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Magnetic impurities embedded in a metal interact via an effective Ruderman-Kittel-Kasuya-
Yosida (RKKY) coupling mediated by the conduction electrons, which is commonly assumed to
be long ranged, with an algebraic decay in the inter-impurity distance. However, they can also
form a Kondo screened state that is oblivious to the presence of other impurities. We study the
competition mechanisms between both effects on the square and cubic lattices by introducing an
exact mapping onto an effective one-dimensional problem that we can solve with the density ma-
trix renormalization group method (DMRG). We show a dramatic departure from the conventional
RKKY theory, that can be attributed to the dimensionality and different densities of states, as well
as the quantum nature of the magnetic moments. In particular, for dimension d > 1, Kondo physics
dominates even at short distances, while the ferromagnetic RKKY state is energetically unfavorable.
Our findings can have clear implications in the interpretation of experiments and for tailoring the
magnetic properties of surfaces.

PACS numbers: 73.23.Hk, 72.15.Qm, 73.63.Kv

I. INTRODUCTION

Tailoring magnetic properties of substrates through
magnetic ad-atoms is a very active area of research,
due to the desire to design semiconductor devices with
novel functionality. In particular, ad-atoms on two-
dimensional layered materials such as graphene,1,2 and
even superconductors3 have recently attracted a great
deal of interest. Understanding the dominant interac-
tions between atoms on surfaces is crucial for describing
larger-scale processes that can lead to surface reconstruc-
tion and self-assembly at interfaces4. For instance, de-
pending on their strength and directionality,5–8 quantum-
mechanical effects could lead to the self-assembly of one-
dimensional Co chains and Fe superlattices9,10. Ex-
citing pioneering examples include quantum corrals
formed by Fe atoms on Cu(111),11 quantum wires
on Au(111) surfaces,12 and more recently, magnetic
nanostructures,13 one dimensional atomic chains,14 and
atomic dimers.15

The physics of a single magnetic impurity is the essence
of the Kondo problem: the magnetic moment is screened
by the spin of the electrons in the Fermi sea, forming a
collective singlet state.16 This wave-function can be de-
scribed as a hybridization cloud (“Kondo cloud”) cen-
tered at the impurity and decaying in distance with a
characteristic range RK .17–19 When more than one im-
purity interact with the conduction electrons, an effec-
tive Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling
between the magnetic moments arises,20–22 which can be
ferro or antiferromagnetic, and oscillates with the dis-
tance between the impurities R with wave-vector 2kF
(the Fermi momentum), and an amplitude that decays
algebraically. It is commonly believed that if the Kondo
screening length RK is shorter than the separation R,

the Kondo effect will be more important and the RKKY
interaction will not be observed. On the other hand,
if R is smaller than RK , the RKKY interaction will
dominate.17–19 As pointed out in Ref. [17], even in a very
dilute system with a low concentration of magnetic mo-
ments, a finite number of impurities would be inside re-
gions in space with overlapping Kondo clouds. The fact
that Kondo physics dominates, and that a single impurity
model can explain all experimental observations, clearly
defies intuition. The purpose of this work is to shed light
on this issue by means of a numerical technique able to
access the ground state of very large systems, and free of
finite temperature effects. As shown below, the geometry
and dimensionality of the lattice play a fundamental role
in understanding this competition in real materials, and
the recent experimental observations in Refs. 6,8,23,24.

The Hamiltonian of the problem treated here is de-
fined by two Si = 1/2 Kondo impurities (where i = 1, 2)
interacting locally with free fermions in the bulk via an
antiferromagnetic exchange coupling JK :

H = Hband + JK

(
~S1 · ~sr1 + ~S2 · ~sr2

)
. (1)

where Hband is the lattice Hamiltonian for non-
interacting electrons, parametrized by a hopping t, and
~sri represents the conduction electron’s spin at the impu-
rity’s coordinate ri, for impurities i = 1, 2. As suggested
by Doniach in Ref. 25 (see also 26), one could define
a binding energy (or “Kondo temperature”) for form-
ing a Kondo singlet TK ' e−1/JK , or an RKKY state,
TRKKY ∼ J2

K , and a competition between these two en-
ergy scales will dictate which phase will win.

