac materials have a layered struc-
ture, the effect of AMRO received limited attention for
these materials. AMRO were measured in intercalated
graphite compounds22,23, and offsets −0.39π and −π/4
in Eq. (1) were observed. Recently, the effect of the Berry
curvature, which may be present in gapped Dirac mate-
rials, on quantum oscillations and AMRO was studied in
Refs. [34,35].

Here we present a theoretical study of AMRO in the
simplest case of the Dirac double layer, where each layer
has a linear electronic energy spectrum. It is realized
experimentally for a double layer of graphene13 or the
opposite surfaces of a thin film of a TI7,8,36. In the
presence of a small interlayer tunneling, we find that the
Landau levels spectrum in a tilted magnetic field has an-
gular dependence similar to AMRO. The levels become
doubly degenerate at the “magic” tilt angles θN , where
the effective interlayer coupling is suppressed due to the
destructive AB interference. We also calculate the inter-
layer conductance, which exhibits both the Shubnikov-de
Haas and AMRO oscillations. We find a deviation from
the standard −π/4 offset angle in Eq. (1) and explain it
semiclassically using the Berry phase.

II. HAMILTONIAN OF A DOUBLE LAYER

Consider a Dirac double layer of thickness d as shown
in Fig. 1(a). The Hamiltonian of the model in the second-

quantized form is

H0 =

∫
d2p

[
ψ1
p
†
h(p)ψ1

p + αψ2
p
†
h(p)ψ2

p

]
, (3)

h(p) = v(σ · p) = v(σxpx + σypy). (4)

Here, ψjp is the wavefunction of an electron with in-plane
momentum p = (px, py) on the opposite layers labeled by
j = 1, 2, and h(p) is the Dirac Hamiltonian. We consider
the simplest case where each layer contains only a single
flavor of the Dirac electrons. However our analysis can
be extended to multiple Dirac flavors per layer as, for
example, in graphene, where the two flavors correspond
to the valley and spin degree of freedom2. The Pauli ma-
trices σ act on the spinor wave functions ψj = [ψj↑, ψ

j
↓],

where the pseudospin index ↑↓ corresponds to a sublat-
tice degree of freedom in graphene and to the real spin
in TIs.

The Hamiltonian h(p) has the Dirac cone linear energy
dispersion Ep = ±v|p|. The eigenstates corresponding to
the positive and negative energies are the spinors

ψ+,p =
1√
2

[
e−iγ

1

]
, ψ−,p =

1√
2

[
−1
eiγ

]
, (5)

where γ = arctan(py/px) is the angle of p in the 2D
momentum space. The eigenstates (5) have parallel and
antiparallel locking of the chiral pseudospin and the mo-
mentum, respectively. One can define the Berry phase
for the wave functions in Eq. (5). The winding of the
Berry phase along an arbitrary contour C in the momen-
tum space is

Γ(C) = i

∫
C
dp 〈ψ±,p | ∂p | ψ±,p〉 = ±∆γ

2
, (6)

where ∆γ is the angle traced by C when viewed from the
origin. Note that the wave functions in Eq. (5) corre-
sponding to positive and negative energies have opposite
Berry phases. In Sec. VI, we show that the Berry phase
can change the magic angles offset in Eq. (1).

In Eq. (3), the Dirac cones on the opposite layers have
either the same α = 1 or opposite α = −1 chiralities.
The case α = 1 corresponds to a graphene double layer13,
where the alignment of graphene lattices in the real space
translates into the alignment of the Dirac cones of the
same chirality in the momentum space. The case α =
−1 corresponds to a TI film8, where the Rashba vectors
normal to the opposite surfaces of the film define the
Dirac cones of the opposite chirality37.

III. EFFECT OF A MAGNETIC FIELD

Now let us introduce a perpendicular magnetic field
Bz. With the Peierls substitution, the Dirac Hamiltonian
becomes h(p− eA), where we choose the Landau gauge
A = −yBzx̂ for the vector potential A. The energy
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(a)

FIG. 2. (color online) Dirac cones of the two layers shifted
in momentum space by q = eByd. The out-of-plane magnetic
field Bz induces cyclotron motion in the direction shown by
the black arrows. The two cyclotron orbits intersect at the
angle χ at the points A and F . The red and blue arrows
attached to the Fermi circles show the pseudospin direction
for each Dirac cone for α = 1 in Eq. (3). Either blue or red
arrows are reversed for α = −1.

spectrum is given by the Landau levels labeled by the
integer n = 0,±1, . . .

