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Cluster dynamical mean field methods are used to calculate the normal and anomalous compo-
nents of the electron self energy of the two dimensional Hubbard model. Issues associated with the
analytical continuation of the normal and anomalous parts of the gap function are discussed. Meth-
ods of minimizing the uncertainties associated with the pseudogap-related pole in the self energy
are discussed. From these the evolution of the superconducting gap and the momentum dependent
electron spectral function across the phase diagram are determined. In the pseudogap regime, de-
creasing the temperature into the superconducting state leads to a decrease in the energy gap and
the formation of a ‘peak-dip-hump’ structure in the electronic density of states. The peak feature
disperses very weakly. The calculated spectral functions are in good qualitative agreement with
published data. The mathematical origin of the behavior is found to be the effect of the supercon-
ductivity on the pole structure giving rise to the normal state pseudogap. In particular the “hump”
feature is found to arise from a zero crossing of the real part of the electron self energy rather
than from an onset of scattering. The effect of superconductivity on the zone diagonal spectra is
presented.

PACS numbers: 74.20.-z,74.72.Kf,74.25.Dw,71.10.-w

I. OVERVIEW

After more than a quarter century of research, our the-
oretical understanding of the unusual electronic proper-
ties of the high transition temperature superconductivity
observed1 in layered copper oxide materials remains in-
complete. A plethora of remarkable dynamical phenom-
ena have been reported, including a correlation-driven
insulating phase occurring when the conduction band
is half filled,2 non-Fermi-liquid transport properties,3

a ‘pseudogap’ in the electronic spectrum4 as well as
ordered phases including ‘stripe’ states with spin and
charge order,5 charge order apparently unconnected with
spin order,6 ‘nematic’ (rotational symmetry breaking)
states,7 and time reversal symmetry breaking states
also apparently unaccompanied by conventional spin
order.8 Angle-resolved photoemission studies report un-
usual quasiparticle properties at essentially all carrier
concentrations.9–21

The diversity of reported phenomena has led to debate
about what is the essential physics to include in a mini-
mal theoretical model while the apparent strong coupling
nature of the problem suggests that whatever model is
adopted, a nonperturbative treatment is required. Im-
portant open questions include the mechanism for super-
conductivity, the nature of the minimal low energy model
describing the high-Tc phenomenon,2,22 and the physics
of the ‘pseudogap’ and its interplay with the supercon-
ducting gap.21,23

This paper presents a theoretical study of the elec-
tron excitation spectrum of the superconducting and nor-
mal states of the two dimensional Hubbard model. This
model is the minimal model of the physics of strongly
correlated electrons on a lattice. Although it is not yet

known if this model contains the full panoply of phenom-
ena observed in the high-Tc materials, it clearly contains
some important aspects of the physics and is accepted as
one of the candidate models2 for describing the low en-
ergy (energies of order 1eV or less) physics of the copper-
oxide superconductors. Determining the properties of
this model to the level at which a clear comparison to
experiment can be made is an important goal of theory.

We address this problem using the ‘dynamical cluster
approximation’ (DCA) version24,25 of the cluster dynam-
ical mean field method.26 The method is based on ap-
proximating the full spatial dependence of the electron
self energy in terms of a finite number Nc of functions
of frequency,27 with the exact properties recovered in the
N → ∞ limit.28 Within this approximation the method
provides an unbiased (in the sense of not pre-selecting a
particular interaction channel or class of diagrams) nu-
merical approach to the correlated electron problem and
allows comprehensive investigation of the frequency de-
pendence, and some aspects of the momentum depen-
dence, of the electronic properties.

Our ability to solve the equations of dynamical mean
field theory29,30 has reached the point where approxima-
tion sizes Nc that in many aspects are representative31

of the Nc → ∞ limit can be studied at the low tem-
peratures required to stabilize superconductivity.23 The
superconducting state has been constructed23 and phys-
ical properties including the superconducting condensa-
tion energy,32 the c-axis and Raman response33 and the
structure of the gap function and pairing potential34 have
been computed and found to be in remarkable agreement
with experiment. Here we use the new methodologies
to study the electronic excitation spectrum of the nor-
mal and superconducting states in detail. While some
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of these issues have been previously studied in a cluster
size Nc = 4 approximation,26,35–40 our results, obtained
on larger Nc = 8 clusters, provide a better representation
of the physics including a clear separation of nodal and
antinodal behavior.
The DCA equations are solved in imaginary time, and

an analytical continuation41 procedure is needed to ob-
tain the real frequency information needed for the elec-
tronic excitation spectrum. Especially in the pseudogap
regime of the model, the novel physics we find presents
challenges for the analytical continuation of our com-
puted results. These are discussed at length below.
The rest of the paper is organized as follows. In Sec-

tion II we define the quantities of interest and present the
specifics of the dynamical mean field method. Section III
discusses issues related to the analytic continuation. Sec-
tion IV displays the normal and anomalous components
of the self energy, drawing attention to an unusual pole
structure related to sector-selective Mott nature of the
pseudogap phase.42–44 Section V displays the gap func-
tion constructed from the ratio of anomalous and normal
components of the self energy. Sections VI and VII dis-
play the photoemission and inverse photoemission spec-
tra predicted by the model while section VIII presents
our findings on superconductivity-induced changes to the
electron scattering and mass renormalization for states
near the zone diagonal where the superconducting order
parameter vanishes. Section IX presents a summary and
conclusions.

II. FORMALISM

A. Model

We study the two dimensional Hubbard model of elec-
trons hopping on a square lattice and subject to a local
interaction U which we take to be repulsive. The model
may be written in a mixed momentum (k)/position (i)
representation as

H =
∑

k

Tr
[

Ψ†
kτ3 (εk − µ)Ψk

]

+ U
∑

i

ni↑ni↓. (1)

In the first term we have represented the electronic de-
grees of freedom by the Nambu spinor defined in terms

of c†kσ , the Fourier transform to momentum space of the

operator c†iσ which creates an electron of spin σ =↑, ↓ on
lattice site i as

Ψ†
k =

(

c†k↑ c−k↓

)

; Ψk =

(

ck↑
c†−k↓

)

. (2)

We set the lattice constant to unity. The momentum
index k runs over the Brillouin zone of the two dimen-
sional square lattice −π ≤ kx, ky ≤ π. The trace is
over the Nambu indices and τj denote the Pauli ma-
trices operating in Nambu space. The chemical poten-

tial is µ, εk is the energy dispersion and niσ = c†iσciσ

is the operator measuring the density of spin σ elec-
trons on site i. In the computations presented below
we take εk = −2t (cos kx + cos ky) and present our re-
sults in units of t. A reasonable estimate of the energy
scales pertaining to the physical copper oxide materials
is t ≈ 0.3eV . At carrier density n = 1 per site this
version of the Hubbard model is particle-hole symmetric
(µ = 0), but particle-hole symmetry is broken at carrier
concentrations n 6= 1.