The usual treatment to derive an effective exchange in-
teraction between the localized moments involves second-
order perturbation theory. The result can be summarized
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FIG. 1: Geometry of the equivalent two impurity problem:
(a) before and (b, c) after the transformation. (b) and (c)
illustrate the cases of two impurities at distance R = 8, and
R = 7, respectively.

as:

JRKKY (R) = J2
Kχ(R),

where χ(R) is just the Fourier transform of the non-
interacting static susceptibility, or Lindhard function.
The dependence of this function on the distance varies
with dimensionality. A universal expression is often of-
fered in the literature, which is derived from assum-
ing a uniform electron gas with a quadratic dispersion
E(k) ∼ k2.27 Its asymptotic behavior at long distances
(kFR� 1) and in d dimensions is of the form:

χ(R) ∼ sin (2kFR+ πd/2)

Rd
.

We note here that the effects of the lattice are com-
pletely ignored in this treatment. Clearly, the presence
of a discrete lattice can have dramatic effects, due to
the destructive and/or constructive interference of the
electronic wave-functions centered on different sites, as
well as the shape of both the dispersion and the Fermi
surface.22,28–30 For instance, in graphene, the RKKY in-
teraction can decay as 1/R2 for impurities sitting on lat-
tice sites, or 1/R3 for impurities sitting at interstitial
spaces.31,32

Irrespective of the dimensionality, a generic argument
can show that, on bipartite lattices and at half-filling, the
oscillations in the RKKY interaction are commensurate
with the lattice, and therefore, interactions are always
ferromagnetic when moments are on the same sublattice,
or antiferromagnetic otherwise.33 Therefore, the effects
of perfect nesting, and the density of states(DOS) should
be manifest in the strength of the interaction and its de-
cay with distance, giving rise to a competition between
Kondo and RKKY states that is non-universal and de-
pends on the geometry and dimensionality of the system.

II. METHOD

In this work we devise an approach to map the model in
Eq. (1) onto an effective one dimensional problem that is
optimized for a DMRG calculation. By generalizing the
method introduced in Ref. 34 for single impurity prob-
lems, we reduce a complex lattice geometry to a single
chain, or a multi-leg ladder in the case of multiple im-
purities. A simple and straightforward analogy can be
traced back to Wilson’s numerical renormalization group
(NRG) treatment of a single impurity coupled to a Fermi
sea,35,36 where the electronic band is mapped onto a one-
dimensional chain by means of a smart change of basis.

In general, the total Hamiltonian of this problem can
be written as:

H = Hband +Himp + V,

where Hband is the lattice Hamiltonian, Himp is the many
body impurity Hamiltonian (e.g., Coulomb interactions
in the case of Anderson impurities), and V contains the
hybridization terms coupling the lattice and the impu-
rities. For the case of interest here, V corresponds the
Kondo interaction in Hamiltonian (1). In this section we
give a general description of the method, without defin-
ing a particular lattice geometry. For clarity, we focus on
the case of two magnetic impurities.

We present two approaches to carry out the transfor-
mation. The first one relies on the so-called block Lanc-
zos method:37,38 We start the recursion by picking “seed”
initial states, which are single-particle orbitals, from now
on denoted |1〉, |2〉, centered at the position of the impu-
rities, r1 and r2. As described in detail below, a block
Lanczos method will generate a block tridiagonal matrix
that can be interpreted as a single-particle Hamiltonian
on a ladder geometry. The second approach applies to
lattices with inversion symmetry: In this case we can
simplify the problem even further by just defining two
new seeds, which we take to be the symmetric and an-
tisymmetric linear combinations of single-particle states
|±〉 = 1/

√
2 (|1〉 ± |2〉). We then follow the prescription

described in Ref. 34 for the single impurity problem. By
repeatedly applying on these states the non-interacting
terms in the Hamiltonian, we generate new Lanczos or-
bitals in which the Hamiltonian has a tridiagonal form.
The two new sets of states generated by the two orthog-
onal seeds will also be orthogonal in this new basis, and
the geometry of the problem is now reduced to two inde-
pendent chains.

In the following we describe the two approaches in de-
tail.