Φn,px =
1√
2

[
φ|n|,px

sgn(n)φ|n−1|,px

]
, En = sgn(n)

~v
√

2n

l
.

l =
√

~/eBz. (7)

Here l is the magnetic length, and φm,px are the usual
harmonic-oscillator wave functions

φm,px(y) =
e−(y+pxl

2/~)2/2l2√
2mm!l

√
π

Hm

(
y + pxl

2/~
l

)
,

where Hm are the Hermite polynomials. The momentum
px is a good quantum number and controls the position
yc = −px/eBz along the ŷ axis around which the wave
functions φm,px are localized.

Next, let us turn on a parallel magnetic field By, so
that the vector potential becomes A = (zBy − yBz) x̂.
For a single layer, the in-plane magnetic field does not
have any orbital effect. But for a double layer, the term
−zBy produces a relative shift of the in-plane momenta
∆px = q on the opposite layers6,8 given by Eq. (2). The
dynamics of electrons can be understood semiclassically
as the cyclotron motion on the shifted Dirac cones cor-
responding to the opposite layers, as shown in Fig. 2. In
the quantum description, the momentum px controls the
yc position around which the wave functions in Eq. (7)
are localized. So, the shift q in the momentum space also
produces a relative shift of the wave functions in real
space

∆y =
q

eBz
= d

By
Bz

= d tan θ. (8)

For simplicity, we do not include the Zeeman coupling of
the magnetic field to the electron spins and leave it for
future studies38.

IV. INTERLAYER TUNNELING

The spectrum of the Hamiltonian in Eq. (3) in the pres-
ence of the titled magnetic field consists of the Landau
levels, which are double degenerate because of the iden-
tical Dirac Hamiltonians in the two layers. Now suppose
the layers are coupled by the tunneling Hamiltonian

Hw =

∫
d2p

[
ψ1
p
†
W † ψ2

p + ψ2
p
†
W ψ1

p

]
, W = w I. (9)

In general, W is the interlayer tunneling matrix in the
pseudospin space6, but here we consider the simplest case
where it is proportional to the unit matrix I = diag(1, 1).
We also assume that the interlayer tunneling is local in
real space, so the in-plane momentum p is conserved, and
the amplitude w does not depend on p.

We expand the wave functions ψ1 =
∑
n ψ

1
nΦn,px and

ψ2 =
∑
n ψ

2
nΦn,px−q in the basis of the Landau func-

tions (7), where the eigenvalue equation for the Hamilto-
nian H0 +Hw in the tilted magnetic field becomes∑

m

[
(En − E)δnm wn,m

wm,n (αEn − E)δnm

] [
ψ1
m

ψ2
m

]
= 0. (10)

The matrix elements wnm = w〈Φn,px | Φm,px−q〉 of Hw

between the Landau functions on the opposite layers are

wn,m
w

=− e−β
2/2(−β)|n|−|m|

2η

[√
|m|!
|n|!

L
(|n|−|m|)
|m|

(
β2
)

+ sgn(nm)

√
(|m| − 1)!

(|n| − 1)!
L
(|n|−|m|)
|m|−1

(
β2
)]
, (11)

β =
ql

~
√

2
= Byd

√
e

2~Bz
. (12)

Here L
(k)
j (x) are the Laguerre polynomials, and the ex-

ponent is η = 0, 1/2, and 1 for the cases n = m = 0,
|n| > m = 0, and |n| ≥ |m| > 0, respectively. The matrix
elements (11) are derived in Appendix A. Note that the
two-component spinor structure of the wave functions (7)
produces the two terms with the Laguerre functions in
Eq. (11). In the case of a simple parabolic spectrum, the
analogous matrix elements have only one such term39.

V. DISCUSSION OF THE SPECTRUM

We calculate the energy spectrum in a tilted mag-
netic field by solving Eq. (10) numerically and show the
results40 for the same α = 1 and opposite α = −1 chiral-
ities in Figs. 3 and 4. Panels (a) show the energy levels
E versus the in-plane magnetic field By for a fixed Bz.
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(a)

(b)

(c)

FIG. 3. (color online) (a) The energy spectrum of Eq. (10)
for α = 1 vs. By for a fixed Bz. The number on the right
axis is the Landau level index n. The numbers on the plot
indicate the filling factor ν, which defines the quantum Hall
conductivity. (b) Density of states (DOS) at the Fermi energy
EF = vpF plotted vs. By and Bz. Dashed lines correspond to
the magic tilt angles given by Eq. (19). (c) The out-of-plane
conductance Gzz from Eq. (21) vs. By and Bz. The Fermi
circles of the two layers shifted by q = Byed are shown at the
top.