B. Green function and self energy

Our analysis proceeds from the components of the ma-
trix Nambu Green function defined for imaginary time
β = 1/T > τ > 0 (T is the temperature) as

G(k, τ) = −
〈

Ψk(τ)Ψ
†
k(0)

〉

. (3)

It is useful to Fourier transform G(τ) to the Matsubara
frequency axis

G(k, iωn) =

∫ β

0

dτG(k, τ)eiωnτ (4)

with ωn = (2n+ 1)πT . The self energy is defined as

Σ(k, iωn) =

(

iωn − εk + µ 0
0 iωn + εk − µ

)

−G
−1(k, iωn) (5)

and may be written explicitly in terms of normal (N) and
anomalous (A) components as (note we have chosen the
phase of the superconducting order parameter to be real)

Σ(k, iωn) =

(

ΣN (k, iωn) ΣA(k, iωn)
ΣA(k, iωn) −ΣN (k,−iωn)

)

. (6)

Under spatial (k) transformations ΣN (k, iωn) has the full
symmetry of the lattice, while depending on the super-
conducting state ΣA(k, iωn) may have lower symmetry.
Our investigations,23 consistent with a large body of pre-
vious work,35,45–59 indicate that for the interesting car-
rier concentrations |1 − n| < 0.3 and for temperatures
higher than T = t/60 the only stable superconducting
state of this model is of dx2−y2 symmetry, so that on the

square lattice studied here ΣA(k, iωn) changes sign if k
is rotated by π/2 or reflected through one of the axes
ky = ±kx that lie at 45◦ to the lattice vectors, but re-
mains invariant under reflections through the bond axes
kx = 0 or ky = 0 and under rotations by π.
We now discuss the frequency dependence at fixed k.

In this discussion because the wave vector is fixed we
do not explicitly denote it. The anomalous self energy
is an even function of Matsubara frequency: ΣA(iωn) =
ΣA(−iωn). However the normal component at positive
Matsubara frequency ΣN (iωn) is not simply related to
the normal component at negative Matsubara frequency
ΣN (−iωn) except in the special case of particle-hole sym-
metry where ΣN (iωn) = −ΣN(−iωn). For later purposes
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it is convenient to distinguish components of ΣN (iωn)
even (e) and odd (o) in Matsubara frequency34 as

ΣN
e,o(iωn) =

ΣN (iωn)± ΣN (−iωn)

2
(7)

so that in Nambu notation we may write

Σ(iωn) = ΣN
o (iωn)τ0 +ΣN

e (iωn)τ3 +ΣA(iωn)τ1. (8)

It is convenient also to define the gap function ∆(iωn)
as34,60

∆(iωn) =
ΣA(iωn)

1− Σo(iωn)
iωn

. (9)

This definition is motivated by the observation that at
the low frequencies of interest here, the even (under sign
change of Matsubara frequency) component of ΣN can
be absorbed into a shift of chemical potential.

C. Analytic Structure

G(z) and Σ(z) are analytic functions of complex fre-
quency argument z except for a branch cut along the real
axis Im(z) = 0. Apart from a Hartree term in the normal
component of Σ they decay as |z| → ∞. They thus obey
a Kramers-Kronig relation (written here for Σ, with Σ

(2)

one half of the branch-cut discontinuity)

Σ(z) =

∫

dx

π

Σ
(2)(x)

z − x
. (10)

Σ
(2)(ω) is a matrix with eigenvalues that are non-

negative and related by time reversal, thus:

Σ
(2)(ω) = R

†
ω

(

s(ω) 0
0 s(−ω)

)

Rω (11)

with s(ω) ≥ 0. Here

Rω = exp

[

i

2
θωτ2

]

(12)

is a rotation matrix in Nambu space parametrized by an
angle θω which in general is frequency dependent and
lies in the range 0 ≤ θω = θ−ω ≤ π

2 . That only τ2
appears in Eq. 12 follows from our phase convention for
the superconducting state, Eq. 8.
Evaluating Eq. 11 for z approaching the real axis gives

the real-time Green functions. Of particular interest are
the retarded functions obtained by continuation from be-
low to the real frequency axis: z → ω − iδ with ω real
and δ (typically not explicitly written) a positive in-
finitesimal. The retarded real axis axis functions have
real and imaginary parts G = Re [G] + iIm [G] and
Σ = Re [Σ] + iIm [Σ], respectively. Our choice of su-
perconducting phase convention (upper right and lower
left entries in self energy matrix identical) implies that

R is purely real so that ImΣ(z → ω − iδ) is identical to
the branch cut discontinuity Σ

(2) introduced in Eq. 10.

The Kramers-Kronig relation along with the positiv-
ity of ImΣN implies that ΣN

e (iωn) and ΣA(iωn) are a
real functions of ωn while ΣN

o (iωn) is a purely imaginary
function of ωn. The symmetry properties of ∆(ω) are
those of ΣA(ω).

The non-negativity of the two eigenvalues of the spec-
tral function implies that the diagonal components of the
imaginary parts of Σ and G are non-negative so that on
the real frequency axis ImΣN

o (ω) > 0 and
∣

∣Im ΣN
o (ω)

∣

∣ ≥
∣

∣Im ΣN
e (ω)

∣

∣.

D. Method

To solve the Hubbard model we employ the dynami-
cal mean field approximation61–63 in its DCA cluster24,26

form. In this approximation the Brillouin zone is parti-
tioned into Nc equal area tiles labeled by central momen-
tum K and the self energy is approximated as a piecewise
continuous function

Σ(k, ω) ≈
Nc
∑

K

φK(k)ΣK(ω) (13)

with φK(k) = 1 if k is in the tile centered on K and
0 otherwise. The functions ΣK(ω) are Nambu matrices
with normal (N) and anomalous (A) components which
are determined from the solution of an auxiliary quantum
impurity model as described in detail in Refs. 23, 48, 64,
and 65.

The quantum impurity model is solved by the
continuous-time auxiliary field quantum Monte-Carlo
method introduced in Ref. 29 and discussed in detail in
Ref. 65. Fast update techniques30 are crucial for access-
ing the range of interaction strengths and temperatures
needed to study superconductivity and its interplay with
the pseudogap. The quantum Monte-Carlo calculations
are performed on the Matsubara axis and maximum-
entropy analytical continuation techniques41,66 are em-
ployed to obtain real-frequency results.

The expense of the computation increases rapidly as
the interaction strength U or number of approximants
Nc increases, or as the temperature T decreases. We
present results for Nc = 8 using the momentum-space
tiling shown in the left panel of Fig. 1. Previous work23,31

has shown that this cluster is in many aspects representa-
tive of the Nc → ∞ limit; in particular it is large enough
to enable a clear distinction between zone-diagonal and
zone-face electronic properties, yet small enough to per-
mit calculations in the superconducting phase of the pre-
cision needed for analytical continuation.

The d-wave symmetry of the superconducting state
of the two dimensional Hubbard model means that in
the coarse-grained momentum resolution available in the
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FIG. 1. Left panel: Momentum-space tiling used in the
present study. Different colors represent patches on which
the self-energy is constant. Right panel: Phase diagram in
space of interaction strength and carrier concentration. A
Mott insulating phase (heavy line, green online) is found at
density n = 1 and interaction strength U ≥ 6.5t. A non-
superconducting, pseudo gapped phase (diamonds and darker
shading, blue online) separates the Mott insulator from a su-
perconducting phase of dx2

−y2 symmetry (circles, intermedi-
ate shading, pink online). At larger doping or weaker corre-
lation strength a non-superconducting (at the temperatures
accessible to us) Fermi liquid phase is found (squares, light-
est shading, yellow online). The onset of the normal state
pseudogap is indicated by a light dotted line (purple online)
running through the superconducting phase. In the pseudo-
gapped regime the electronic spectrum is gapped for momenta
near the zone face but is gapless for momenta near the zone
diagonal.. Figure reproduced from Ref. 32.

