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Semiconductor alloys exhibit a strong dependence of effective thermal conductivity on measure-
ment frequency. So far this quasi-ballistic behaviour has only been interpreted phenomenologically,
providing limited insight into the underlying thermal transport dynamics. Here, we show that quasi-
ballistic heat conduction in semiconductor alloys is governed by Lévy superdiffusion. By solving
the Boltzmann transport equation (BTE) with ab initio phonon dispersions and scattering rates,
we reveal a transport regime with fractal space dimension 1 < α < 2 and superlinear time
evolution of mean square energy displacement σ2(t) ∼ tβ(1 < β < 2). The characteristic expo-
nents are directly interconnected with the order n of the dominant phonon scattering mechanism
τ ∼ ω−n(n > 3) and cumulative conductivity spectra κΣ(τ ; Λ) ∼ (τ ; Λ)γ resolved for re-
laxation times or mean free paths through simple relations α = 3 − β = 1 + 3/n = 2 − γ.
The quasi-ballistic transport inside alloys is no longer governed by Brownian motion, but instead
dominated by Lévy dynamics. This has important implications for the interpretation of ther-
moreflectance (TR) measurements with modified Fourier theory. Experimental α values for InGaAs
and SiGe, determined through TR analysis with a novel Lévy heat formalism, match ab initio BTE
predictions within a few percent. Our findings lead to a deeper and more accurate quantitative
understanding of the physics of nanoscale heat flow experiments.
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Introduction

Heat conduction in solid media is normally described by the well known Fourier diffusion equation.
However, at length and time scales comparable respectively to phonon mean free paths (MFPs) Λ
and relaxation times τ , this classical model begins to fail1. Experimental observations in which thermal gradients
are induced over microscale distances clearly deviate from standard Fourier predictions2–6. A notable and pioneering
example consists of time domain thermoreflectance (TDTR) measurements on semiconductor alloys2. This technique
performs thermal characterisation of test samples by measuring their response to a modulated pulse train of ultra-
short laser pulses. Alloys including InGaAs and SiGe were found to exhibit a near 50% reduction in apparent Fourier
thermal conductivity over the 1–10 MHz laser modulation frequency range. Such effects, and similar ones observed in
other experimental configurations, can be attributed to phonons whose MFPs exceed the characteristic dimension of
the heat source2–7, in this case the frequency dependent thermal penetration depth. As these so called quasi-ballistic
modes are unlikely to experience scattering events within the thermal gradient, they violate the inherent assumption
of the Fourier model, causing it to fail. Recently, Wilson and coworkers proposed a phenomenological two-
channel model8 to explain the nondiffusive behaviour in semiconductor alloys. This approach divides
the phonon population into two parts (essentially long and short MFP modes) which are treated as
individual conduction channels with distinct temperatures. The channel equilibration over space and
time is governed by their individual thermal conductivities and energy exchange coupling factor, all
of which serve as fitting parameters in the interpretation of experimental data.

In this work, we demonstrate that such an artificial division of the phonon population and underlying
assumption of internal nonequilibrium are unnecessary. Rather, the Fourier breakdown in alloys can
be easily understood in terms of an anomalous single temperature regime that arises naturally due to
the inherent properties of mass impurity phonon scattering. We use analytical solutions of the Boltzmann
transport equation (BTE) under the relaxation time approximation to study the spatiotemporal dynamics of
quasi-ballistic heat conduction in close detail. Our results reveal that the earlier mentioned reductions of apparent
conductivity in semiconductor alloys are a direct manifestation of superdiffusive Lévy transport. In this regime,
the thermal field is characterised by a fractal space dimension 1 < α < 2 that can be experimentally
measured and a mean square energy displacement that grows with superlinear time exponent β = 3−α.
The value of the exponents as well as the extent of the regime in space and modulation frequency are closely
related to the shape of the cumulative conductivity κΣ(Λ∗) and κΣ(τ∗). These functions are the conductivity that
would be observed if only those phonon modes with MFPs Λ ≤ Λ∗ or scattering times τ ≤ τ∗ were present in
the medium. The Lévy energy density is no longer Gaussian, causing shortcomings of modified Fourier models
conventionally used for experimental analysis of quasi-ballistic heat flow.