The Landau level index n is shown on the right vertical
axis. We observe splitting of the Landau levels, which
oscillates as a function of By. This behavior can be un-
derstood using perturbation theory in w. For w = 0, the
wave functions Φn and Φαn localized on different lay-
ers have the same energy En according to Eq. (7). To
the first order in w, the symmetric-antisymmetric (SAS)
splitting of the Landau levels is given by the matrix ele-
ments wn,αn:

E±n = En ± wn,αn, wn,αn = w〈Φn,px | Φαn,px−q〉. (13)

The wave functions Φn,px and Φαn,px−q have the relative
shift ∆y = dBy/Bz in real space, as shown in Eq. (8).
Since the wave functions in Eq. (7) oscillate in real space
on the scale of l/

√
n, the overlap between Φn,px and

Φαn,px−q oscillates as a function of By, resulting in the
oscillatory SAS splitting of the Landau levels in Figs. 3(a)
and 4(a). For a sufficiently strong By, the distance ∆y
exceeds the width l

√
n of the Landau wave functions, so

the overlap matrix elements wn,αn vanish, and the Lan-
dau levels (13) become degenerate. The positions of the
nodes, where the SAS splitting vanishes, are different in
Figs. 3(a) and 4(a) for α = ±1 reflecting the difference
between wn,n and wn,−n. In Sec. VI, we show that it is
a consequence of different Berry phase contributions.

The lines in Figs. 3(a) and 4(a) separate regions where
the Hall conductivity has the quantized values σxy =
νe2/h indicated on the plots, assuming that all Landau
levels are filled below the energy E. For two decoupled
Dirac layers in the spinless case, the filling factor runs
through the odd integers ν = 2j + 1, where j is inte-
ger. However, in the presence of the coupling w between
the Dirac layers, the even filling factors ν = 2j becomes
available for the energies inside the SAS splitting, which
oscillates as a function of By.

In Figs. 3(b) and 4(b), we plot the same data in a differ-
ent way. We fix the chemical potential, so that the Fermi
energy EF = vpF and the Fermi momentum pF are con-
stant, and plot a map of the density of states (DOS) at
the Fermi level as a function of By and Bz. Figures 3(b)
and 4(b) exhibit peaks in DOS when the Landau lev-
els cross the chemical potential. The Landau level index
n is indicated on the right vertical axis. For By = 0
and increasing Bz, the Landau levels with the indices
n ∝ 1/Bz cross the Fermi energy. For increasing By, the
SAS splitting between the Landau levels oscillates and
passes through a series of nodes. A similar oscillatory
SAS splitting was observed experimentally in semicon-
ducting bilayers with a parabolic dispersion relation41.
In the regions between the peaks in DOS, the Hall con-
ductivity has the quantized values σxy = νe2/h indicated
in Figs. 3(b) and 4(b). Thus, in the double layer geom-
etry, transitions between the quantum Hall plateaus can
be driven by both the in-plane and out-of-plane compo-
nents of the magnetic field.

For low magnetic fields, the SAS splitting nodes align
along the dashed lines corresponding to the “magic” tilt
angles θN . In order to find these angles, let us examine



5

(a)

(b)
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FIG. 4. (color online) (a) The energy spectrum of Eq. (10)
for α = −1 vs. By for a fixed Bz. The number on the right
axis is the Landau level index n. The numbers on the plot
indicate the filling factor ν, which defines the quantum Hall
conductivity. (b) DOS at the Fermi energy EF = vpF plotted
vs. By and Bz. Dashed lines correspond to the magic tilt
angles given by Eq. (20). (c) The out-of-plane conductance
Gzz from Eq. (21) vs. By and Bz. The Fermi circles of the
two layers shifted by q = Byed are shown at the top.

where the diagonal tunneling matrix elements

wn,αn =
we−β

2/2

2

[
L
(0)
|n|
(
β2
)

+ αL
(0)
|n|−1

(
β2
)]