Nc = 8 DCA we have

ΣA(k, ω) =







ΣA(ω), k ∈ (π, 0)
0, k ∈ (±π

2 ,±π
2 ), (0, 0) (π, π)

−ΣA(ω), k ∈ (0, π).

(14)

ΣN has the full point group symmetry of the lattice and
thus is one function of frequency in the (π, 0) and (0, π)
sectors, a different function of frequency in the (±π

2 ,±π
2 )

sectors and yet a different function of frequency in the
(0, 0) and in the (π, π) sectors. The main focus of at-
tention in this paper will be on the K = (π, 0) mo-
mentum sector but some results will be presented on
superconductivity-induced changes in the zone-diagonal
(±π

2 ,±π
2 ) momentum sectors. Because in the 8-site

DCA the anomalous self energy is non-zero only in the
K = (0, π)/(π, 0) sectors we will typically omit the mo-
mentum argument in our discussions of ΣA and ∆.
The right panel of Fig. 1 shows the phase diagram in

the plane of interaction strength and carrier concentra-
tion obtained23,32 from the solution of the DCA equa-
tions at temperature T = t/60, about half of the max-
imal computed superconducting transition temperature
Tmax
c ≈ t/30. The temperature T = t/60 corresponds in

physical units to T ≈ 60K.31,44

We study the electronic properties as a function of dop-
ing at U = 6t and as a function of interaction strength at
carrier concentration n = 1. U = 6t is the largest interac-
tion strength for which high precision data could be ob-
tained with the resources available to us for temperatures

substantially below Tc and general dopings. Simulations
at larger interaction strengths are severely hampered by
the fermionic sign problem. As can be seen from the
phase diagram, this interaction strength is such that the
model is conducting (although pseudo gapped) at n = 1.
Thus, we believe that U = 6t is slightly lower than the U
which is relevant to the real materials, so the quantitative
values for example of the carrier concentrations at which
different behaviors occur will be somewhat lower than is
realistic. The information available to us23,31–33 indicates
that all of the qualitative features of the doping depen-
dence are well reproduced by the U = 6t computations.
As we will see, considerable insight can be obtained from
examination of the U -dependence of the superconducting
self energy in the special case n = 1. The actual model
also has an antiferromagnetic state, which competes with
the superconducting state but is not studied here.

III. ANALYTICAL CONTINUATION OF

NORMAL AND ANOMALOUS SELF ENERGIES

A. Formalism

The main objects of interest in this paper are the real-
frequency normal (N) and anomalous (A) components of
the Nambu matrix electron self energy Σ(k, z) as well
as the gap function ∆(z) defined from Eq. 9. These are
functions of a complex frequency argument z. Our re-
sults for Σ and thus ∆ are obtained on the imaginary
frequency (Matsubara) points z = iωn = i(2n + 1)πT .
Theorems from complex variable theory guarantee that
knowledge of the function on the Matsubara points fully
determines the function at all z, but direct inversion of
Eq. 10 to obtain Σ

(2)(ω) from measurements of Σ(iωn)
is a mathematically ill-posed problem. In this paper we
invert Eq. 10 using the maximum entropy method41 and
verify the results with the Padé method.67

To continue the diagonal component ImΣN (ω) we fol-
low the methods employed for self energy continuation in
Ref. 66. While there are no rigorous methods to control
errors in this procedure, our experience is that given suf-
ficiently accurate input data (relative statistical errors
smaller than 10−3 on each Matsubara point) this pro-
cedure produces reasonably reliable results for the low-
est frequency features in the real-axis spectral function
at low temperature and qualitatively reasonable results
(estimates of characteristic energy scales and integrated
areas) for the higher frequency features. The relative
statistical errors in our calculations are typically smaller
than 10−4 so we have reasonable confidence in the qual-
itative features of the continuations.

A variation of the procedure outlined in Wang et al. 66

is needed to obtain the off-diagonal component of the
self energy ImΣA because ΣA(iωn) = ΣA(−iωn) so that
the spectral function ImΣA(ω) = −ImΣA(−ω) is an odd
function of frequency and is thus not non-negative. We
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FIG. 2. Upper panels: imaginary part of anomalous component of self energy computed in the superconducting state at
temperature T = t/60 and carrier concentration n = 1 for the 3 interaction values indicated, using three methods: direct
continuation of measured anomalous components of self energy ΣA(iωn) (solid lines, black online), reconstructed using Eq. 18
from a continuation of ΣM (iωn) (dashed lines, blue online) and obtained from continuations of the gap function ∆(iωn) and
the normal component of the self energy (dotted lines, red online). Lower panels: imaginary parts of normal component of self
energy computed for the same parameters using direct continuation of measured normal components of self energy ΣN (iωn)
(solid lines, black online), and reconstructed using Eq. 17 from a continuation of ΣM (iωn) (dashed lines, blue online).

rewrite Eq. 10 as

ΣA(iωn) =

∫

dx

π

x

iωn − x

(

ImΣA(x)

x

)

= Σ(A)(iωn = 0) + iωn

∫

dx

π

ImΣA(x)
x

iωn − x
(15)

and continue ΣA(iωn)−ΣA(0)
iωn

by standard methods.34 The

normalization of ImΣA(x)
x

is fixed from limiωn→0 Σ
A(iωn):

We obtain ΣA(iωn = 0) by fitting
(

ΣA
)−1

at the three
lowest positive Matsubara frequencies to a parabola. A
similar procedure is used to continue ∆.

B. Non-negativity of ImΣA(ω)/ω

While the usual maximum entropy analytic continua-
tion formalism requires a non-negative spectral function,
there is no guarantee that ImΣA(ω)/ω is of definite sign.

For example, in Migdal-Eliashberg theory the Coulomb
pseudopotential leads to a negative contribution to ImΣA

at frequencies of the order of the plasma frequency,68

while a recent solution of the Eliashberg equations for
a model involving two competing spin fluctuations also
displayed a sign change in the gap function as frequency
was increased above the lower of the two characteristic
frequencies.69

For the two dimensional Hubbard model, our data are
consistent with a positive definite ImΣA(ω)/ω but we do
not have a rigorous proof that this is always the case. Ev-
idence for a positive definite ImΣA(ω)/ω may be found
from consideration of the particle-hole symmetric (n = 1)
situation. In this case in the (π, 0) sector the normal
components of the hybridization function and self energy
are also particle-hole symmetric and are odd functions of
Matsubara frequency, so that θω = π/2 at all frequen-
cies and there is a frequency-independent basis choice
(the ‘Majorana combination’ c± =

(

c† ± c
)

/
√
2) that

diagonalizes the self energy matrix in the (π, 0) sector.
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The corresponding ‘Majorana’ self energy ΣM obeys the
Kramers-Kronig relation

ΣM (z) =

∫

dx

π

s(x)

z − x
. (16)