BTE modelling

To identify key regimes of thermal transport inside the semiconductor as would occur during thermoreflectance
experiments, we solve the 1D BTE for cross-plane heat flow (z direction) under the relaxation time approx-
imation (RTA). The RTA hypothesis treats all phonon scattering processes as resistive, which has
been shown to be an acceptable simplification (with an error typically below 5–10%) for Si and III-V
semiconductor compounds9. As is customary10, we assume the system close to thermal equilibrium
such that a meaningful local temperature rise ∆T (z, t) = T (z, t) − T0 can be defined with respect to
the reference temperature T0. All experimental thermoreflectance settings take care to ensure that
∆T � T0. The deviational volumetric energy density ~ωk[fBE(ωk;T )− fBE(ωk;T0)]/V for a phonon mode

with wavevector ~k and frequency ω can then be linearised to Ck∆T , where Ck = (~ωk/V )∂fBE

∂T

∣∣
T0

denotes

the mode specific heat with V the volume of the supercell and fBE the Bose-Einstein distribution.
Under these assumptions, the single pulse response to a planar source located at z = 0 with unit strength is
described by:

∂gk
∂t

+ vq,k
∂gk
∂z

= −gk − Ck∆T

τk
+
Ck
C
δ(z)δ(t) (1)

gk denotes the deviational phonon energy distribution and vq,k = ∂ω
∂kz

is the projection of the phonon group velocity
onto the thermal transport axis. Note that we write the BTE in terms of spectral quantities, indicated by subscripts

k, resolved for phonon wavevector ~k (and, implicitly, phonon branch). This is in contrast to other recent
works7,11 that rely on phonon frequency ω as the main variable under the assumption of a spherically
symmetric Brillouin zone (BZ). Our approach enables to directly utilise full phonon dispersions obtained from
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ab initio calculations and thereby accounts for the actual BZ shape and potential crystal anisotropies. The scaling
factor (Ck/C) in the source term expresses that the injected energy gets distributed across the various phonon modes
in proportionality with their contribution to the total heat capacity C =

∑
k

Ck. After spatial Fourier (z ↔ ξ) and

temporal Laplace (t↔ s) transformation of Eq. (1) we obtain

Gk(ξ, s) =
Ck
[
∆T (ξ, s) + τk

C

]
1 + sτk + jξΛq,k

(2)

where j is the complex unit and Λq,k = vq,k · τk denotes the projected phonon MFP. We note that the usefulness
of Gk is not limited to the RTA. Analysis of the full BTE leads to a large system of linear equations
in Gk which can be solved efficiently by iterative refinement12,13 of the RTA solution (2). This may be
explored further in future work. By inserting Gk into the conservation of energy,∑

k

1

τk
(Gk − Ck∆T ) = 0 , (3)

we can solve for ∆T (ξ, s). In the above and following, we use summations
∑
k

of all branches over a discrete wavevector

grid as this is convenient for ab initio simulation data. Presented BTE expressions are readily applicable to analytical

modelling as well by simply exchanging the summations with volume integrals
∫∫∫
BZ

d~k. Due to crystal symmetry with

respect to the kz = 0 plane, projected phonon MFPs occur in pairs with identical magnitude but opposite sign, and
we obtain:

P (ξ, s) = C∆T (ξ, s) =

∑
kz≥0

CkΨk(ξ, s)∑
kz≥0

Ck
τk

[1−Ψk(ξ, s)]
(4)

in which

Ψk(ξ, s) =
1 + sτk

(1 + sτk)2 + ξ2Λ2
q,k

(5)

Equation (4) provides a closed form expression in the Fourier-Laplace domain for the 1D energy density single
pulse response in the semiconductor. One can easily verify fulfillment of the energy balance by observing that

P (ξ → 0, s) = 1/s, signaling that
∞∫
−∞

P (z, t)dz = 1 at all times t. In stochastic terms, P (ξ, s) is the characteristic

function of a properly normalised random walk process in which P (z, t)dz expresses the probability to find the injected
source energy in location range [z, z + dz] at time t. The derivatives of P (ξ, s) with respect to ξ are continuous at

ξ = 0, so the moments of P (z, t) exist and are finite. The vanishing of the first derivative ∂P (ξ,s)
∂ξ

∣∣
ξ=0

= 0 indicates

zero mean, in accordance with spatial symmetry of the energy density around the heat source. The mean square
displacement (MSD) of thermal energy now immediately follows

σ2(s) = −∂
2P (ξ, s)

∂ξ2

∣∣∣∣
ξ=0

=
2

s2
·

∑
k

κk
(1+sτk)2∑
k

Ck
1+sτk

(6)

in which we introduced the spectral thermal conductivity κk = Λq,k · vq,k · Ck. Physically, the square root of
the MSD provides a measure for the average spatial extent of the thermal field. In Fourier diffusion
regime, this quantity is commonly known as the thermal penetration length.

From Eq. (6) we readily recover two well established limit regimes of the thermal transport. When sτω � 1,
corresponding to transitions that occur quickly compared to the phonon relaxation times, we have

σ2(s→∞) =
2

s3
v̄2 ⇒ σ2(t) = v̄2t2 (7)

in which

v̄2 =

∑
k

Ck
τk
v2
q,k∑

k

Ck
τk

(8)
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This can be interpreted as purely ballistic energy displacement at net ensemble group velocity v̄. At long time scales,
sτω � 1, on the other hand,

σ2(s→ 0) =
2

s2

∑
k

κk∑
k

Ck
⇒ σ2(t) = 2

κ

C
t = 2Dt (9)

which is the standard diffusive regime. The remainder of the paper studies the transition between ballistic and
diffusive limits in detail. We first outline our simulation procedures for obtaining the phonon properties which then
serve as input for (4) and (6). We demonstrate the onset of fractal Lévy transport in semiconductor alloys, explain its
physical origin, and point out significant differences between the associated dynamics and modified Fourier solutions.

