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HgTe is a band-inverted compound which forms a two-dimensional topological insulator if sand-
wiched between CdTe barriers for the HgTe layer thickness above the critical value. We describe
the fine structure of Dirac states in the HgTe/CdTe quantum wells of critical and close-to-critical
thickness and show that the necessary creation of interfaces brings in another important physical
effect: The opening of a significant anticrossing gap between the tips of the Dirac cones. The level
repulsion driven by the natural interface inversion asymmetry of zinc-blende heterostructures con-
siderably modifies the electron states and dispersion but preserves the topological transition at the
critical thickness. By combining symmetry analysis, atomistic calculations, and extended k·p the-
ory with interface terms, we obtain a quantitative description of the energy spectrum and extract
the interface mixing coefficient. We discuss how the fingerprints of the predicted zero-magnetic-
field splitting of the Dirac cones could be detected experimentally by studying magnetotransport
phenomena, cyclotron resonance, Raman scattering, and THz radiation absorption.

PACS numbers: 73.20.-r, 73.21.Fg, 73.63.Hs, 78.67.De

The study of systems with gapless and linear-
dispersion states constituting the Dirac cone is central
to the physics of topological insulators (TIs) [1, 2]. Such
states are formed in the primary insulating band gap of
the bulk material and studied at the surface via tech-
niques such as angular resolved photoemission [3, 4].
While some TI compounds such as Bi2Se3 and Bi2Te3
show an insulating gap in their three-dimensional (3D)
bulk band structure and so the Dirac cones can be stud-
ied at their 2D surface without modifying the mate-
rial, a Mercury Telluride crystal does not have a 3D
bulk band gap because the Fermi level resides within the
four-fold degenerate Γ8 band [5]. However, the topo-
logical insulation is realized by straining HgTe which
opens a gap within the otherwise fourfold degenerate Γ8

states [6, 7] or growing the material in a HgTe/CdTe
quantum well (QW) geometry [8–10]. In the latter
case, CdTe (or Cd1−xHgxTe) barriers create quantum
confinement within HgTe with the normal or inverted
band structure depending on the well thickness, so that
HgTe/CdTe QWs belong to the class of normal or topo-
logical insulators.

In HgTe/CdTe QWs of critical thickness, the heavy-
hole subband HH1 switches order with the electron sub-
band E1 [11], the band gap vanishes and elementary ex-
citations behave as massless Dirac 2D fermions [12, 13].
The early theoretical description [8] used a model in
which the symmetry of the HgTe/CdTe QW was im-
plicitly assumed to contain an inversion center. Con-
sequently, the point-group representations of the E1 and
HH1 subbands are different, so these states do not mix
with each other and are allowed to cross. In reality,
the host zinc-blende structures lack the inversion cen-

FIG. 1: Energy spectra of HgTe/CdHgTe QWs of (a) the
critical and (b) close-to-critical thicknesses. The spectra are
plotted after Eq. (3) for (a) δ = 0 and (b) δ = γ/2.

ter and the QW structure has a further reduced sym-
metry compared to the bulk materials even if the inter-
faces are lattice-matched and defect-free, and the well is
symmetric. Indeed, each of the two (001) interfaces pos-
sesses a C2v symmetry and taken together the symmetric
well has the D2d symmetry. It is known from analogous
GaAs/AlAs QW structures that, in the D2d group, the
E1 and HH1 states transform according to the same
spinor representations [14–16]. Therefore, the coupling
matrix element between E1 and HH1 is nonzero, and
these subbands must anticross rather than cross at zero
in-plane wave vector k. As pointed out in Refs. [17–20]
in the case of HgTe/CdTe QWs a reduction in symmetry
leads to the splitting of states at k = 0. However, a the-
ory identifying the source of the splitting (bulk vs inter-
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face) and predicting its magnitude has been lacking. Ex-
perimental data on weak localization and Shubnikov−de
Haas oscillations also indicate strong spin-orbit splitting
of the states [21]. Here, we present a microscopic theory
of the Dirac states in HgTe/CdTe QWs that predicts a
very large (∼ 15 meV) anticrossing gap between the tips
of the Dirac cones in QWs of the critical thickness. We
find that this splitting is predominantly due to the inter-
facial E1-HH1 repulsion mandated by the physical D2d