Thus analytical continuation of the Majorana combina-
tion of self energies gives direct access to s from which
the normal and anomalous components of the self energy
can easily be reconstructed from Eqs. 11,12 as

ImΣN (ω) =
s(ω) + s(−ω)

2
, (17)

ImΣA(ω) =
s(ω)− s(−ω)

2
. (18)

Fig. 2 presents a comparison of ImΣ obtained by di-
rection continuation of the normal and anomalous parts
of the Matsubara Green function and reconstructed us-
ing Eqs. 17 and 18 from continuations obtained from the
(1, 1) component of Σ in the Majorana basis (continu-
ation of the (2, 2) component yields values differing by
∼ 10−3). A reconstruction of ΣA(ω) from the continued
∆(ω) and Σo(ω) using Eq. 9 is also shown.
We see that the methods yield very similar results with

some differences in the height and width of the low fre-
quency peak (the integrated peak areas, not shown, are
the same). The differences between the curves are an
indication of the continuation errors. In the ImΣA ob-
tained from s(ω) a relatively small amplitude oscillation
is present, which leads to a small negative value in some
regions where the directly continued ImΣA = 0 along
with an overshoot (relative to the directly continued ΣA)
at slightly higher frequencies. Our experience is that
these oscillations do not vary systematically with input
data or details of the maximum entropy procedure, and
we believe they are artifacts of the continuation proce-
dure related to the requirement that norm of the func-
tion is conserved in the entropy minimization. We thus
believe that ImΣA(x)/x is generically non-negative for
the dx2−y2 superconducting state of the Hubbard model.
This conclusion further supported by continuations (not
shown) that we have performed using the Padé method
at both n = 1 and n 6= 1. The Padé method makes no as-
sumptions as to the sign of the spectral function, and in
the cases we have studied leads always to a non-negative
ImΣA(x)/x. A ΣA(ω)/ω which was non-negative was
also found by Civelli 37 in Nc = 4 calculations using an
exact diagonalization (ED) solver (we believe that the
small negative excursions are artifacts of the ED method
but the issue deserves further investigation).

C. Pole structure and continuation of gap function

Fig. 2 reveals that in certain parameter regimes the
normal and anomalous self energies exhibit strong peaks
at relatively low frequencies. As will be discussed at

length below, these peaks do not correspond to physi-
cal excitations of the system; rather they are the expres-
sion in the superconducting state of the physics of the
normal-state pseudogap, which in the DCA is associated
with the formation of a low frequency pole in the self en-
ergy of the (0, π)/(π, 0) momentum sector.70 It is useful
to discuss the pole structure in terms of the representa-
tion in Eq. 11. All of our data are consistent with the
statement that s(ω) for the (0, π)/(π, 0) sector is the sum
of a pole and a regular part:

s(ω) = Dδ (ω − ω⋆) + sreg(ω) (19)

with sreg a smooth function of ω. The pole structure
was also noted in a very recent paper by Sakai and
collaborators.40

Retaining for the moment only the pole term and ex-
plicitly evaluating Eq. 11 and 12 using the Nambu angle
θ⋆ corresponding to ω⋆ gives

Σ
N
pole(ω) = D

ω + ω⋆ cos θ⋆

ω2 − (ω⋆)2
, (20)

Σ
A
pole(ω) = D

ω⋆ sin θ⋆

ω2 − (ω⋆)
2 . (21)

0 0.1 0.2 0.3
ω [t]

0

2

4

6

8

10

Im
 Σ

(ω
) [

t]

Im ΣN
(ω)

Im ΣA
(ω)

Im ΣM
(ω)

Im ΣM
(-ω)

FIG. 3. Imaginary part of normal (ΣN ) and anomalous (ΣA)
components of self energy and of ΣM at positive and negative
frequency, computed by analytic continuation of Matsubara
axis self energies for density n = 1 and interaction U = 5.8t
at temperature T = t/60.

Thus in general we expect the normal and anomalous
components of the self energy to have poles at exactly the
same frequencies. In the particle-hole symmetric case,
where θ = π/2, we expect the poles in the normal and
anomalous parts of the self energy to have exactly the
same amplitude. This is demonstrated in Fig. 3, which
shows the imaginary parts of the continuations of the
normal and anomalous components of the self energy,
along with the continuations of s(ω) = ImΣM (ω) ob-
tained from continuation of the (1, 1) component of the
Majorana-basis representation of Σ(iωn) and of s(−ω)
obtained from continuation of the (2, 2) component of the
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Majorana-basis representation of Σ(iωn). That s(−ω) =
0 for ω in the vicinity of the pole is strong evidence of
the cancellation. In the general case both normal and
anomalous components of the self energy have poles at
±ω⋆ but because cos θ⋆ 6= 0 the average of the strengths
of the poles in ΣN will in general be greater than the
strengths of the poles in ΣA. However, as will be seen
in our detailed examination of the self energy below, the
background contributions are such that unambiguously
identifying the pole strengths is not possible.
It also follows from Eqs. 20, 21 and 9 that the pole

contribution to the gap function ∆ is

∆pole =
D sin θ⋆ω⋆

ω2 −
(

(ω⋆)
2
+D

) (22)

so that ∆ does not have poles at ω = ±ω⋆. All of our
continuations are consistent with this result.
The structure defined by Eq. 19 creates challenges for

analytical continuation. Intrinsic errors in the analyti-
cal continuation process mean that independent contin-
uations of the different components of Σ may lead to
slightly different estimates of the pole positions, ampli-
tudes and widths. This can be seen for example by com-
parison of the upper and lower panels of Fig. 2 or by
comparing ΣN and ΣA in Fig. 3. The difficulties are
exacerbated if particle-hole symmetry is broken because
the continuation process may not place the poles in ΣN

at exactly opposite frequencies. We do not know how to
control the continuation process so as to force the precise
alignment of the poles in the different components of Σ.
For studies of the particle-hole symmetric situation, we
work with s defined from continuation of the (1, 1) com-
ponent of Σ in the Majorana basis. In the doped case,
we focus on the gap function.

IV. THE NORMAL AND ANOMALOUS SELF

ENERGIES, (0, π)/(π, 0) SECTOR

It has been accepted for many years that the two
dimensional Hubbard model exhibits a Mott insulat-
ing phase at carrier concentration n = 1 and large in-
teraction, and a Fermi liquid phase at small interac-
tion or carrier concentration sufficiently different from
1. Work29,31,42–44,58,70–81 has established that if super-
conductivity is neglected then the Mott and Fermi liquid
phases are separated by a pseudogap regime, in which re-
gions of momentum space near the zone face are gapped
while regions of momentum space near the zone diago-
nal are not. Mathematically, within DCA the gapping is
a consequence of the appearance of a pole in the elec-
tron self energy pertaining to the (0, π) sector.31,43,44

If the Mott insulator is approached by varying interac-
tion strength in the particle-hole symmetric case (n = 1,
εk = −εk+(π,π)) the pole occurs at ω = 0;43 in a
non-particle-hole symmetric situation (for example if the
Mott insulator is approached by varying doping) the pole
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FIG. 4. Top panel: imaginary part of normal state self energy
calculated for carrier concentration n = 1 and U -values indi-
cated, at temperature T = t/30. Middle panels: imaginary
part of normal and anomalous components of self energy cal-
culated in superconducting state at T = t/60. Lowest panel:
imaginary part of gap function calculated in superconducting
state at T = t/60.

appears at a frequency close to, but slightly different,
from zero.44 In this section we show how the onset of
superconductivity affects this pole structure.