Ab initio methodology

We start by considering the fully ordered semiconductors Si, Ge, InAs and GaAs. For each of them, we perform
an unconstrained relaxation of their unit cell using the VASP DFT package14 with projector-augmented-wave (PAW)

pseudopotentials15, the local density approximation to exchange and correlation16, a 12× 12× 12 ~k-point grid, and a
plane-wave energy cutoff 30% higher than the maximum value prescibed for each pseudopotential. We then generate a
minimal set of displaced 6×6×6 supercells using Phonopy17, compute the forces on atoms in those configurations using
VASP, and obtain the harmonic force constants for each semiconductor. For the polar compounds InAs and GaAs,
we employ density functional perturbation theory to compute a set of Born effective charges and the high-frequency
dielectric tensor to account for Coulombic interactions18. Those ingredients allow us to obtain the compound’s phonon
spectrum. A larger set of supercell calculations is used to compute the relevant third-order derivatives of the potential
energy with respect to atomic displacements. Finally, all elements are combined to obtain a relaxation time for each
phonon mode, including both phonon-phonon processes and isotopic scattering. The last two steps are performed
using open-source software developed by some of us and documented in full detail elsewhere9. For the supercells,
Γ-point-only DFT runs are adequate. We include neighbors up to the fifth coordination shell in our third-order
calculations and use a 32× 32× 32 wavevector grid, which yields fully converged values of the thermal conductivity.
Our method requires no experimental input and is fully parameter free. The first-principle lattice constants, phonon
spectra and room-temperature thermal conductivities agree well with values from the literature.

For a disordered binary alloy AxB1−x we operate under the virtual crystal approximation, which has been succesfully
tested in similar settings19,20. Lattice constants, second- and third-order interatomic force constants and dielectric
parameters are taken as weighted averages of their values for A and B, with weights x and 1 − x. Mass disorder in
the alloy is treated in the same way as isotopic disorder in pure compounds21, as described in Ref. 9.

The materials considered in this paper are Si, In0.53Ga0.47As and Si0.82Ge0.18. The calculated bulk thermal pa-
rameters are listed in Table I.

TABLE I. Thermal properties obtained from ab initio phonon calculations.

κ C D = κ/C v̄ (Eq. 8)
Material [W/m-K] [MJ/m3-K] [mm2/s] [m/s]

Si 166 1.62 103 1578
In0.53Ga0.47As 8.56 1.56 5.49 429

Si0.82Ge0.18 10.7 1.66 6.46 854

Results

First, we investigate the transient evolution of the thermal energy MSD. The ab initio calculations provide 196,608
phonon modes (six branches over a 32× 32× 32 wavevector grid) whose properties are inserted into (6) to calculate
the MSD. Time domain curves, obtained by transforming σ2(s) with a standard Gaver-Stehfest Laplace inversion
scheme22,23, are plotted in Fig. 1.

Intuitively, one may expect the MSD time exponent to drop smoothly from 2 to 1 during the transition from purely
ballistic (σ2 ∼ t2) to purely diffusive (σ2 ∼ t) transport. Instead, for alloy materials we observe the emergence of
a striking regime σ2 ∼ tβ(1 < β < 2) where β remains virtually stable during several orders of magnitude of time.
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FIG. 1. Renormalised mean square displacement of thermal energy obtained from BTE solution Eq. (6) with ab initio phonon
dispersions and scattering rates at room temperature. The emergence of a superdiffusive regime with time exponent β ' 1.34
is clearly apparent for the alloy materials.

Transport in which the MSD scales superlinearly with time is typically referred to as superdiffusive24. Least square
fitting of the obtained MSD curves yields β = 1.331 (30 ps ≤ t ≤ 700 ps) for InGaAs and β = 1.350 (20 ps ≤ t ≤ 2 ns)
in SiGe. These time windows are slightly out of reach of the typical bandwidth of TDTR experiments
since the time constant associated with the oscillating heat source, τmod = (2πfmod)−1, exceeds 8 ns for
modulation frequencies fmod ≤ 20 MHz. The measurements, however, do not observe MSD, but are
predominantly sensitive to the dynamic response of the semiconductor surface at fmod

25. We there-
fore take a closer look at the spatiotemporal dynamics of the energy density to better understand the
physics behind quasi-ballistic effects exhibited by alloys in TDTR analysis.

Ideally one wishes to look at the distribution P (z, t) in real space-time domain, but numerical limitations prevent a
stable and accurate direct inversion. However, we can identify key dynamics directly from the Fourier-Laplace entity
(4). Figure 2 shows the magnitude of |P (ξ, s)| versus |ξ| (P is even in ξ) at various frequencies s = j2πf for the three
considered materials.