A. Block Lanczos method

In order to generalize the Lanczos scheme proposed in
Ref. 34, we propose two strategies, and will later show
that they are intimately connected. The first technique
consists of applying the extended block Lanczos method.
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As done before for the single impurity, the first step
is to choose the seed states. We will choose them to be
single-particle orbitals sitting at the same lattice sites as
the impurities, say sites 1 and 2. The advantage of this
choice is that the hybridization terms in V will remain
unchanged under this transformation. The two initial
states for the transformation are,

|α0〉 = c†1 |0〉
|β0〉 = c†2 |0〉 ,

where we have ignored the spin subindexes for simplicity.
A new set of states can be obtained by using the extended
Lanczos recursion method,

|αn+1〉 = H |αn〉 − aααn |αn〉 − aαβn |βn〉
− bααn |αn−1〉 − bαβn |βn−1〉

|βn+1〉 = H |βn〉 − aββn |βn〉 − aβαn |αn〉
− bββn |βn−1〉 − bβαn |αn−1〉 .

Requiring that the new states are orthogonal to the
two previous states, i.e.,

〈αn−1|αn+1〉 = 0 = 〈βn−1|αn+1〉

results in the following equations that can be solved for
the b coefficients,

〈αn−1|H |αn〉 − bααn 〈αn−1|αn−1〉 − bαβn 〈αn−1|βn−1〉 = 0

〈βn−1|H |αn〉 − bααn 〈βn−1|αn−1〉 − bαβn 〈βn−1|βn−1〉 = 0.

A similar set of equations determines the value of the a
coefficients,

〈αn|H |αn〉 − aααn 〈αn|αn〉 − aαβn 〈αn|βn〉 = 0

〈βn|H |αn〉 − aααn 〈βn|αn〉 − aαβn 〈βn|βn〉 = 0,

For a bipartite lattice, as in the case of square or cubic,
all aααn and aββn will be zero and reduce these equations
to

〈βn|H |αn〉
〈βn|βn〉

= aαβn .

So far, we have obtained a new non-normalized basis.
However, states |αn〉 and |βn〉 are not necessarily orthog-
onal. In order to obtain a full set of orthonormal states,
we use a Gram-Schmidt procedure to orthogonalize them
(note that this is not the only choice).

|xn〉 = |αn〉
|yn〉 = |βn〉 − 〈αn|βn〉 |αn〉 .

Our Hamiltonian can now be written in the desired
tridiagonal form:

Hband =


A0 B1 0 0 · · ·
B1 A1 B2 0
0 B2 A2 B3

0 0 B3 A3

...
. . .

 ,
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FIG. 2: (color online) Examples of symmetric single-particle
orbitals obtained through the Lanczos transformation for two
impurities (one at the origin and the other at a distance R =
10 along the x direction) after (a) 5 and (b) 10 iterations.
In (c) we show the geometry of the equivalent problem, with
the two magnetic impurities coupled to non-interacting tight-
binding chains via many-body terms proportional to JK .

where An and Bn are 2 × 2 matrices. This method can
readily be extended further to more impurities. For k im-
purities, each A and B matrix will be k×k. This matrix
represents a new non-interacting tight-binding Hamilto-
nian, with each block representing a unit cell. For k im-
purities, it can be recognized as k coupled chains forming
a k × L ladder, where L is the number of Lanczos itera-
tions. The new geometry is now quasi one-dimensional.

For the particular case of the square lattice, the ma-
trices acquire a different structure for impurities on the
same or opposite sublattices: In the first case, all the A
matrices are zero and the B matrices are lower triangu-
lar. This translates into the slanted ladder geometry of
Fig. 1(c). On the other hand, if the impurities are on op-
posite sub-lattices, the A matrices are off-diagonal, while
the B matrices are diagonal, as represented in Fig. 1(b).

The first R orbitals (where R is the distance between
the two impurities) will simply correspond to the single
particle orbitals of two independent single-impurity prob-
lems, generating two independent chains. As the number
of iterations increases, the orbitals will overlap, and the
transformation will introduce mixing in order to preserve
the orthogonality, leading to the hopping terms between
both chains.

B. Bonding-antibonding symmetrization

We now introduce a simple transformation that will
enable us to simplify the geometry of the equivalent prob-
lem even further in the case of lattices where we can de-
fine inversion symmetry. We just choose the initial states
as linear combinations of single-particle orbitals

|±〉 = c†±|0〉 = 1√
2
(c†1 ± c

†
2) |0〉 ,
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representing symmetric (bonding) and antisymmetric
(anti-bonding) states, respectively (see Fig. 2(a-b)). For
each initial state, the Lanczos iteration procedure is iden-
tical to that described in the single-impurity problem.34

Under this transformation, the many-body interactions
in Himp, V will be modified

introducing terms mixing the impurities, and the first
two orbitals of both chains |±〉. However, the equivalent
Hamiltonian will remain one-dimensional, and local, as
shown in Fig. 2.