(14)

vanish. Using the asymptotic approximation of the La-
guerre polynomials for n� x� 1

L(k)
n (x) ≈ n

k
2−

1
4 e

x
2

√
πx

k
2+

1
4

cos

[
2
√
nx− π

2

(
k +

1

2

)]
(15)

in Eq. (14) for α = 1, we find

wn,n
w

=
cos
(
2
√
nβ − π

4

)√√
nβπ

=
cos
(
pF d tan θ

~ − π
4

)
√
πpF d tan θ/2~

. (16)

Here we kept only the leading terms in 1/n. Assum-
ing that the Landau level n is at the chemical poten-
tial En = vpF , we expressed the Fermi momentum as
pF =

√
2ne~Bz, so that

2
√
nβ =

pF d tan θ

~
,

β

2
√
n

=
eByd

2pF
. (17)

For the opposite chiralities α = −1, using the identity

L
(0)
n+1(x) − L

(0)
n (x) = − x

n+1L
(1)
n (x) and the asymptotic

formula (15), we obtain

wn,−n
w

=

√
β

4n3/2π
cos

(
2
√
nβ − 3π

4

)
=

√
e2~ByBzd

2πp3F
cos

(
pF d tan θ

~
− 3π

4

)
. (18)

The arguments of the cosine functions in Eqs. (16) and
(18) are different, so the matrix elements wn,n and wn,−n
vanish at the different magic tilt angles θN

pF d tan θN = ~
(
πN − π

4

)
, α = +1, (19)

pF d tan θN = ~
(
πN + π

4

)
, α = −1. (20)

Equation (19) is equivalent to Eq. (1) for the parabolic
dispersion. Note that the condition (20) was also ob-
tained in Ref. [42] for a three-dimensional material with
an azimuthally corrugated Fermi surface. Our result (20)
does not depend on the azimuthal direction of the in-
plane magnetic field and, thus, can be experimentally
distinguished from the scenario proposed in Ref. [42].
The magic angles θN given by Eqs. (19) and (20) are
shown by the dashed lines in Figs. 3 and 4, correspond-
ingly. We observe that the SAS splitting nodes align very
well with these lines for moderate magnetic fields. For
stronger fields, the magic angles become dependent on
the magnitude of the field.

Angular dependence of the Landau levels can be also
observed in the out-of-plane conductance Gzz = dIz/dVz
in a tilted magnetic field. In the tunneling formalism for
small w, the tunneling conductance is proportional to

Gzz ∝ Bz|wn,αn|2 ρ2n(EF ), (21)
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where ρn(EF ) is the DOS for the original unperturbed
Landau level (7) at the Fermi energy, as discussed in
Appendix B. The tunneling conductance Gzz is plotted
in panels (c) of Figs. 3 and 4 as a function of both By
and Bz. Comparing panels (b) and (c), we observe that
Gzz has maxima where the SAS splitting is large. Con-
versely, the tunneling conductance is suppressed at the
magic angles defined by Eqs. (19) and (20) and shown by
the dashed lines. The oscillations of Gzz as a function of
Bz for a fixed By represent the usual Shubnikov-de Haas
oscillations, whereas the oscillations of Gzz as a function
of the tilt angle tan θ = By/Bz represent AMRO.

As indicated above Eq. (15), the approximation for
the Laguerre polynomials is applicable only for the high
Landau levels with n � 1, i.e., for weak magnetic fields
Bz. Moreover, it is also required that n � β2, which
means a weak magnetic field By such that eByd� 2pF

43.
For stronger magnetic fields, Eq. (14) should be used

without approximations. On the horizontal axes in pan-
els (b) and (c) in Figs. 3 and 4, the value eByd/pF = 2
corresponds to detachment of the Fermi circles in the
two layers displaced by q, as shown at the top of panels
(c). For α = 1, the effective interlayer coupling, as mea-
sured by the SAS splitting and tunneling conductance
Gzz, is maximal for By = 0 and is suppressed around
eByd ≈ 2pF . This is because the spinor wave functions
(7) are orthogonal at the opposite sides of the Fermi cir-
cle. In contrast, for α = −1, the effective interlayer cou-
pling is suppressed around By ≈ 0 and is maximal for
eByd ≈ 2pF , because the spinors (7) have opposite chi-
ralities in this case. Panels (b) and (c) in Fig. 4 demon-
strate an interesting pattern of magnetic oscillations vs.
By and Bz around eByd ≈ 2pF . This pattern origi-
nates from quantization of the electron orbits around the
unshaded area ACFG in Fig. 1(b), which shrinks when
eByd → 2pF . A similar pattern of magnetic oscillations
vs. By and Bz was observed experimentally44 in semi-
conducting bilayers with population imbalance between
the layers.