In the diffusive limit, the BTE results recover classical Fourier solutions. Here, P (z, t) is the familiar Gaussian with
variance 2Dt, which in transformed variables reads P (ξ, s) = 1/(s+Dξ2). In the ballistic limit, the distribution tends
to a Lorentzian: P (ξ, s) → 1/(s + v∞|ξ|) hence P (z, t) → v∞t/[π(v2

∞t
2 + z2)] where v∞ can be interpreted as

an average collective group velocity along the thermal transport axis. Since the energy transport is
jointly governed by a diverse population of phonons, many of which having small group velocities, v∞
is quite a bit lower than the sound velocity. We note that the actual ballistic distribution will slightly deviate
from the asymptotic Lorentz limit since the phonon group velocities contain the energy within a finite z interval that
grows with time. At intermediate spatial and temporal frequencies in alloys, we find P (ξ, s) ' 1/(s + Dα|ξ|α) ⇔
P (ξ, t) ' exp(−Dαt|ξ|α), where 1 < α < 2 and Dα is a fractional diffusivity constant. These solutions correspond
to the characteristic function of a so called Lévy stable process26, and immediately imply that the quasi-ballistic
energy transport is stochastically equivalent to a random walk with fractal dimension α24. Lévy-type anomalous
diffusion has been encountered across a wide variety of disciplines ranging from travel patterns of foraging animals27,
protein movements along DNA chains28, tracer motion in turbulent fluids29, and financial market fluctuations30. Lévy
processes in which finite transition velocities are enforced, as would be appropriate in the context of phonon dynamics,
are known to induce an MSD σ2(t) ∼ t3−α31. This suggests the superdiffusive exponent and fractal dimension are
directly interrelated as α = 3 − β. Figure 2 confirms that for InGaAs and SiGe, whose MSDs exhibit β ' 1.34,
the quasi-ballistic BTE energy density can indeed be fitted accurately using α ' 1.66. Contrary to the Gaussian
energy densities associated with Fourier diffusion, Lévy distributions have ‘fat tails’ that spatially decay as a power
law P (z → ∞, t) ∼ |z|−(1+α). The response at the heat source takes the form P0(t) = P (z = 0, t) ∼ t−1/α, as in
pure Lévy regime we have

P0,L(s) = [α sin(π/α)D1/α
α s1−1/α]−1 (10)

which decays less steeply with frequency compared to the Fourier solution

P0,F (s) = [2
√
sD]−1 (11)
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FIG. 2. Magnitude of the energy density distribution in Fourier-Laplace domain, |P (ξ, s)|, at various frequencies s = j2πf ,
calculated from (4) with ab initio phonon dispersions and scattering rates. Distinct regimes are visible that each can be described
well with a simple analytic expression. The fittings over the intermediate frequency range indicate that quasi-ballistic thermal
transport in alloys behaves as Lévy superdiffusion with fractal dimension α = 3− β.

The BTE solutions in alloys at the heat source, obtained numerically through

P0(s) =
1

2π

∞∫
−∞

P (ξ, s)dξ , (12)

are indeed found to exhibit those signature Lévy characteristics (Fig. 3).

The energy density can be approximated quite well by the form P (ξ, s) ' [s+ ψ(ξ)]−1 across all three
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FIG. 3. Frequency domain thermal response at the heat source in semiconductor alloys. SiGe results are
upscaled by a factor 10 for visual separation of the curves. The arrows indicate the predicted threshold
frequency f1, calculated from Eq. (15), for onset of pure Lévy dynamics.

distinct transport regimes. Observing that ψ(ξ) = 1/P (ξ, s→ 0), we obtain from (4)

ψ(ξ) = ξ2 ·

∑
kz≥0

CkΛ2
q,k

τk[1+ξ2Λ2
q,k]∑

kz≥0

Ck
1+ξ2Λ2

q,k

(13)

This function, which governs the asymptotic ‘backbone’ of the curves in Fig. 2, is helpful to graphically
identify D,α,Dα and v∞ (Fig. 4).
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FIG. 4. The function ψ(ξ), defined by Eq. (13) and which governs the asymptotic backbone of the energy density
curves in Fig. 2, offers convenient identification of the three distinct transport regimes in semiconductor alloys.
The SiGe result is upscaled by a factor 10 for visual separation of the curves. The arrows demarkate the Lévy
window [ξ1, ξ2] as estimated from Eq. 14.