After rotating all terms to the new basis, the many-
body interactions in Eq.(1) acquire the form

V =
JK
2

∑
λ=±

(S1 + S2) ·
∑

µ,η,γ=±
c†γµ~σµηcγη

+
JK
2

∑
λ=±

(S1 − S2) ·
∑

µ,η,γ=±
c†γµ~σµηc−γη, (2)

where ~σ are the Pauli matrices. Notice that this sym-
metrization is identical in spirit and form to the folding
transformation used in NRG calculations for the two-
impurity problem,39 with the main difference being that
our symmetrization takes place in real space, instead of
momentum space.

As shown schematically in Fig. 2(c), the magnetic im-
purities that were originally connected to orbitals |1〉 and
|2〉, are now interacting with the |±〉 orbitals by com-
plicated many-body terms that introduce a coupling be-
tween the two chains. Nonetheless, the final Hamiltonian
still is one dimensional and local, and its ground state can
accurately be obtained using the DMRG method. In-
deed, the advantage of this approach is not only that
the recursion is greatly simplified, but also that the
equivalent problem reduces in practice to a single one-
dimensional chain, as depicted in Fig. 2(c), greatly re-
ducing the entanglement in the problem, and thus the
computational cost of the simulations.

It is easy to show that both mappings are equivalent
by simply taking any of the ladders in Fig. 1, and sym-
metrizing the orbitals under a reflection with respect to
a plane parallel to the chains. The equivalent Hamilto-
nian will be nothing else but the chain in Fig. 2. As a
consequence, the entanglement in the problem is reduced
by a factor 2, which translates into an exponential gain
in terms of the number of states needed in the DMRG
simulation.

C. DMRG simulations

In the block Lanczos approach, the bipartite entangle-
ment is proportional to the number of legs, or impuri-
ties, in the problem. The main advantage of the folding
transformation is that the entanglement gets reduced by
two, and the number of states needed in the calculation
is reduced by a power of 1/2. For the DMRG simula-
tions, we take the total system size (including impuri-
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FIG. 3: (color online) Spin-spin correlations between Kondo
impurities at different distances along the x axis, as a function
of the Kondo coupling JK and for different lattice geometries:
(a) 2d square, (b) 3d cubic and (c) 1d chain, at half-filling.

ties) to be L = 4n (n integer), such that each impu-
rity can form part of a collective RKKY state or its own
Kondo cloud (it has been already observed that Kondo
does not develop in chains of length L = 4n + 2.40) We
have considered values of L up to 204, which corresponds
approximately to a “sphere” around the two impurities
of radius ∼ 100. As explained in Ref. 34, we assume
“infinite boundary conditions”, corresponding to orbitals
that expand outward from the impurities and never hit
any boundaries, which is valid if one is interested in the
thermodynamic limit, in a similar spirit as the NRG ap-
proach. (Since we do not use a logarithmic discretiza-
tion of the leads, we are still studying a “Kondo box”.41)
These system sizes are 4 times larger than the maximum
inter-impurity distance considered in this work, and we
have not observed significant finite size effects. Since
the energy difference between the ground-state and the
first excited state can be very small (∼ 10−6), we fix
the truncation error at 10−9 in all simulations, which
translates into a number of DMRG states of the order
of 3000 or more in most cases. Notice that this level of
accuracy would be unattainable on the ladder geometry
(without the bonding-antibonding symmetrization) due
to the larger entanglement.
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III. RESULTS

We have performed the mapping for two impurities
embedded in square and cubic lattices, placing them at
different distances R along the horizontal x axis. Unless
otherwise specified, we typically show results for L = 124,
and at half-filling. Fig. 3 shows the spin-spin correlations
between both impurities as a function of R for (a) square,
(b) cubic lattices, and also (c) one-dimensional chain for
comparison. In all three cases, we observe commensu-
rate oscillations, and the different behaviors for impu-
rities sitting at even or odd distances. First, we notice
that ferromagnetic correlations at even distances are van-
ishingly small. This behavior has also been verified for
impurities positioned along the diagonals of the lattice
(not shown here). We focus our attention on the case
of both impurities on different sublattices (at odd dis-
tances), and we find that for the 2d and 3d systems the
correlations decay smoothly at first, but instead obeying
an algebraic power-law, and they have a marked change
of behavior as they reach a crossover distance: for values
of the interaction JK ' 0.1, the impurities basically be-
come uncorrelated for R ' 20 lattice spaces (or less, as
JK increases).