The first-order perturbation theory in Eq. (13) is ap-
plicable when the SAS splitting wn,αn is smaller than
the energy difference between consecutive Landau lev-
els. Otherwise, the full equation (10) with the off-
diagonal matrix elements wn,m should be solved numeri-
cally. However, it is also possible to get an insight using
the semiclassical approximation described below.

VI. SEMICLASSICAL DESCRIPTION

Here we discuss how to derive the magic angles in the
semiclassical approximation. Let us first review the semi-
classical arguments in the case where the layers have
a parabolic in-plane spectrum31,32. As illustrated in
Fig. 1(b) (as well as in Fig. 2), the in-plane magnetic
field By shifts the Fermi momenta by q, whereas the
perpendicular magnetic field Bz induces cyclotron mo-
tion in momentum space. Then, interference between

the paths ADF and ACF determines the effective cou-
pling between the layers. Similarly to the semiclassical
Onsager quantization45–47, the interference is controlled
by the shaded area Sp between the two paths in Fig. 1(b)

Sp
e~Bz

+ ϕ =
π

2
− π + 2πN. (22)

Here, the term π/2 originates from the Maslov index at
the turning points, whereas the term −π represents de-
structive interference. For a small shift q � pF , the area
becomes Sp = 2pF q = 2pF eByd, so the destructive inter-
ference condition (22) becomes

pF d tan θN = ~
(
πN − π

4
− ϕ

2

)
, N = 1, 2, . . . (23)

For the in-plane parabolic energy dispersion h(p) =
p2/2m, the extra phase ϕ vanishes, i.e. ϕ = 0, and
Eq. (23) reproduces Eq. (1).

For the in-plane Dirac Hamiltonian (4), the spinor
eigenstates (5) produce an additional phase45–47

ϕ = Γ2(ADF )− Γ1(ACF ) + ArgW 21(A)−ArgW 21(F ),
(24)

where the upper indices j = 1, 2 denote the layer number.
The first two terms represent the Berry phases

Γj(C) = i

∫
C

dp 〈ψjp | ∂p | ψjp〉 (25)

accumulated during the semiclassical motion along the
paths ADF or ACF , denoted by the symbol C for brevity.
The last two terms in Eq. (24) describe the phases picked
during the inter-orbit tunneling

W 21(X) = 〈ψ2
pX
|W | ψ1

pX
〉, (26)

where X denotes the intersection points A and F for
brevity. In contrast to Eq. (9), we now allow for an ar-
bitrary interlayer tunneling matrix W . Note that the
phase ϕ does not depend on a particular choice of the
gauge for the eigenstates (5), although the individual
terms in Eq. (24) are gauge-dependent.

Let us calculate the phase ϕ for the case, where
α = 1 and W = wI considered in the previous sec-
tion. For the wave functions (5), the Berry phase (6)
is given by the half of the arc traced by the orbit
as viewed from the origin. So, we obtain the Berry
phase contribution Γ2(ADF )− Γ1(ACF ) = χ expressed
via the angle χ shown in Figs. 1(b) and 2. On the
other hand, the contribution of tunneling in Eq. (24) is
ArgW 21(A)−ArgW 21(F ) = 2π−χ. We sum the Berry
phase and tunneling contributions and obtain φ = 2π.
Thus, the interference condition (23) recovers Eq. (19).
For the case of α = −1 and W = wI, which corre-
sponds to a TI film, the Berry phase contribution is
Γ2(ADF )−Γ1(ACF ) = π, whereas the tunneling contri-
bution vanishes ArgW 21(A) − ArgW 21(F ) = 0. Thus,
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Type of Dirac Hamiltonian α = 1, W = wI α = −1, W = wI α = 1, W = w(σx + iσy) α = 1, W = wσx