The spatial frequency range [ξ1, ξ2] that exhibits Lévy dynamics can be easily estimated from the
cross-over points between neighbouring regimes:

Dξ2
1 = Dαξ

α
1 → ξ1 = (Dα/D)

1
2−α

Dαξ
α
2 = v∞ξ2 → ξ2 = (v∞/Dα)

1
α−1 (14)

In turn, this directly determines the frequency bandwidth [f1, f2] over which Lévy effects are observable,
since the energy density curve starts tying into the backbone at cross-over point ξc fulfilling |s| = ψ(ξc).
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We find

f1 =
Dξ2

1

2π
=
D

2π
·
(
Dα

D

) 2
2−α

f2 =
v∞ξ2

2π
=
v∞
2π
·
(
v∞
Dα

) 1
α−1

(15)

Time domain thermoreflectance measurements are primarily sensitive to the thermal response of the
semiconductor surface at the modulation frequency25. Recalling (12) and the steep algebraic decay of
P (ξ, s), we see that experiments at modulation frequencies near the lower threshold f1 ≤ fmod � f2 will
be dominated by pure Lévy dynamics. The ab initio results for D, α, Dα and v∞ determined above
produce f1 values of 255 kHz for InGaAs and 18 kHz in SiGe, while f2 is in the GHz range for both
cases. The earlier presented Fig. 3 confirms that the source response matches the pure Lévy solution at
frequencies near the calculated threshold values. In fact, f1 provides a conservative estimate: the source
response already approaches Lévy dynamics at frequencies that are roughly an order of magnitude
smaller. This can easily be understood from the fact that the intersection of the dashed lines, governed

by the crossover of Eqs. (10) and (11), occurs at f0 = [(α/2) sin(π/α)]
2α

2−α f1 ' f1/10. We further note that
with α ' 5/3, the threshold frequency varies with the sixth power of the Dα/D ratio, and can thus be
expected to be quite sensitive to the crystal quality and purity of actual material samples. In addition,
these threshold frequencies obtained from 1D modelling should not be regarded as sharp cutoffs but
rather as approximate estimates for actual measurements, as we can expect that 3D heat flow will
slightly shift the cross-over between regimes. Lévy identification of our TR experiments spanning
the 1–20 MHz bandwidth (briefly summarised in a later section and described in full detail in part
II32) indicates f1 values of 920 kHz and 1.46 MHz in our InGaAs and SiGe samples respectively. The
measurements therefore predominantly probe the pure Lévy regime, enabling reliable experimental
extraction of α and Dα.

Physical origin of Lévy dynamics

The question still remains why alloys exhibit a superdiffusive Lévy regime, and what physically determines the
associated MSD time exponent β and fractal space dimension α. Here, we show that the quasi-ballistic dynamics
of a material originate in its dominant phonon scattering mechanism. To simplify the analysis, we limit ourselves to a
single phonon branch with constant group velocity v0 in an ideal isotropic crystal with spherical BZ. We should expect
this approach to capture the essential trends occurring in actual media, as a major fraction of thermal conduction is
governed by acoustic phonons on quasi straight branch segments near the zone center. At room temperature, energies
of the dominant acoustic phonons typically do not exceed kBT . Under these circumstances, ~ω ∂fBE

∂T varies by less
than 8% across the modes, and we can simply assume a constant mode capacity (Ck ≡ C0) with good approximation.
We consider a single dominant phonon scattering mechanism of the form:

τ ∼ ω−n ⇒ τk = τmin

(
ka

π

)−n
(16)

in which n is order of the mechanism (not necessarily integer), a is the lattice constant and k = ||~k|| the wavevector
norm 0 ≤ k ≤ π

a . First principle calculations in Si33 have suggested that Umklapp processes, which dominate its
bulk thermal conductivity at room temperature, are characterised by n = 3, although we note that other works have
also inferred n = 234 and n = 435 relations. Mass impurity (Rayleigh) scattering, dominating alloy behaviour, ideally
obeys τ ∼ v3

ω · ω−4 which corresponds to n = 4 under the assumed linear dispersion. Inserting the single branch
relations into the BTE variance (6) and performing BZ volume integration in spherical coordinates yields

σ2(s) =
2

3
v2

0τmin ·

1∫
0

k̃n+2dk̃
(k̃n+sτmin)2

s2
1∫
0

k̃n+2dk̃
k̃n+sτmin

(17)

where k̃ = ak/π is a dimensionless wavevector norm. For sτmin � 1, i.e. once a sufficient fraction of the phonon
population have undergone scattering events to break up the purely ballistic regime, one finds σ2(s) ∼ s−3+3/n when
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n > 3. The time domain counterpart is a power law σ2(t) ∼ tβn with superdiffusive exponent

βn = 2− 3

n
, n > 3 (18)

We point out that simple scattering relations of the form (16) produce arbitrarily large relaxation times near the zone
center. Bulk thermal conductivity of the single branch model diverges for n > 2, and the regular diffusive transport
regime is never recovered. In reality, scattering times are physically bounded to a finite range τmin ≤ τ ≤ τmax with
τmax � τmin. As a result, a superdiffusive regime with β ' βn is only maintained over a finite time window in the
actual medium, as observed earlier in Fig. 1.