Results for the cubic lattice – shown in Fig. 3(b) –
display similar behavior as the square lattice, but with
two important differences: the range of the correlations
is slightly larger, and the amplitude of the oscillations
has contributions from more than one mode, originating
from the non trivial shape of the Fermi surface.22,28–30

To see this explicitly, we just recall the expression for
the Lindhard function

χ(r1, r2) = 2Re
∑ 〈r1|n〉 〈n|r2〉 〈r2|m〉 〈m|r1〉

En − Em
, (3)

where the sum is over the eigenstates n,m with energies
En > EF > Em. The |ri〉 are the single-particle states
at position ri, for i = 1, 2.

We calculate this quantity numerically, and plot it for
the square and cubic lattices in Fig. 4, and we also include
the one-dimensional case for comparison. We solved this
formula explicitly with the mapping, and the exact eigen-
states of a large system with both open and periodic
boundary conditions, with indistinguishable results. The
function displays the same oscillatory behavior as the
spin-spin correlations. In particular, the ferromagnetic
components for R even are very weak compared to the
antiferromagnetic counterpart. We also notice a remark-
able reduction by 2 and 3 orders of magnitude in 2d and
3d, respectively, compared to the 1d case.

For this reason we now turn our attention to the one-
dimensional case, which already has been studied in the
literature.42,43 For consistency, we use our Lanczos trans-
formation, keeping the total length of the system fixed at
L = 124. Results for the spin-spin correlations are shown
in Fig. 3(c), and are in sharp contrast to the higher di-
mensional examples: large values of JK are needed to
induce a noticeable decay in the correlations. Moreover,
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FIG. 4: Lindhard function (spin susceptibility) for the non-
interacting tight-binding model for the (from top to bottom)
square, cubic lattices, and 1d chain at half-filling. Notice the
different scales on the y axes.

for opposite sublattices, we obtain large positive values,
indicating a ferromagnetic coupling, approaching the sat-
uration value for small JK .

In order to determine whether the impurities are form-
ing an RKKY singlet or not, we study the uniform and
staggered magnetic susceptibilities for the impurities by
numerically calculating χu,st by applying a small (uni-
form or staggered) magnetic field of magnitude h = 10−4

to both impurities and evaluating (d〈Sz〉/dh)u,st on one
of them (〈· · · 〉 means average taken over the ground
state). In the universal Kondo regime, we expect χu,st ∼
1/TK . We show this quantity for a 2D square lattice in
Fig. 5(a). Results indicate that χu ' χst for all even
distances, and they asymptotically converge to the same
value at long distances. This indicates that impurities
on the same sublattice prefer to remain uncorrelated, in
sharp contrast to the prediction that they would couple
ferromagnetically. Indeed, the FM state simply is ener-
getically unfavorable.

We investigate this behavior as a function of JK in
Fig. 5(b). As seen for inter-impurity distance R = 9, for
instance, there is a crossover from an RKKY, to a Kondo
regime at JK ' 0.5. At distance R = 10, the two suscep-
tibilities are indistinguishable, while for R = 1, 2, both
clearly differ – although slightly forR = 2 – signaling that
impurities form a screened RKKY state. Assuming that
1/χu,st define the binding energy scale TK , TRKKY , one
would expect a crossover behavior – from quadratic to
exponential – as a function of JK , as suggested by the re-
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FIG. 5: (color online) (a) Staggered and uniform impurity
susceptibilities as a function of distance on the square lattice,
for JK = 1. (b) Same quantities as a function of JK , for
distances R = 1, 2, 9, 10. The inset shows results for R = 10
in an extended range, and the expression for a singlet for large
JK . Curves for R = 2, 10 are almost indistinguishable.

sults for R = 9. However, for R = 2, 10 we encounter that
these quantities vary linearly as ∼ JK for small JK . This
departure from the exponential form TK ∼ exp (−1/JK)
is in agreement with the analysis presented in Ref. 26 and
due to the discreteness of the spectrum, i.e., our system
is a “Kondo box” with a level spacing of the order of TK ,
and we are not in the universal scaling regime.41,44–48 For
large JK , as shown in the inset, the results asymptotically
converge to the expression for a spin singlet 1/χ = 2JK .
This behavior deserves a detailed study, that will be pre-
sented elsewhere.