Physical system Double layer graphene TI film Bernal-stacked graphene

Γ2(ADF )− Γ1(ACF ) χ π χ χ

ArgW 21(A)−ArgW 21(F ) 2π − χ 0 π − χ 0

ϕmod 2π 0 π π χ

TABLE I. The phase shift ϕ given by Eq. (24), which appears in Eqs. (22) and (23), for different types of Dirac Hamiltonians in
the top row and the corresponding physical systems in the second row. The variable α represents relative chirality of the Dirac
cones in Eq. (3), whereas W is the tunneling matrix in Eq. (9). The angle χ is shown in Figs. 1(b) and 2. The total phase ϕ
in the last row is the sum of the third and fourth rows representing the Berry-phase (25) and the tunneling (26) contributions
to Eq. (24).

we substitute ϕ = π in Eq. (23) and reproduce Eq. (20).
In the Bernal-stacked graphene bilayer, the interlayer
tunneling matrix W = w(σx + iσy) couples one sublat-
tice of one layer to another sublattice of another layer6

for the Dirac cones of the same chirality (so α = 1). In
this case, we also obtain the phase ϕ = π. For a hypo-
thetical tunneling matrix W = wσx, we obtain the phase
ϕ = χ = 2 arcsin(q/2pF ), which depends on the in-plane
magnetic field via q = eByd. These results are summa-
rized in Table I. The phase ϕ strongly depends on the
interlayer tunneling matrix W and the relative chirality
α of the coupled Dirac cones.

The above discussion is applicable when the out-of-
plane magnetic field Bz � B0 is stronger than the mag-
netic breakdown field B0. In general, the interlayer tun-
neling amplitude w hybridizes and splits the electron or-
bits at the intersection points A and F in Fig. 1(b). Below
the magnetic breakdown field at Bz � B0, the electrons
predominantly move along the hybridized orbits ACFG
and ADFH, called the “lens” and “peanut” in Ref. [44],
and have a small probability P = exp(−B0/Bz) of chang-
ing the orbit. In the opposite limit Bz � B0 above the
magnetic breakdown, the electrons predominantly stay
on the circular orbits within each layer and have a small
probability P = 1− exp(−B0/Bz) ≈ B0/Bz of tunneling
to another layer at the intersection points A and F in
Fig. 1(b). The magnetic breakdown field39 is given by
the following expression

B0 =
2πw′

2

~ev2 sinχ
=


2πpFw

2

~ev2q

√
1− q2

4p2F
, α = +1,

πqw2

2~ev2pF
√

1− q2

4p2
F

, α = −1,
(27)

as discussed in Appendix C. Here χ is the intersection
angle of the two cyclotron orbits in Fig. 2, and w′ is
the effective coupling between the orbits. The angle χ
can be expressed via the in-plane magnetic shift q as
sin(χ/2) = q/2pF , and w′ is determined by the spinor
structure of the wave functions in Eq. (5). For α = 1,
the angle between the pseudospins on different orbits is χ,
so the effective coupling is w′ = w cos(χ/2). For α = −1,
the angle between the pseudospins is π−χ, so the effective
coupling is w′ = w sin(χ/2).

VII. EXPERIMENTAL RELEVANCE AND
CONCLUSIONS

Among the Dirac materials, AMRO have been ob-
served experimentally in the intercalated graphite22 at
the angles close to θ = π/2 where the magnetic field is
almost parallel to the layers. This is because tan θN ∝
1/pF d is large for a small interlayer distance d and a small
Fermi momentum pF . In the graphene double layer re-
ported in Ref. [13], the interlayer distance d = 1.4 nm
includes the boron nitride layers separating the two
graphene layers. Taking the Fermi energy as EF = 0.2 eV
and using the Fermi velocity v = 106 m/s, we find
the Fermi momentum pF /~ = EF /~v = 3 × 108 m−1.
Using Eq. (19), we estimate the first magic angle as
θ1 = arctan(3π~/4pF d) = 80◦. Taking the interlayer
coupling to be w ∼ 10 meV and sinχ ∼ 1 in Eq. (27),
we estimate the magnetic breakdown field as B0 ∼ 1 T.
Thus, we conclude that observation of AMRO in the
graphene double layer of Ref. [13] in a tilted magnetic
field is experimentally feasible.