We can additionally link β and the temporal extent of the superdiffusive window in the MSD to the shape of the
cumulative conductivity function κΣ(τ) =

∑
τk≤τ

κk. A single branch model with scattering relation (16) provides

κΣ(τ) ∼
1∫

(τmin/τ)1/n

dk̃

k̃n−2
(19)

from which we obtain

n = 2 : κΣ ∼ 1−
√
τmin

τ

n = 3 : κΣ ∼ ln

(
τ

τmin

)
n > 3 (incl. Rayleigh) : κΣ ∼

(
τ

τmin

)βn−1

− 1 (20)

where we used (18) for the last case.
The single branch model also helps reveal the physical origin of the Lévy window in the energy

density. Under the assumptions outlined earlier, we have Λq,k = v0τk cos θ = Λmink̃
−n cos θ. Here, we

will also explicitly enforce a physically bounded MFP Λ ≤ Λmax by excluding an appropriately chosen
small sphere around the zone center. This is easily achieved by introducing a lower cutoff wavevector
norm k̃min = (Λmin/Λmax)1/n in the BZ integration. The Debye branch equivalent of (13) reduces to

ψ(ξ) =

1∫
k̃min

dk̃
π/2∫
0

k̃n+2ξ2Λ2
min cos2 θ sin θdθ

τmin(k̃2n+ξ2Λ2
min cos2 θ)

1∫
k̃min

dk̃
π/2∫
0

k̃2n+2 sin θdθ
k̃2n+ξ2Λ2

min cos2 θ

=

ξ̃
1∫

k̃min

k̃n+2
[
1− (k̃n/ξ̃) arctan(ξ̃/k̃n)

]
dk̃

τmin

1∫
k̃min

k̃n+2 arctan(ξ̃/k̃n)dk̃

(21)

with ξ̃ = Λmin ξ a dimensionless spatial frequency. When ξ � Λ−1
max, we have ξ̃ � k̃n over the entire inte-

gration domain. This leads to ψ(ξ) ∼ ξ2 which signifies a regular Fourier diffusion regime. Conversely,

when ξ � Λ−1
min such that ξ̃ � k̃n over the entire integration domain, ψ(ξ) ' 2v0ξ/π which signifies a

ballistic regime with v∞ = (2/π)v0. In the intermediate range Λ−1
max ≤ ξ ≤ Λ−1

min, the arctangents sweep
across their entire range over the integration domain. The resulting failure of series expansions pre-
vents us from deriving a simple closed form expression for Dα, but numerical evaluations of (21) for
various n values reveal a quasi-ballistic Lévy regime with fractal dimension αn ' 1 + 3/n, in accordance
with the expected relation αn+βn = 3. Combining this result with the trends for the MFP counterpart
of (19), κΣ(Λ), also suggests that the earlier determined Lévy window [ξ1, ξ2] in the energy density is
associated to an MFP range [ξ−1

2 , ξ−1
1 ] over which the cumulative conductivity evolves as κΣ(Λ) ∼ Λβn−1.

The interconnections between the scattering relation τ(ω), the cumulative conductivity κΣ resolved for phonon
scattering times and MFPs and the characterisitic Lévy exponents α and β we have derived for a single phonon
branch with linear dispersion are preserved quite well in realistic media (Fig. 5).
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FIG. 5. Interconnection between dominant scattering order τ ∼ ω−n, cumulative conductivity κΣ(τ,Λ) ∼ (τ,Λ)γ and charac-
teristic Lévy dynamics σ2(t) ∼ tβ , ψ(ξ) ∼ ξα. Ab initio results (circles) agree well with single branch model predictions (lines)
β = 2− 3

n
↔ n = 3

2−β and γ = β − 1 = 2− α.

For Si, we find that our ab initio scattering rates can be fitted quite well by a scattering relation τ ∼ ω−3. The
upper portions of the cumulative conductivity curve show a clear logarithmic dependence on scattering time and
MFP, as predicted by the ideal n = 3 case. Initial parts of the κΣ curves are governed by higher energy modes
with small velocity, and therefore do not obey the simple linear dispersion model, as could be expected. As far as
alloys are concerned, single branch expressions (18) and (20) suggest that the SiGe superdiffusion exponent β = 1.35
theoretically corresponds to n = 4.61 and κΣ ∼ τ0.35 , Λ0.35. Both relations provide good fits to the actual phonon
data as shown in Fig. 5. Similar observations hold for InGaAs. It is noteworthy that the relaxation time range over
which κΣ(τ) closely follows a power law has a near one-to-one correspondence to the superdiffusive time window in
the MSD observed earlier in Fig. 1. In analog fashion, the spatial window [ξ−1

2 , ξ−1
1 ] calculated from (14),

amounting to [7 nm, 2µm] in InGaAs and [0.6 nm, 8µm] in SiGe, matches near perfecly with the MFP
range over which κΣ(Λ) obeys a power law. As a summarising rule of thumb, we can say that thermal transport
in a material whose cumulative conductivity curves κΣ have a stable slope γ in double logarithmic scale for τ1 ≤ τ ≤ τ2
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and Λ1 ≤ Λ ≤ Λ2 will exhibit a superdiffuse window τ1 . t . τ2 in the MSD with exponent β = γ + 1 and Lévy
window Λ−1

2 . ξ . Λ−1
1 in the energy density with fractal dimension α = 2− γ.