Fig. 4 presents the imaginary parts of the analytically
continued self energies and the gap function for the three
U -values at n = 1 presented in Fig. 2. The upper panel
shows results obtained in the normal state at tempera-
ture T = t/30 > Tc (at U = 5.8t Tc is slightly greater
than t/30 but superconductivity has been suppressed
here for clarity of presentation, i.e. ΣA set to zero). At
U = 5.0t the imaginary part has the Fermi liquid form,
with ImΣ(ω) exhibiting an approximately quadratic min-
imum at zero. As U is increased a thermally broadened
pole appears at ω = 0. The pole increases rapidly in
strength as U is increased. These results are consis-
tent with our previous analysis of the pseudogap.31,70

The middle two panels present the imaginary parts of
the normal and anomalous components of the self energy
at a temperature T = t/60 < Tc. One sees that the pole
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FIG. 5. Top panel: imaginary part of normal state self energy
calculated for interaction strength U = 6t and dopings x in-
dicated, at temperature T = t/30. Middle panels: imaginary
part of normal and anomalous components of self energy cal-
culated in superconducting state at T = t/60. Lowest panel:
imaginary part of gap function calculated in superconducting
state at T = t/60.

centered at ω = 0 has split into two and appears with
comparable strength in both the normal and anomalous
components. The pole frequency weakly decreases as U
is increased. The larger width seen in the U = 5.8t cal-
culation is likely to be an artifact of the analytical con-
tinuation. The lowest panel shows the imaginary part of
the gap function. We see that the gap function is much
smaller in magnitude than the self energy, that the struc-
ture in the gap function occurs at a higher frequency than
the structure in the self energy (as also noted by Sakai et
al40), and that the gap function varies less dramatically
with interaction strength than does the self energy.

Fig. 5 shows the analogous plots as a function of dop-
ing at U = 6t. The upper panel (normal state) shows
again a pole that appears and grows in strength as dop-
ing is decreased. The particle-hole symmetry breaking
provided by the doping means that the pole is slightly
displaced from the origin. In the superconducting state
(middle panels) the pole splits; in ΣN the pole strength

is different for the positive frequency than for the nega-
tive frequency pole. The strength of the pole in ΣA is of
the order of that in ΣN . The detailed line shapes of the
poles depend to on the details of the continuation pro-
cess. The difference in line shapes and small differences
in pole position can lead to unphysical structures in cal-
culated spectra. As in the interaction-driven case, there
is no structure in ∆ at the pole frequencies of Σ.
Poles in the anomalous component of the self energy

were reported by Civelli37 and the alignment of poles in
ΣN and ΣA and the cancellation of the Σ poles in ∆ were
very recently discussed in the context of 4-site CDMFT
calculations40.

V. THE SUPERCONDUCTING GAP AND THE

PSEUDOGAP

In this section we present results for the energy gap
in the superconducting and non-superconducting states.
The gap may be estimated from an analytical continua-
tion of the normal component of the Green function, but
the inevitable broadening associated with continuations
means that it is not clear a priori how to estimate a gap.
As discussed in Ref. 66 for Mott insulators, an alterna-
tive approach provides a more accurate estimate. This
approach is based on the argument that for frequencies
less than the gap, all imaginary parts are zero except for
the poles in Σ, which do not correspond to physical ex-
citations. Thus one may determine the gap energy ωg

from the vanishing of the real part of the denominator of
the Green function. For the normal state, this criterion
involves consideration of

ωg(k) = εk − µ+ReΣ[ωg(k)]. (23)

For a given k this equation will have two solutions, ω±
g (k).

The pseudogap is typically indirect (the k that maximizes
ω−
g is different from the k that minimizes ω+

g ). The direct
gap is determined as

∆PG =
1

2
min
k

{

ω+
g (k)− ω−

g (k)
}

. (24)

The points of minimum direct gap are found to be the
renormalized Fermi surface points k satisfying ε⋆k = εk −
µ + ReΣe(ω = 0) = 0 and that at these points ω+ =
−ω− = ∆PG.
In the superconducting state, these ideas lead to the

consideration of det
[

G
−1(k, ω)

]

. Rearranging the ex-

pression for G−1 gives

det
[

G
−1(k, ω)

]

=

(

1− Σo(ω)

ω

)2

× (25)

(

ω2 − ε⋆k(ω)
2 −∆2(ω)

)

with ∆ defined in Eq. 9 and

ε⋆k(ω) =
εk − µ+ΣN

e (ω)

1− Σo(ω)
ω

. (26)



9

0 0.1 0.2 0.3 0.4

ω [t]

0

0.1

0.2

0.3

0.4

0.5
Re ΣM(ω)
A(ω)/2
Re ∆(ω)

∆
SC

y = ω

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5
Re Σ(ω)
A(ω)

y = ω
∆

PG

0 0.1 0.2 0.3 0.4
ω [t]

0

0.1

0.2

0.3

0.4

0.5
Re ΣM(ω)
A(ω)
Re ∆(ω)

y = ω

∆
SC

FIG. 6. Determination of superconducting and pseudo gaps.
Top panel: The real part of the ΣM self energy (solid line,
black online), the sector (0, π) integrated spectral function
A(ω) = 1

π
ImG(ω) (dashed line, red online, scaled by 0.5), and

the real part of the gap function ∆(ω) computed at n = 1,
U = 5 and T = t/60 < Tc. Middle panel: Self-energy and
spectral function in the normal state, for n = 1, U = 5.8t
and T = t/30 > Tc. Bottom panel: same analysis as in
top panel, for n = 1, U = 5.8t and T = t/60 < Tc. Also
shown are the line y = ω (blue online) and an estimate for the
superconducting or pseudo gaps obtained from ReΣM (ω) = ω
(vertical line, purple online).

We then define the gap frequency ωg(k) in the supercon-
ducting state as the frequency at which the real part of
G−1 vanishes, i.e. as

ωg(k) = ±
√

Re[ε⋆k(ωg(k))]2 +Re[∆(ωg(k))]2. (27)

We define the Fermi surface as the locus of k-points for
which ε⋆k(ω = 0) = 0. We will find that the the ω de-
pendence of ε⋆k is modest so that we may identify the
gap ∆SC in the superconducting state as the value of ωg

which solves ωg = Re (∆(ωg)).
In the particle-hole symmetric case where ΣN

e = 0 we
may alternatively write the gap equation as the solution
of

ωg = ReΣM (ωg). (28)
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0.1

0.2

0.3

∆

∆
SC

 from ∆
∆

PG 
from Σ

0 0.05 0.1 0.15
x

0

0.1

0.2

0.3

∆

∆
PG

 from G
∆
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FIG. 7. Energy of lowest excitation in superconducting state
(temperature T = t/60, dashed lines, red online) and nor-
mal state (temperature T = t/60 but superconductivity sup-
pressed, solid line, black online) computed for different inter-
action strengths at carrier concentration n = 1 (upper panel)
and different carrier concentrations at interaction strength
U = 6t (lower panel) as described in the text.