IV. CONCLUSIONS

We studied the competition between RKKY and
Kondo physics and the effect of dimensionality, by map-
ping the non-interacting Hamiltonian onto an effective
one-dimensional lattice that can efficiently be solved us-
ing the DMRG method. We found a clear departure
from the conventional picture: Above relatively short
distances, a Kondo screened state becomes energetically

favorable, and the impurities become completely uncor-
related. Moreover, the ferromagnetic state only develops
in 1d, or weakly in higher dimensions and at very short
distances. According to the behavior of the Lindhard
function, and also the density-density correlation in the
presence of a Kondo impurity,34 the probability of find-
ing conduction electrons on two sites of the same sub-
lattice can be vanishingly small and, as a consequence,
their ability to mediate the RKKY interaction is greatly
hindered.

This behavior is non-universal, and depends on the
geometry of the lattice. In 3d, the RKKY correlations
have a nontrivial oscillatory behavior due to the shape
of the Fermi surface, that translates into contributions of
several modes to the Lindhard function. Moreover, this
function is one order of magnitude smaller in 3d than
in 2d, but the range of the RKKY interactions is larger.
This counterintuitive result may be an indication of non-
perturbative effects.

Curiously, the density of states of a cubic lattice has
a flat plateau spanning a range of energies [−2, 2] in
units of the hopping t. This is almost identical (ex-
cept for a small curvature) to the flat DOS used in NRG
calculations.49,50 However, for all ranges of couplings JK
studied in this work, we have found important lattice ef-
fects, in agreement with previous quantum Monte Carlo
(QMC) calculations.51 This illustrates the limitations of
considering only spherical plane waves as the basis for
constructing the NRG Hamiltonian.36

In particular, a remarkable result in early NRG studies
of the two impurity problem39,52 – with a linear disper-
sion and ignoring details of the lattice – indicated the
existence of a non-Fermi liquid critical point, character-
ized by a value of the spin correlations 〈S1 · S2〉 = −1/4
(for a more recent analysis see Ref. 53). Further QMC
studies on two and three dimensional systems, with both
a quadratic dispersion and a lattice, did not find any evi-
dence of such a state.51,54,55 Later analysis revealed that
the existence of such critical point required the presence
of a very particular kind of particle-hole symmetry,56–58

which is realized in our problem when R is even. Our
simulations have confirmed the QMC results, with a fast
decay of the correlations, and the absence of anomalous
behavior.

Finally, we mention that our approach can readily
be generalized to study realistic band structures, multi-
orbital problems, and magnetic molecules, potentially
bridging the gap between atomistic ab-initio calculations,
and methods for strongly correlated problems.

V. NOTE ADDED IN PROOF

While this manuscript was under consideration, related
work applying the block Lanczos transformation to multi-
impurity problems was published.59
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14 N. Néel, R. Berndt, J. Kröger, T. O. Wehling, a. I. Lichten-
stein, and M. I. Katsnelson, Phys. Rev. Lett. 107, 106804
(2011).

15 W. Chen, T. Jamneala, V. Madhavan, and M. F. Crommie,
Phys. Rev. B 60, 8529 (1999).

16 A. Hewson, The Kondo Problem to Heavy Fermions (Cam-
bridge Univ. Press, 1997).

17 Sorensen and Affleck, Phys. Rev. B 53, 9153 (1996).
18 I. Affleck, in Perspectives on Mesoscopic Physics: Dedi-

cated to Professor Yoseph Imry’s 70th Birthday, edited by
A. Aharony and O. Entin-Wohlman (World Scientific, Sin-
gapore, 2010), pp. 1–44.