Implications for transient laser thermoreflectometry

Regular diffusive transport is well known to correspond to Brownian motion36, a stochastic process with fractal
dimension 2. Many observations of quasi-ballistic heat flow are interpreted using so called modified Fourier theory2–4,6,
which explains the anomalous heat conduction phenomenologically in terms of a reduced effective thermal conductivity.
Such an approach still inherently maintains the assumption of purely diffusive transport dynamics. The results we
have presented here, however, demonstrate that the quasi-ballistic regime in alloys is characterised by superdiffusive
Lévy motion with fractal dimension α < 2. The associated energy density distributions, P (ξ, s) ' 1/(s + Dα|ξ|α),
are decidedly non-Gaussian in space domain, and cannot be described by a modified Fourier solution P (ξ, s) =
1/(s + Deff ξ

2) due to fundamental mismatch of the ξ exponent. The resulting shortcomings of modified Fourier
analyses of thermoreflectance experiments are illustrated in detail in part II of the paper32.

Hua and Minnich have recently shown that transient thermal grating (TTG) experiments probe a so called weakly
quasi-ballistic regime in which the use of a modified Fourier approach is formally justified by the BTE11. As we
have shown above, this is clearly not the case for time/frequency domain thermoreflectance (TR) measurements. The
different behaviour can be attributed to important distinctions in experimental configuration and boundary conditions.
TTG studies the transient decay of a spatially periodic temperature input directly at the semiconductor surface. The
thermal gradients are predominantly in-plane and stretch across the grating wavelength λ, which typically measures
several hundreds of nanometers or more. To a first order, this measurement configuration essentially probes the
energy density distribution at a single spatial Fourier variable ξλ = 2π/λ. As a result, the recorded thermal response
decays exponentially in time and is therefore physically indistinguishable from regular Fourier diffusion
dynamics with adjusted diffusivity Deff = ψ(ξλ)/ξ2

λ. TR experiments, on the other hand, capture the response to
temporally periodic energy impulses. For typical laser spot sizes, the predominant thermal gradient occurs cross-plane
over the thermal penetration depth inside the semiconductor. In a crucial difference with the TTG configuration, the
thermal field is not spatially periodic in the dominant thermal transport direction. As a result, the semiconductor
surface response under cross-plane heat flow is governed by a wide spectrum of ξ values, as symbolised formally by
Eq. (12). The quasi-ballistic single pulse response decays as P0 ∼ t−1/α as mentioned earlier. Contrary
to TTG, this time signature is inherently different from the Fourier diffusion counterpart P0 ∼ t−1/2,
even at time scales far exceeding typical phonon relaxation times. The thermal transients observed by
TR experiments preserve characteristic Lévy dynamics, enabling this technique to actively measure
the fractal dimension and fractional diffusivity of the quasi-ballisitic transport.

Experimental validation

As mentioned in the Introduction, modified Fourier interpretation of TR measurements on semiconductor alloys
produces effective conductivities that drop significantly with increasing laser modulation frequency2. Interestingly, in
retrospect this behaviour is a direct manifestation of fractal Lévy transport. The essence of the connection can be
easily understood in terms of the dynamics at the semiconductor surface. As demonstrated earlier, the response
probed by the typical measurement bandwidth is dominated by the pure Lévy regime. Interpreting
the associated semiconductor surface response (10) with a modified Fourier solution P0(s) = [2

√
Deffs]

−1

suggests that Deff(s) ∼ s1−2/α, and more specifically

κeff = 2πC ·
(α

2

)2

· sin2
(π
α

)
·
(
Dα

2π

)2/α

· f1−2/α
mod (22)

Based on the BTE results obtained above, we would therefore expect the effective conductivity in InGaAs and SiGe
to drop by roughly 40% over the 1–10 MHz modulation range (κeff(10 MHz)/κeff(1 MHz) = 101−2/1.66 ≈ 0.62), which
is quite similar to the actual reduction observed experimentally. A closer look at our own TDTR measurements shows
that the effective conductivity of semiconductor alloys can be fitted quite accurately by a power law (Fig. 6). We
note that the presented experimental values result from analysing the measurement data with a 3D
Fourier model that accounts for the Gaussian shape of pump and probe laser beams, heat spreading
through the metal transducer, and thermal contact resistance of the metal/semiconductor interface.