Fig. 6 demonstrates this procedure. The upper panel
shows results obtained in the superconducting state at
U = 5 (the normal state is not shown because at this
U there is no normal state pseudogap). The figure plots
the spectral function (imaginary part of continued Green
function), the real part of the Majorana combination of
the self energy and the real part of the gap function as a
function of frequency. We see by comparing the contin-
ued spectral function to the self energy and gap curves
that the criteria ω = Re∆(ω) or ω = ReΣM (ω) identi-
fies a point close to that at which the spectral function
is maximal. We believe that the appearance of weight
at lower frequencies in the spectral function comes from
artificial broadening induced by the continuation process.
The middle panel shows the same analysis in the nor-

mal state at U = 5.8t. The normal state pseudogap is
evident, and again we see that the quasiparticle equa-
tion picks out as the gap the point at which the spectral
function is maximal. The lower panel shows the super-
conducting state, also at U = 5.8t. We also see that at
this U value the line y = ω is tangent to (in fact very
slightly below) the Re∆(ω) curve at the point that one
would naturally identify as the gap. That ReΣM (ω) in-
tersects y = ω while A(ω) is peaked at the point of near
tangency suggests that the absence of an exact intersec-
tion is a continuation artifact and that if all quantities
were exactly and consistently continued the line y = ω
would intersect the Re∆(ω) line.
Comparison of the middle and lower panels of Fig. 6

shows that the superconducting gap is unambiguously
smaller than the normal state pseudogap, consistent with
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FIG. 8. Temperature dependence of gap size computed as dis-
cussed in text for carrier concentration n = 1 and interaction
strengths indicated

results presented in Ref. 23. Also, comparison of the
lower panel of Fig. 6 to Fig. 2 shows that for this value
of U the pole in the self energy lies inside the excitation
gap of the superconductor, further confirming that the
self energy pole does not represent a physical excitation
of the system.

The two panels of Fig. 7 show the dependence of the
low-T (T = t/60 ∼ 60K) gap on interaction strength
at n = 1, computed from Eq. 28 and the dependence
of the low-T gap carrier concentration at U = 6t, com-
puted from Eq. 27. In the weak interaction or large dop-
ing limits, there is no superconductivity. As the dop-
ing decreases or interaction strength increases the gap
increases smoothly down to the low doping/high interac-
tion end of the phase diagram (note that at the two end-
points of the superconducting phase, (n = 1, U = 5.9)
and (U = 6, x = 0.02) the superconducting state is not
fully formed so the gap values are not meaningful). Also
shown on the plots is the normal state pseudogap, com-
puted at the same low temperature T = t/60 by sup-
pressing superconductivity in the calculation. One sees
that in the low doping/strong interaction regime, turning
on superconductivity leads to a decrease in the energy of
the lowest-lying excitation.

Finally, Fig. 8 shows the temperature dependence of
the energy gap at the three U values considered above.
We see that in the moderate coupling regime, there is no
normal state gap and the superconducting gap increases
from zero as the temperature is decreased through the
transition temperature. At intermediate coupling a small
but non-zero gap is already present in the normal state
and the gap increases with the onset of superconductivity,
while at stronger coupling the gap actually decreases as
the temperature is decreased into the superconducting
state.

VI. FERMI SURFACE SPECTRA

In this section we present spectra computed at the
Fermi surface using continued self energies. The issues
discussed above relating to the difficulties of analytical
continuation in non-particle-hole symmetric case mean
that we limit ourselves here to study of the interaction-
driven transition at density n = 1 but all of the infor-
mation available to us suggests that the behavior in the
doped case shares the essential features found at half-
filling.

Fig. 9 shows the temperature evolution of the elec-
tron spectral function computed for a momentum on the
Fermi surface at the antinode ((π, 0)) at carrier density
n = 1 and different interaction strengths. The upper
panel shows results obtained for a moderate interaction
U = 5t. We see that the normal state spectral func-
tion is peaked at the chemical potential ω = 0. The
onset of the superconductivity (Tc is between t/30 and
t/40) induces a suppression of the low frequency den-
sity of states. The gap grows and sharpens as tem-
perature is decreased. For the lower temperatures one
sees that the spectral function has a sharp quasiparti-
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FIG. 9. Spectral functions computed at carrier density n =
1 for momenta on the Fermi surface in the (0, π) sector for
U = 5.0 (top panel) 5.5 (middle panel) and 5.8 (lower panel)
at temperatures indicated.
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cle peak, a weak minimum at slightly higher frequencies,
followed by a weak maximum at yet higher frequencies.
This structure in the spectral function is frequently ob-
served in photoemission9,10,16,82–85 and scanning tunnel-
ing microscopy86 experiments on copper-oxide high-Tc

materials and is referred to as a “peak-dip-hump” fea-
ture. The higher frequency “hump” is typically inter-
preted as arising from the interaction of electrons with
some kind of bosonic excitation, with the hump frequency
determined by the boson energy and the minimum energy
to create an electron-hole pair.

The middle panel of Fig. 9 shows shows results ob-
tained for an intermediate interaction U = 5.5. We see
that a weak minimum is evident in the density of states
even temperature T = t/30 > Tc; this weak suppression
of the density of states marks the onset of the ‘pseudo-
gap’. As the temperature is decreased below the transi-
tion temperature the low frequency intensity drops very
rapidly. The gap (peak in the spectral function) increase
and saturates at a value rather greater than that found
in the moderate interaction case. The peak-dip-hump
structure is more evident. In this case the “hump” en-
ergy increases as T decreases except for the lowest tem-
perature.

The lower panel of Fig. 9 shows results obtained for the
strongest interaction (U = 5.8). In this case the normal
state pseudogap is well established even at T = t/30.
The transition to superconductivity is associated with
the formation of a quasiparticle peak which lies inside
the pseudogap and with a shift outwards of the second
peak structure. For both U = 5.5 and U = 5.8 the
energy of the second peak increases as temperature de-
creases, with the exception of U = 5.5, T = t/60. We
believe that at this particular U and T the continuations
are of lower quality than at other parameter values. For
example the errors associated with back continuation are
slightly larger.

The question of the origin of the “peak-dip–
hump” structure has been discussed extensively in
the literature on angle-resolved photoemission in the
cuprates.10,16,17,21,85,87–90 The most widely accepted ex-
planation is that the higher energy “hump” is evidence
for a “shakeoff” process in which an electron emits a
bosonic excitation such as a spin fluctuation17,88–90 or a
phonon,15 while the peak feature is the quasiparticle ex-
citation above the gap. In this picture the onset of the
hump feature determined as the sum of the energy of the
boson and the superconducting gap energy, (structure in
the bare dispersion associated with interbilayer hopping
may also play a role in certain materials).16,17 Such a
shakeoff process would appear in the imaginary part of
the self energy as an upward step, corresponding to the
opening of a scattering channel. However, a quantita-
tive and generally accepted identification of the boson
responsible for the hump energy is lacking.