In conclusion, in this paper we examined the effects
of a tilted magnetic field in the Dirac double layer. We
derived the general equation (10) for the electron energy
spectrum and its approximations (13) and (14) for a suffi-
ciently small interlayer tunneling amplitude w. We found
that the SAS energy splitting between the Landau lev-
els oscillates as a function of the in-plane magnetic field
By and vanishes at the series of “magic” tilt angles θN
of the magnetic field given by Eqs. (19) and (20). The
interlayer tunneling conductance (21) is suppressed at
these magic angles. Our results generalize the previously
known phenomenon of the angular magnetoresistance os-
cillations (AMRO) to the Dirac double layers, where the
magic angles depend on the Berry phases and coupling
between the Dirac cones: see Eqs. (22)-(24). Our the-
oretical results are applicable to, e.g., graphene double
layers and thin films of topological insulators studied ex-
perimentally in Refs. [13] and [36], respectively. We also
found that the quantum Hall conductivity σxy depends
on both By and Bz components of the magnetic field, as
indicated by the blue and white numbers in the panels
(a) and (b) of Figs. 3 and 4. It would be interesting to
further explore the role of interactions in the quantum
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Hall regime in the tilted field geometry48.
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Appendix A: Calculation of matrix elements

Here we calculate the matrix element in Eq. (11). Us-
ing the spinor structure of the wave functions (7) and
assuming that |n| ≥ |m|, we write

wn,m/w = 〈Φn,px | Φm,px−q〉 (A1)

=


(M|n||m| + sgn(nm)M|n|−1 |m|−1)/2, |m| > 0,

M|n|0/
√

2, |n| > m = 0,

M00, n = m = 0,

where

M|n||m| = 〈φ|n|,px | φ|m|,px−q〉 (A2)

is the matrix element between the shifted harmonic-
oscillator functions. As discussed in Sec. III, the shift in
momentum ∆px = −q corresponds to the spatial shift by
∆y = q/eBz = ql2/~. So, the matrix element (A2) can
be expressed via the translation operator p̂y = −i~∂y:

M|n||m| = 〈φ|n|,px | e
ip̂yql

2/~2

| φ|m|,px〉, (A3)

where p̂y = ~(â − â†)/i l
√

2 is written in terms of the
lowering and raising operators. Then we use the Baker-
Hausdorff formula to decouple the operators in the expo-
nent

M|n||m|= 〈φ|n|,px | e
(â−â†)β | φ|m|,px〉

= e−β
2/2〈φ|n|,px | e

−â†βeâβ | φ|m|,px〉,

where the parameter β is defined in Eq. (12). Expanding
the exponential functions and using the algebra of the

raising and lowering operators, we obtain

M|n||m| = e−β
2/2(−β)|n|−|m| (A4)

×

√
|n|!
|m|!

|m|∑
k=0

(−β2)k |m| . . . (|m| − k + 1)

k!(|n| − |m|+ k)!

= e−β
2/2(−β)|n|−|m|

√
|m|!
|n|!

L
(|n|−|m|)
|m|

(
β2
)
,

where we use the definition of the Laguerre polynomials
in the last line.

The matrix elements for |m| > |n| are obtained by
interchanging n and m and altering the sign β → −β.

Appendix B: Derivation of tunneling conductance

Here we give a brief derivation of the out-of-plane tun-
neling conductance (21) between the two layers. In the
tunneling-current formalism49 for small interlayer cou-
pling w, we write

Gzz =
dIz
dVz

=
2πe2

~
∑

n,m,px

|wn,αm|2 ρn(EF ) ραm(EF ),

(B1)
where n,m are the integers labeling the Landau wave
functions on the different layers, and wn,m are the tun-
neling matrix elements (11). In the chosen gauge, the mo-
mentum px defines the coordinate y = −px/eBz around
which the Landau wave functions are localized, as dis-
cussed in Section III. Thus, for a double layer of the finite
size Lx and Ly, we have

∑
px

→ Lx
2π~

eBzLy/2∫
−eBzLy/2

dpx =
eBzLxLy

2π~
, (B2)

where Lx defines the normalization of the differential dpx,
whereas Ly defines the limits of integrations. So, the
tunneling conductance becomes

Gzz =
e2

~
eBzLxLy

~
∑
n,m

|wn,αm|2 ρn(EF ) ρm(EF ), (B3)

Note, that the second fraction containing the magnetic
field Bz represents the degeneracy of the Landau levels.
We assume that DOS of the Landau level n has a finite
width Γ50

ρn(E) =
1√
πΓ

exp

[
− (E − En)2

Γ2

]
. (B4)