Comparing the fits to (22) produces α = 1.67 for InGaAs and α = 1.71 for SiGe, in good agreement with the ab
initio predictions found earlier (1.67 and 1.65). In addition, the extracted fractional diffusivities Dα are both within
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FIG. 6. The frequency dependence of effective thermal conductivity, observed in time domain thermoreflectance experiments
on semiconductor alloys, is a direct manifestation of fractal Lévy transport. A power law fit, suggested by basic 1D model
prediction (22), provides accurate estimates of the key metrics of the quasi-ballistic transport.

±45% of the theoretical values from Fig. 2. This too can be considered a very reasonable agreement, given that the
measured bulk thermal conductivity deviates from BTE predictions by similar amounts.

The intricacies of TR experiments are obviously far more involved than simple 1D model expressions. Rigorous
analysis of raw measurement data is desirable to determine the fractal dimension directly, and establish a definitive
experimental confirmation of superdiffusive Lévy behaviour. Unfortunately, 1D BTE solutions as derived here to
illuminate essential trends are not easily suitable for this purpose. Crystal impurities in real samples cause perturba-
tions in the phonon spectra, while the effects of heat source nonuniformity (Gaussian shaped laser beam) and lateral
heat spreading can only be accounted for by 3D modelling. To achieve this, we have developed a phenomenological
approach based on truncated Lévy theory37. Our method captures the essential physics of the BTE solutions yet offers
sufficient flexibility for full 3D analysis of experimental data. The methodology and performance of the formalism
are presented in full detail in part II of the paper32. Here, we just mention that our truncated Lévy model provides
accurate fits to raw measurement data across the entire 1–20 MHz modulation range without requiring any frequency
dependent ‘effective’ thermal parameters. This identification produced α = 1.67 for InGaAs and α = 1.69 for SiGe,
once again in close agreement with previously derived values.

Conclusions

In summary, we investigated the fundamental dynamics of 1D quasi-ballistic heat conduction. Analytical solutions
of the BTE with ab initio phonon properties reveal the distinct emergence of Lévy superdiffusion in semiconductor
alloys. Simple algebraic expressions capture the intricate relationships between the superdiffusive time exponent,
fractal space dimension, order of the dominant phonon scattering mechanism, and cumulative conductivity functions.
Our findings lend fundamental physical support to a novel truncated Lévy heat formalism we have developed, enabling
direct experimental measurements of the Lévy properties of the quasi-ballistic thermal transport in alloys.

Acknowledgements

B.V. thanks Jesse Maassen at the Birck Nanotechnology Center for helpful discussions. B.V. and A.S. acknowledge
funding from the Center for Energy Efficient Materials, an Energy Frontier Research Center funded by the U.S.
Department of Energy, Office of Basic Energy Sciences under Award Number DE-SC0001009.



13

∗ bvermeer@purdue.edu
† shakouri@purdue.edu
1 A.J. Minnich, G. Chen, S. Mansoor, and B.S. Yilbas, Phys. Rev. B 84, 235207 (2011).
2 Y.K. Koh and D.G. Cahill, Phys. Rev. B 76, 075207 (2007).
3 M.E. Siemens, Q. Li, R. Yang, K.A. Nelson, E.H. Anderson, M.M. Murnane, and H. C. Kapteyn, Nature Mater. 9, 26

(2010).
4 A.J. Minnich, J.A. Johnson, A.J. Schmidt, K. Esfarjani, K. M.S. Dresselhaus, and G. Chen, Phys. Rev. Lett. 107, 095901

(2011).
5 J.A. Johnson, A.A. Maznev, J. Cuffe, J.K. Eliason, A.J. Minnich, T. Kehoe, C.M. Sotomayor Torres, G. Chen, and K.A.

Nelson, Phys. Rev. Lett. 110, 025901 (2013).
6 K.T. Regner, D.P. Sellan, Z. Su, C.H. Amon, A.J.H. McGaughey, and J.A. Malen, Nat. Commun. 4, 1640 (2013).
7 K.C. Collins, A.A. Maznev, Z. Tian, K. Esfarjani, K.A. Nelson, and G. Chen, J. Appl. Phys. 114, 104302 (2013).
8 R.B. Wilson, J.P. Feser, G.T. Hohensee, and D.G. Cahill, Phys. Rev. B 88, 144305 (2013).
9 W. Li, J. Carrete, N. A. Katcho, and N. Mingo, Comp. Phys. Commun. 185, 1747 (2014).

10 Z.J. Ziman, Electrons & Phonons: The Theory of Transport Phenomena in Solids. (Oxford University Press, USA, 2001).
11 C. Hua and A.J. Minnich, Phys. Rev. B 89, 094302 (2014).
12 M. Omini and A. Sparavigna, Phys. Rev. B 53, 9064 (1996).
13 W. Li, N. Mingo, L. Lindsay, D.A. Broido, D.A. Stewart, and N.A. Katcho, Phys. Rev. B 85, 195436 (2012).
14 G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
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