Mathematically, structures in the spectral function
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FIG. 10. Comparison of real and imaginary parts (middle
and top panel) of the ΣM Majorana component of self energy
to Fermi surface spectral function (lower panel) for carrier
concentration n = 1, temperature T = t/60 and U = 5 (solid
lines, black online), U = 5.5 (dashed lines, red online) and
U = 5.8 (dotted lines, blue online). In the middle panel the
real part of the self energy is presented as ω − ReΣ(ω).

may be understood from the fundamental expression

A(k, ω) ∼ ImΣ(ω)

(ω + µ− εk − ReΣ(ω))
2
+ (ImΣ)

2 (29)

where for clarity we have not explicitly written the
change of basis matrices R (Eq. 12). From Eq. 29 we
see that structure can arise from resonance (ω+µ− εk −
ReΣ(ω) ≈ 0) or, off resonance, from an increase in ImΣ.
The former case produces the quasiparticle peak of Fermi
liquid theory; the latter is the origin of the “shakeoff”
explanation of the peak-dip-hump structure.10,16,85,88–90

Fig. 10 investigates the origin of the “hump” structure
in the present calculation by comparing the computed
spectral function (lower panel, evaluated at the Fermi
surface εk = µ) to the electron self energy (heavy lines,
upper panel) in the Majorana basis that diagonalizes the
Nambu Greens function at all ω for n = 1. The real part
is presented in the combination ω−ReΣ(ω). We see that
the location of the “hump” feature in fact does not cor-
respond to any significant feature in the imaginary part
of the self energy (top panel), so that it cannot be inter-
preted as an onset of scattering. Instead, inspection of
ω−ReΣ(ω) energy (middle panel) shows that for the two
stronger couplings the frequency of the hump corresponds
to the frequency at which the real part of the inverse
Greens function vanishes, while for the weaker coupling
the hump frequency corresponds to a point where the ab-
solute value of ω−ReΣ(ω) is minimized. In other words,
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FIG. 11. Energy dependence of electron spectra calculated at
density n=1 and interaction U = 5 for momenta −0.325π ≤

kx ≤ 0.325π and ky = 0.825π. Inset: Illustration of the
momentum cut (horizontal line) through the noninteracting
Fermi surface (dashed line); see also Fig. 1. Left panel: nor-
mal state (T = t/30), right panel: superconducting state
(T = t/60). Dot-dashed curves (red online) correspond to mo-
menta inside the Fermi surface and solid curves (black online)
to momenta outside the Fermi surface. The dashed curves
(blue online) indicate traces with the momenta set equal to
the Fermi momentum.

the “hump” is a resonance phenomenon, not a scatter-
ing phenomenon, and its frequency does not correspond
directly to the energy of any excitation of the system.

VII. MOMENTUM-DEPENDENT SPECTRA

In this section we present and discuss the momentum
dependence of spectral functions calculated from the nor-
mal and anomalous components of the self energy. The
left panel of Fig. 11 shows a sequence of energy distri-
bution curves (EDC) calculated in the normal state for
a sequence of momenta cutting across the Fermi surface
in the (π, 0) sector for the moderate interaction strength
U = 5.0. A quasiparticle peak is visible, which disperses
through the Fermi surface. The right panel shows EDC
at the same momenta, this time in the superconducting
state. Comparison of the two panels reveals the behavior
expected of a moderate-coupling BCS-like superconduc-
tor, with the gap having the greatest effect on the Fermi
surface trace and the superconductivity-induced particle-
hole mixing producing a peak dispersing away from zero
as momentum is increased above the Fermi level.

Fig. 12 shows the EDC curves obtained for a strong
interaction U = 5.8. The weakly dispersing and rather
broadened normal state pseudogap is seen in the left
panel. The right panel shows that the onset of super-
conductivity produces a very weakly dispersing peak at
an energy well inside of the pseudogap. This essentially
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FIG. 12. Energy dependence of electron spectra calculated at
density n=1 and interaction U = 5.8 for momenta −0.325π ≤

kx ≤ 0.325π and ky = 0.825π. Left panel: normal state
(T = t/30), right panel: superconducting state (T = t/60).
Dot-dashed curves (red online) correspond to momenta inside
the Fermi surface and solid curves (black online) to momenta
outside the Fermi surface. The dashed curves (blue online)
indicate traces with the momenta set equal to the Fermi mo-
mentum.

non-dispersing zone-edge feature is characteristically ob-
served in photoemission experiments on high Tc cop-
per oxide superconductors.10,12,15,21 In the present cal-
culation the weak dispersion arises mathematically from
the very strong frequency dependence of the self energy
caused by the proximity of the pseudogap pole (cf Eq.
29).

VIII. SUPERCONDUCTING EFFECTS ON

ZONE DIAGONAL SPECTRA

In the cuprates and in the Hubbard model the dramatic
effects of superconductivity are visible in the electronic
states near the zone face ((0, π)/(π, 0)) point, because
it is at this point that the superconducting gap and the
pseudogap are maximal. But in addition to opening, or
changing the value of, a gap, the onset of superconductiv-
ity may affect other aspects of the physics, for example
by changing the density of final states that enter into
scattering processes91 or, more profoundly, by changing
the electronic state itself and thus the nature of the scat-
tering mechanisms. Some understanding of these effects
may be gleaned from consideration of electronic states
with momentum along the zone diagonal. The supercon-
ducting gap vanishes for these momenta and thus any
effects on electron propagation must arise from changes
in scattering and electronic state.
We find that at all dopings and interaction strengths

we have studied the electronic self energy in the zone di-
agonal momentum sector has approximately the Fermi
liquid form. In particular the self energy does not have
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FIG. 13. Dependence on doping of zone diagonal mass en-
hancement m⋆

m
(upper panel) and Fermi surface scattering

rate Γ0 (lower panel) extracted from Matsubara-axis data
(Eq. 30 ) for temperatures indicated in normal and super-
conducting state.

a low frequency pole. Its imaginary part is minimal at
zero frequency and the value at zero frequency, Γ0, de-
creases as temperature T → 0. The real part is linear
in frequency over a reasonable range of low frequencies,
allowing us to define a zone diagonal mass enhancement
m⋆

m
= 1 − ∂Σ/∂ω from the Matsurbara data (note also

that in DCA, the self-energy is k-independent except at
the sector boundaries, so the k-derivative contribution to
the disperson renormalization is not relevant). We ex-
tract estimates of the Fermi level scattering rate Γ0 and
mass enhancement m⋆

m
by fitting the lowest four Matsub-

ara frequencies to the cubic form

Im Σ(iωn) = −Γ0sign(ωn)−
(

m⋆

m
− 1

)

iωn + Cω3
n...

(30)

Representative results are shown in Fig. 13. We see
that the mass enhancement has a modest doping de-
pendence, and decreases markedly as temperature is de-
creased. Superconductivity has only a small effect on the
mass enhancement. At low doping the onset of super-
conductivity leads to a very small decrease in the mass
enhancement; at higher doping the effect is of opposite
sign and is slightly larger. It is interesting to note that
the change in sign of the superconducting contribution

to the mass enhancement occurs at a lower doping than
the change from potential energy-driven to kinetic energy
driven pairing discussed in Ref. 32. Thus the change in
electronic state associated with the onset of supercon-
ductivity has a weaker effect on the nodal quasiparticles
than it does on other properties.
The normal state scattering rate also has a dramatic

doping dependence, especially at the higher temperature,
and at all dopings exhibits a marked temperature depen-
dence. The effect of superconductivity on the scatter-
ing rate is much more noticeable than the effect on the
mass enhancement: the onset of superconductivity leads
to an almost factor of two drop in the Fermi surface scat-
tering rate, except at the very lowest doping which is
right on the boundary of superconducting phase. These
finding are consistent with angle-resolved photoemission
measurements on Bi2Sr2CaCu2O8−δ.