19 C. A. Büsser, G. B. Martins, L. C. Ribeiro, E. V. A.
E. Vernek, and E. Dagotto, Phys. Rev. B 81, 045111
(2010).

20 M. A. Rudermann and C. Kittel, Phys. Rev. 96, 99 (1954).
21 T. Kasuya, T. Prog. Theor. Phys. 16, 45 (1956).
22 K. Yosida, Phys. Rev. 106, 893 (1957).
23 V. S. Stepanyuk, P. Bruno, M. A. Schneider, K. Kern,

P. Wahl, P. Simon, and L. Diekho, Phys. Rev. Lett. 98,
056601 (2007).

24 N. Tsukahara, S. Shiraki, S. Itou, N. Ohta, N. Takagi, and
M. Kawai, Phys. Rev. Lett. 106, 187201 (2011).

25 S. Doniach, Physica B 91, 231 (1977).
26 A. Schwabe, D. Gütersloh, and M. Potthoff, Phys. Rev.

Lett. 109, 257202 (2012).
27 D. N. Aristov, Phys. Rev. B 55, 8064 (1997).
28 L. M. Roth, H. J. Zeiger, and T. A. Kaplan, Phys. Rev.

149, 519 (1966).
29 D. I. Golosov and M. I. K. 1993, J. Phys.: Condens. Matter

5, 1481 (1993).
30 P. Schlottmann, Phys. Rev. B 62, 10067 (2000).
31 L. Brey, H. A. Fertig, and S. D. Sarma, Phys. Rev. Lett.

99, 116802 (2007).
32 T. Ando, J. Phys. Soc. Jpn. 74, 777 (2005).
33 S. Saremi, Phys. Rev. B 76, 184430 (2007).
34 C. A. Büsser, G. B. Martins, and A. E. Feiguin, Phys. Rev.

B 88, 245113 (2013).
35 K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).
36 R. Bulla, T. A. Costi, and T. Pruschke, Rev. Mod. Phys.

80, 395 (2008).
37 J. K. Cullum and R. A. Willoughby, Lanczos Algorithms

for Large Symmetric Eigenvalue Computations: Vol. 1:
Theory, vol. 41 (SIAM, 2002).

38 S. Qiao, G. Liu, and W. Xu, in Optics & Photonics 2005
(International Society for Optics and Photonics, 2005), p.
591010.

39 B. A. Jones and C. M. Varma, Phys. Rev. B 40, 324 (1989).
40 T. Yanagisawa, J. Phys. Soc. of Jpn. 60, 29 (1991).
41 W. B. Thimm, J. Kroha, and J. von Delft, Phys. Rev. Lett.

82, 2143 (1999).
42 S. Costamagna and J. A. Riera, Phys. Rev. B 77, 235103

(2008).
43 K. Hallberg and R. Egger, Phys. Rev. B 55, R8646 (1997).
44 P. Schlottmann, Phys. Rev. B 65, 024420 (2001).
45 P. Simon and I. Affleck, Phys. Rev. Lett. 89, 206602

(2002).
46 P. Simon and I. Affleck, Phys. Rev. B 68, 115304 (2003).
47 T. Hand, J. Kroha, and H. Monien, Phys. Rev. Lett. 97,

136604 (2006).
48 M. Hanl and A. Weichselbaum, Phys. Rev. B 89, 075130

(2014).
49 C. Jayaprakash, H. R. Krishna-murthy, and J. W. Wilkins,

Phys. Rev. Lett. 47, 737 (1981).
50 B. A. Jones and C. M. Varma, Phys. Rev. Lett. 58, 843

(1987).
51 R. M. Fye and J. E. Hirsch, Phys. Rev. B 40, 4780 (1989).
52 B. A. Jones, C. M. Varma, and J. W. Wilkins, Phys. Rev.

Lett. 61, 125 (1988).
53 G. Zaránd, C.-H. Chung, P. Simon, and M. Vojta, Phys.

Rev. Lett. 97, 166802 (2006).
54 R. M. Fye, J. E. Hirsch, and D. J. Scalapino, Phys. Rev.

B 35, 4901 (1987).
55 R. M. Fye, Phys. Rev. Lett. 72, 916 (1994).
56 I. Affleck and A. W. W. Ludwig, Phys. Rev. Lett. 68, 1046

(1992).
57 I. Affleck, A. W. W. Ludwig, and B. A. Jones, Phys. Rev.

B 52, 9528 (1995).



8

58 J. B. Silva, W. L. C. Lima, W. C. Oliveira, J. L. N. Mello,
L. N. Oliveira, and J. W. Wilkins, Phys. Rev. Lett. 76,
275 (1996).

59 T. Shirakawa and S. Yunoki, Phys. Rev. B 90, 195109
(2014).