symmetry which is missed by naive continuum-medium
considerations but seen when theory acquires atomic res-
olution. Using this picture we further provide a detailed
analysis of the fine structure of Dirac states, which is a
key to understanding transport phenomena. As the main
result, Fig. 1 shows the energy spectra in QWs of (a) the
critical thickness, d = dc, and (b) close-to-critical thick-
ness, d 6= dc. Even in symmetric structures of the critical
thickness, the Dirac states are split at the zone center and
the spectrum consists of two cones shifted vertically with
respect to each other. For d 6= dc, the spectrum becomes
more complex: It has a gap and extrema on a circle in
the momentum space. We analyze the nature of anti-
crossing, obtain a quantitative description of the energy
spectrum and discuss the consequences of the splitting
on transport and optical properties of QWs.

Mechanisms leading to the splitting in QWs with sym-
metric confinement potential originate fundamentally
from bulk inversion asymmetry of the host crystal and
interface inversion asymmetry. The relative importance
of these contributions cannot be deduced from model
Hamiltonian consideration. Atomistic descriptions, on
the other hand, capture accurately the relevant asymme-
try via the specification of atomic types and positions.

Figures 2 and 3 show the results of atomistic calcu-
lations of the energy spectrum of HgTe/CdTe QWs ob-
tained in the screened plane-wave pseudopotential and
tight-binding theories, respectively. The pseudopoten-
tial method is described in Ref. [10]; details of the tight-
binding calculations are given in Supplementary Mate-
rial. The subband arrangement as a function of the QW
width at k = 0 is presented in Figs. 2a, 2b and 3a. Both
the pseudopotential and tight-binding calculations yield
a wide anticrossing gap between the electron-like E1 and
heavy-hole HH1 subbands at the Γ point. The two ap-
proaches give different values of the critical QW width
because of the sensitivity of the subband structure to the
model. Indeed, the pseudoptential calculation reveals for
the QW structures interface-localized bands located en-
ergetically between E1 and the HH1 state, see Ref. [10].
Nevertheless, all calculations that acknowledge the atom-
istic symmetry – as opposed to a continuum view – do
give large anticrossing at the critical QW thickness. They
both predict the gap of about 15 meV far exceeding the
estimate of a few meV due solely to the bulk inversion
asymmetry [18, 19] and unambiguously indicating that
the subband mixing is dominated by the interface contri-
bution, in a crutial difference with the naive k·p model.
Moreover, despite the existence of an additional inter-

n(HgTe) (ML)

E
ne

rg
y 

(e
V

)

10 20 30 40 50 60 70

anticrossing

n(HgTe) (ML)

E
ne

rg
y 

(e
V

)

-0.05

0.00

0.05

0.10

20 25 30 35 40
-0.10-0.30

-0.20

-0.10

0.10

0.00

0.20

0.30
(a) (b)

FIG. 2: (a) Arrangement of energy subbands in (001)
(HgTe)n/(CdTe)40 QW structures as a function of the num-
ber of HgTe monolayers (ML) obtained by the pseudopoten-
tial method. (b) Zoom in of the anticrossing area.

face bands in the pseudopotential calculation, the both
models predict the same dispersion of the Dirac states
formed from the E1 and HH1 subbands near the anti-
crossing point.

Figure 3b demonstrates the energy dispersion E(k) of
the coupled E1 and HH1 states calculated by the tight-
binding method for the well width of 16 monolayers which
is very close to the critical thickness. The exact condition
d = dc (where δ = 0) cannot be fulfilled in structures with
an integer number of monolayers. The spectrum consists
of four almost linearly dispersed branches which are split
at k = 0. The slope of the branches yields the velocity
6.1 × 107 cm/s which is close to the electron velocity
7.2 × 107 cm/s [13] and 6.4 × 107 cm/s [22] determined
by cyclotron resonance in HgTe/HgCdTe QWs of critical
thickness. The two middle-energy branches anticross at
the finite wave vector k0 ≈ 0.17 × 106 cm−1 with the
energy gap being highly sensitive to the deviation of QW
width d from dc. In QWs with d ≈ dc, Fig. 3b, this gap
is far smaller than the splitting at k = 0.