If the width Γ � |En − En±1| is much smaller than the
energy difference between consecutive Landau levels, the
tunneling conductance (B3) can be approximated as

Gzz =
e2

~
eBzLxLy

~
|wn,αn|2ρ2n(EF ), (B5)

http://dx.doi.org/ 10.1103/PhysRevB.78.155320
http://dx.doi.org/http://dx.doi.org/10.1016/0038-1098(94)90697-1
http://dx.doi.org/ 10.1103/PhysRevB.55.R13405
http://dx.doi.org/ 10.1103/PhysRevB.55.R13405
http://dx.doi.org/10.1103/PhysRevLett.82.2147
http://dx.doi.org/10.1103/PhysRevLett.82.2147
http://dx.doi.org/10.1103/PhysRevB.77.245413
http://dx.doi.org/10.1140/epjb/e2010-00259-2
http://dx.doi.org/10.1103/PhysRevLett.104.066801
http://dx.doi.org/10.1103/PhysRevLett.104.066801
http://dx.doi.org/10.1103/PhysRevB.90.115138
http://dx.doi.org/10.1103/PhysRevB.90.115138
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thus producing Eq. (21).
The effect of the Landau levels DOS profile on AMRO

was studied in Ref. [50]. Reference [50] also contains a
derivation of the tunneling conductance for a large Lan-
dau level broadening Γ� |En − En±1|.

Appendix C: Derivation of the magnetic breakdown
field

Here we derive Eq. (27) for the magnetic breakdown
field using the Landau-Zener theory of tunneling. The
Fermi circles corresponding to different layers intersect
at the angle χ at the points A and F in Figs. 1(b) and 2.
In the vicinity of, e.g., point A in the momentum space,
the effective Hamiltonian of the double layer in the basis
(ψ1, ψ2) can be approximated as[

(p− pA) · v1 w′

w′ (p− pA) · v2

]
, (C1)

where v1 and v2 are the local velocities of the two orbits
at the point A, and w′ is the local effective coupling. It
is convenient to use the reference frame in momentum
space where pA = 0, and the x axis bisects the angle
χ. Then the velocities are v1 = v

(
− sin χ

2 , cos χ2
)

and

v2 = v
(
sin χ

2 , cos χ2
)
, and the Hamiltonian becomes[

−vpx sin χ
2 + vpy cos χ2 w′

w′ vpx sin χ
2 + vpy cos χ2

]
.

(C2)
In the perpendicular magnetic field Bz described by the
gauge A = −yBzx̂, the momenta become (px, py) →
(px+eBzy, py). Quasiclassical dynamics of a wave packet
moving in the top layer is governed by the upper-diagonal
element of Hamiltonian (C2)

h1 = −v(px + eBzy) sin
χ

2
+ vpy cos

χ

2
. (C3)

The classical equations of motion can be integrated

ẏ = ∂h1

∂py
= v cos χ2 , ⇒ y(t) = t v cos χ2 −

px
eBz

,

ṗy = −∂h1

∂y = evBz sin χ
2 , ⇒ py(t) = t evBz sin χ

2 ,

where the initial conditions are chosen so that h1(0) = 0.
Substituting these solutions into the double-layer Hamil-
tonian (C2), we find the Landau-Zener Hamiltonian with
the time-dependent lower diagonal element

[
0 w′

w′ t ev2Bz sinχ

]
. (C4)

According to the Landau-Zener formula, the probability
that the wave packet stays on the same orbit ψ1 is

P = exp

(
− 2πw′2

~ev2Bz sinχ

)
= exp

(
−B0

Bz

)
, (C5)

where B0 is the magnetic breakdown field

B0 =
2πw′2

~ev2 sinχ
. (C6)

The above consideration is applicable to double lay-
ers with both parabolic and Dirac energy dispersion.
However, in the Dirac case, the effective tunneling w′

is determined by the scalar product of the spinor wave
functions (5) in the opposite layers. The angle be-
tween the pseudospins is χ for α = 1 and π − χ for
α = −1, so the effective couplings are w′ = w cos(χ/2)
and w′ = w sin(χ/2), respectively. We further express
the angle sin(χ/2) = q/2pF via the magnetic shift q and
obtain Eq. (27)

B0 =


2πpFw

2

~ev2q

√
1− q2

4p2F
, α = +1,

πqw2

2~ev2pF
√

1− q2

4p2
F

, α = −1.
(C7)
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