92 Fig. 4c of Ref. 92
reveals that the onset of superconductivity leads to an
approximately factor of two decrease in the MDC width
(a good proxy for scattering rate) below the extrapola-
tion of the normal state rate to low temperature, while
Fig. 3 of Ref. 92 reveals a much smaller change in the
mass enhancement (albeit of opposite sign to that pre-
dicted here). The more coherent nature of the zone di-
agonal quasiparticles is also qualitatively consistent with
conclusions drawn from pump-probe experiments,93 but
because our calculations are restricted to equilibrium a
direct comparison cannot be made.

IX. CONCLUSIONS

Two characteristic features of the high transition tem-
perature copper-oxide superconductors are superconduc-
tivity with dx2−y2 symmetry and a ‘pseudogap’4, a sup-
pression of electronic density of states for momenta near
the Brillouin zone face ((0, π) point). The interplay be-
tween these two phenomena has been the focus of con-
siderable attention in the literature. In this paper we
present cluster dynamical mean field calculations of the
electronic self energy and spectral function of the nor-
mal and superconducting phase of the two dimensional
Hubbard model that shed new light on the subject.
The correspondence of the results to the essential fea-

tures of superconductivity in the cuprates is striking. We
find, consistent with a large body of experimental lit-
erature, that when superconductivity emerges from the
pseudogap regime the onset of superconductivity is as-
sociated with the appearance of very weakly dispersing
states inside the pseudogap and with the appearance of a
peak-dip-hump structure in the spectral function. Super-
conductivity affects the zone-diagonal states via a signif-
icant (∼ factor of 2) decrease in the scattering rate. We
have also determined the superconducting and pseudo-
gaps accurately and have shown that the superconduct-
ing gap systematically increases as doping is decreased or
interaction strength is increased, until it abruptly drops
to zero at the low-doping/high interaction boundary of
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the superconducting phase. These results support the no-
tion that the pseudogap and superconductivity are com-
peting phenomena and strengthen the case made in prior
papers23,32–34 that as P. W. Anderson predicted in 19872

the Hubbard model contains the essential physics of the
high-Tc observed in layered copper-oxide materials.

Mathematically, we find (in agreement with previous
work23,31,43,70) that the pseudogap is a Mott-transition-
like phenomenon (“sector-selective Mott transition”) as-
sociated with the appearance of a low frequency pole
in the self energy in the zone-face self energy. The in-
terplay between superconductivity and the pseudogap is
controlled by the superconductivity-induced changes in
the pole structure. In particular, in our calculation the
‘hump’ feature in the spectral function arises mathemat-
ically from a zero-crossing in the real part of the self
energy and not from the onset of a scattering process, in
other words, not from a bosonic excitation at all. On the
technical side we have clarified the mathematical struc-
ture of the pseudogap-induced poles associated with the
normal and anomalous self energies, shown how the in-
evitable analytical continuation errors make it difficult
to construct real-frequency spectra in situations where
the pseudogap poles are important. The pole structure
has also been discussed by Sakai et al. 40 who present an
interesting alternative interpretation.

It is important to consider the limitations of the meth-
ods used here. The essential technical step is the use of
continuous-time auxiliary field methods29 and submatrix
updates.30 These methods enable highly accurate simu-
lations at temperatures as low (in physical units) as 60K,
far below the basic scales of the model and, crucially, well
below the superconducting transition temperature. How-
ever, even with these improvements, obtaining results of
the needed precision at the required low temperatures
requires approximations.

The key approximation used in this paper is the clus-
ter dynamical mean field approximation.64 In the ‘DCA’
form used here24 this amounts to approximating the nor-
mal and anomalous components of the electron self en-
ergy as piecewise constant functions of momentum, tak-
ing different values in each of Nc momentum sectors that
tile the Brillouin zone. We have adopted the N = 8
approximation. This is the smallest momentum decom-
position that permits a clear separation between the zone
face and zone diagonal regions of momentum space. Pre-
vious work23,31,55 indicates that although we do not have
quantitative convergence to the N = ∞ limit, the N = 8
approximation correctly captures the physics of the nor-
mal state pseudogap.

A second approximation is the use of an interaction
U ≤ 6t which is likely to be slightly weaker than needed
to quantitatively capture the physics of the cuprates.
This approximation is needed because computation time
increases rapidly as U increases (as U3, with additional
complications from the sign problem) and we needed
to undertake a broad survey of parameter space. For
similar computational reasons we restricted attention to

the particle-hole symmetric version of the model (second
neighbor hopping t′ and further neighbor hoppings set to
zero).

Finally, because the basic computations use imaginary
time methods, obtaining spectra of interest requires an
analytical continuation method. Analytical continuation
is an ill-posed problem. We used maximum entropy ana-
lytical continuation methods (which are widely employed
but essentially uncontrolled) to extract real frequency in-
formation. This requires extremely high quality Monte
Carlo data, further constraining the parameter ranges
that could be examined. In this context the properties of
the anomalous self energy are of particular importance.
With the exception of the Padé method, all methods
known to us require a positive definite spectral function.
While we have presented evidence that in at least some
cases the spectral function associated with the anoma-
lous self energy has an appropriate positivity property,
the possibility of a sign change at high frequency cannot
be ruled out. At high frequencies the anomalous part
is very small and the intrinsic limitations of the contin-
uation process mean that small systematic errors could
induce (or mask) a sign change.

A key physical limitation of our work is that we
have not considered other ordered states (for example
Néel antiferromagnetic or striped order) that might pre-
empt the phases considered here. The dynamical mean
field method captures (within the rather coarse mo-
mentum resolution of the cluster dynamical mean field
method) fluctuations associated with these states, but
because we have symmetrized over spin degrees of free-
dom, long range ordered antiferromagnetic states are ex-
cluded. Also our calculation lacks the momentum resolu-
tion needed to provide a clear account of striped states.
Thus we view the results as providing a reasonable qual-
itative account of the properties of the superconducting
phase and pseudogap regime of the two dimensional Hub-
bard model, but not as a quantitatively accurate account
of the properties of the Hubbard model.

For these reasons, extensions of the work presented
here would be desirable. Pushing the calculation on large
clusters to somewhat larger U so that the n = 1 endpoint
is well within the Mott insulating phase should become
feasible as computer power improves. Study of larger
U would provide more insight into the interplay of su-
perconductivity and Mott physics. Extending the cal-
culations to N = 16 site approximation would similarly
be useful. In particular, examination of differences be-
tween gap values and spectra calculated with N = 8 and
N = 16 will provide insight into the quantitative aspects
of the results. If feasible, real-time calculations and com-
prehensive Padé continuations, that could investigate the
possibility of sign changes in the anomalous component
of the self energy would be reassuring. On the conceptual
side, a deeper understanding of the pseudogap state and
of the meaning of the self energy poles would be desirable.
Most importantly, investigation of competing states such
as Néel antiferromagnet and stripe orders is needed.
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