Inspired by the atomistic results we now present an
effective model Hamiltonian – the atomically inspired k·p
model (AIKP) – which takes into account the correct
D2d symmetry of the quantum well. We limit the AIKP
model to four basis Bloch states functions forming the
Dirac states. Such an approach is valid as long as the
anticrossing gap at k = 0 is smaller than the energy
separation from the coupled E1-HH1 subbands to other
excited subbands. The basis functions have the form [8]

|E1,+1/2〉 = f1(z)|Γ6,+1/2〉+ f4(z)|Γ8,+1/2〉 ,
|HH1,+3/2〉 = f3(z)|Γ8,+3/2〉 ,
|E1,−1/2〉 = f1(z)|Γ6,−1/2〉+ f4(z)|Γ8,−1/2〉 ,
|HH1,−3/2〉 = f3(z)|Γ8,−3/2〉 , (1)

where f1(z), f3(z), and f4(z) are the envelope functions,
z is the growth direction, |Γ6,±1/2〉, |Γ8,±1/2〉, and
|Γ8,±3/2〉 are the basis functions of the Γ6 and Γ8 states
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FIG. 3: (a) Arrangement of energy subbands in (001)
(HgTe)n/CdTe QW structures as a function the number of
HgTe monolayers obtained by the sp3 tight-binding method.
(b) Electron dispersion E(k) in the 16-ML-wide QW.

at the Γ point of the Brillouin zone, respectively. The
4 × 4 effective Hamiltonian describing the coupling at a
finite in-plane wave vector k can be constructed by using
the theory of group representations. Taking into account
that, in the D2d point group, the states |E1,±1/2〉 and
|HH1,∓3/2〉 transform according to the spinor represen-
tation Γ6 while the wave vector components kx, ky belong
to the irreducible representation Γ5, one derives the ef-
fective Hamiltonian to first order in the wave vector as

H =

 δ iAk+ 0 iγ
−iAk− −δ iγ 0

0 −iγ δ −iAk−
−iγ 0 iAk+ −δ

 , (2)

where A, δ, and γ are linearly independent parameters,
k± = kx ± iky, x ‖ [100] and y ‖ [010] are the in-plane
axes. The value 2δ stands for the energy spacing between
the E1 and HH1 subbands in the absence of mixing; δ
can be tuned from positive to negative value by varying
the QW thickness d. In particular, δ = 0 for the critical
thickness d = dc [11]. The parameter A determines the
velocity of Dirac fermions. In the k·p model, it is given
by A = (P/

√
2)
∫
f1(z)f3(z)dz+δA, where P is the Kane

matrix element and δA stands for the contributions from
remote bands. Finally, γ describes the coupling of E1 and
HH1 states at k = 0 in zinc-blende-lattice QWs [18, 19],
2|γ| ≈ 15 meV as it follows from Figs. 2 and 3 neglecting
the influence of additional interface states.

Solution of the secular equation for the matrix Hamil-
tonian (2) yields the energy spectrum

E1,4 = ∓
√
δ2 + (Ak + γ)2, E2,3 = ∓

√
δ2 + (Ak − γ)2 .

(3)
The corresponding wave functions are given by

Ψ1,4 =
1

2

 a1,4
b1,4 e−iϕ

−a1,4 e−iϕ

b1,4

 , Ψ2,3 =
1

2

 a2,3
b2,3 e−iϕ

a2,3 e−iϕ

−b2,3

 , (4)

where a1,2 = −i
√

(E1,2 + |δ|)/E1,2 sign(Ak ± γ),

b1,2 =
√

(E1,2 − |δ|)/E1,2, a3,4 = i
√

(E3,4 + |δ|)/E3,4,

b3,4 =
√

(E3,4 − |δ|)/E3,4 sign(Ak ∓ γ) for δ > 0 and
a1,2 = −ib1,2, b1,2 = ia1,2, a3,4 = ib3,4, and b3,4 = −ia3,4
for δ < 0; k = |k|, and ϕ is the polar angle of the wave
vector k, eiϕ = k+/k. The coefficients aj and bj are
defined in such a way that the wave functions (4) are
continuous in k-space.

The electron dispersion (3) is shown in Fig. 1. In the
structure of the critical thickness the spectrum consists
of two Dirac cones shifted vertically with respect to each
other by 2|γ|. At d 6= dc, the gap of 2|δ| opens in the
spectrum at the wave vector k0 = |γ/A| and the system
behaves as an insulator. The topological class of the insu-
lator is determined by the sign of δ, similarly to the model
where interface inversion asymmetry is neglected [8]. To
confirm this, we calculate the Z2 topological index ν fol-
lowing the procedure described in Ref. [1]. The index ν
is determined by the quantities ζ(Λα) (α = 1...4) cal-
culated at four certain points of the Brillouin zone Λα

which are invariant with respect to the time inversion,
(−1)ν =

∏
α ζ(Λα). We find that

ζ(k = 0) = lim
k→0

Pf [〈Ψi(k) |Θ|Ψj(k)〉]√
det [〈Ψi(k) |Θ|Ψj(k)〉]

= sign δ , (5)

where the indices i and j run over the occupied branches
1 and 2, Θ is the operator of time inversion, and Pf[A] is
the Pfaffian of the matrix A. All other ζ(Λα) are deter-
mined by the wave functions at the Brillouin zone edge
and are unlikely to be affected by a small change of δ.
Thus, we conclude that the topological transition occurs
at δ = 0: The QW structures with d < dc and d > dc
belong to trivial and topological two-dimensional insula-
tors, respectively. In the phase of topological insulator,
one expects the formation of helical edge states leading
to the quantum spin Hall effect and conductivity quan-
tization [9] although the electron structure of the edge
states is modified by strong interface-induced coupling.

The large anticrossing of the E1 and HH1 subbands at
k = 0 revealed in the atomistic calculations indicates that
the subband mixing mainly originates from the interface
inversion asymmetry related to the anisotropy of chemi-
cal bonds. Since the E1 subband is formed from the elec-
tron and light-hole basis functions and the HH1 subband
is of the heavy-hole type, see Eq. (1), they are efficiently
coupled due to heavy-hole–light-hole mixing at the inter-
faces, the effect known for zinc-blende-lattice QW struc-
tures [14–16, 23, 24]. This short-range mixing can be
modeled by introducing interface terms to the effective
Luttinger Hamiltonian which take into account low spa-
tial symmetry of individual interfaces. The additional
terms related to for the left (L) and right (R) interfaces

have the form VL,R = ±~2tl-h/(
√

3a0m0){JxJy}sδ(z −
zL,R), where tl-h is the (real) mixing constant, a0 is the
lattice constant, m0 is the free electron mass, {JxJy}s =
(JxJy +JyJx)/2, Jx and Jy are the matrices of the angu-
lar momentum 3/2, and zL,R are the interface positions.
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FIG. 4: Sketch of the density of states in HgTe/CdTe QWs
of the (a) critical and (b) close-to-critical thinknesses.

The terms lead to the coupling of the E1 and HH1 sub-
band with the parameter

γ =
~2 tl-h
2a0m0

[f3(zR)f4(zR)− f3(zL)f4(zL)] . (6)

Since the envelope functions f3(z) and f4(z) have oppo-
site parities, the parameter γ is non-zero. Comparing the
results of atomistic calculation with the k·p theory we
obtain tl-h ≈ 1.5. Extrapolation to HgTe/Cd0.7Hg0.3Te
QWs, the structures commonly used in experiment [9,
12, 13], gives tl-h ≈ 1.1 and 2|γ| = 10 meV.

The splitting of Dirac states may affect many phenom-
ena, including weak localization, Shubnikov-de Haas os-
cillations and quantum Hall effect, spectra of THz radia-
tion absorption, spin-flip Raman scattering, etc. The ba-
sic characteristic of electron systems is the single-particle
density of states

ρ(E) =
∑
l,k

δ[E − El(k)] . (7)

For the QW system under study, it has the form

ρ(E) =
|E|
πA2
×


0, if |E| ≤ |δ|,
|γ|/
√
E2 − δ2, if |δ| < |E| ≤

√
γ2 + δ2,

1, if |E| >
√
γ2 + δ2.

Figure 4 illustrates the density of states vs. elec-
tron energy for QWs of the critical and close-to-critical
thicknesses. The gapless structure behaves as a two-
dimensional semimetal with the finite density of states
in the whole energy range, Fig. 4a. The density of states
linearly scales with the energy ρ(E) = |E|/(πA2) at
|E| > |γ| and is energy independent, ρ(E) = |γ|/(πA2),
at |E| < |γ|. In the latter region, electrons and holes
coexist and the conductivity is bipolar. In the QWs of
close-to-critical thicknesses, Fig. 4b, the density of states
has a gap of 2|δ| and van Hove singularities at E = ±δ.

The splitting of Dirac cones leads to a beating pattern
in the Shubnikov-de Haas oscillations as well as split-
ting of the absorbance peak in experiments on cyclotron
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FIG. 5: Photon energy dependence of the QW absorbance
for the structures of (a) the critical thickness, δ = 0, and (b)
the close-to-critical thickness, δ = 0.5γ. Dashed curves show
partial contributions to the absorbance. Inset sketches the
energy spectrum and allowed optical transitions. The steep
spectral edges are smoothed by convoluting the spectra with
the Gauss function with the standard deviation of 0.05γ.

resonance. The peak positions are determined by the ef-
fective cyclotron masses ml = ~2k/(dEl/dk). In n-doped
structure with the Fermi energy EF , one can expect the
splitting of resonant line into two components, their po-
sitions at EF � |γ| being determined by the effective
masses m3,4 = (~/A)2(EF ± γ).

The energy spectrum can be also studied by means of
optical spectroscopy. For direct optical transitions be-
tween occupied and empty states, the QW absorbance at
the normal incidence of radiation is given by

η =
4π2α ~
ωnω

∑
l,m,k

|e · vml|2 δ(Em − El − ~ω) , (8)

where α is the fine-structure constant, ω is the light fre-
quency, nω is the refractive index of the medium, e is
the (complex) unit vector of the light polarization, and
vml = ~−1(∂H/∂k)ml is the matrix element of the ve-
locity operator. We consider undoped QW structures
where the optical transitions can occur between the oc-
cupied branches 1 and 2 and the empty branches 3 and
4 of the energy spectrum, see insets in Figs. 5a and 5b.
For normally-incident radiation, the QW absorbance is
independent of the light polarization and has the form

η =
παA2

~ωnω

∑
l=1,2
m=3,4

∑
kt

ktfml(kt)

|dEm/dk − dEl/dk|k=kt
, (9)

where kt is the wave vector at which the optical tran-
sitions between the branches l and m occur, it is found
from the equation Em(kt) − El(kt) = ~ω, and fml(k)
are the dimensionless functions defined by fml(k) =
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(~/A)2|e · vml|2. Straightforward calculations yield

f41 =
δ2

E2
4

, f32 =
δ2

E2
3

, (10)

f31 = f42 =
1

2

(
1− A2k2 − γ2 + δ2

E1E3

)
.

Figures 5a and 5b demonstrate the photon energy de-
pendence of the QW absorbance for structures of the
critical and close-to-critical thicknesses. In the structure
with two split Dirac cones, Fig. 5a, the absorption spec-
trum has a step-like shape with the edge at ~ω = 2|γ|
although there is no band gap in the energy spectrum.
Such a behavior is dictated by the selection rules and en-
ergy conservation law: Direct optical transitions in QWs
of the critical thickness are allowed only between the
branches 1 → 3 and 2 → 4 and these transitions can
occur at ~ω ≥ 2|γ|. In QWs of non-critical thickness,
Fig. 5b, the branches 2 and 3 anticross at finite wave
vector, and the direct optical transitions between them
get allowed. It leads to the emergence of an additional
sharp band in the absorption spectrum at ~ω = 2|δ|. The
spectral shape of this absorption band is determined by
the van Hove singularities in the density of states.

To summarize, we have described the splitting of Dirac
states in HgTe/CdTe quantum wells of critical and close-
to-critical thicknesses. In structures of the critical thick-
ness, the splitting between the Dirac cones reaches the
value of 15 meV and is dominated by symmetry-enforced
light-hole–heavy-hole mixing at the quantum well inter-
faces. These structures behave as a two-dimensional
semimetal with non-vanishing density of states in the
whole energy range. In quantum wells of close-to-critical
thicknesses, a gap opens at a finite in-plane wave vector,
which leads to the emergence of extremum circles in the
electron dispersion and corresponding van Hove singu-
larities in the density of states. We have also discussed
the consequences of the level mixing on the optical and
transport properties that await testing.
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