
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Universality lost: Relation between quantizations of the Hall
conductance and the edge exponents in fractional

quantum Hall effect
Jimmy A. Hutasoit

Phys. Rev. B 91, 081113 — Published 27 February 2015
DOI: 10.1103/PhysRevB.91.081113

http://dx.doi.org/10.1103/PhysRevB.91.081113


Universality Lost: Relation between quantizations of the Hall conductance and the

edge exponents in fractional quantum Hall effect

Jimmy A. Hutasoit1, 2, ∗

1Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
2Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands

We note an implication of chiral Luttinger liquid based edge state description of the fractional
quantum Hall effect. By considering several examples that involve backward moving neutral modes,
arising from either composite fermions with reverse flux attached or edge reconstruction, we show
that non-universality of the edge exponent implies non-universality of the Hall conductance, as
measured in the two-terminal conductance.
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The most remarkable aspect of the quantum Hall effect, both integer and fractional, is the fact that the Hall
conductance is quantized, taking only discrete set of values. This quantization is universal, in the sense that it
does not depend on the details of electron interactions and edge potentials. In the case of four-terminal set up,
such universality has been confirmed to the accuracy of one part per million for the integer quantum Hall effect.
Even though the terms “quantized” and “universal” are not synonymous, in the quantum Hall effect they are deeply
interconnected. Therefore, for brevity, in what follows we will occasionally use only one of these terms while implying
both.

The universal behavior of the quantized Hall conductance in quantum Hall effect is understood to be connected
to the topological properties of the quantum states [1, 2] and this ushered in the study of topologically non-trivial
insulating phases whose bulk excitations are gapped but edge/boundary states are gapless. The existence of gapless
edge excitations in quantum Hall states can be understood using gauge argument [3–5] and Wen proposed the chiral
Luttinger liquid as the building block for the description of these edge states [6].

One interesting implication of chiral Luttinger liquid based edge theory is that for simple edges, such as ν = 1 and
ν = 1/3, the current-voltage relation of the (electron) tunneling between a Fermi liquid and the quantum Hall edge
exhibits power law behavior with quantized and universal scaling exponent [6] which, just like the universal behavior
of the Hall conductance, is dictated solely by bulk topological properties [7] [8]. This is remarkable because of the
one-to-one correspondence between the tunneling exponent and the scaling dimension of electron, where the latter
generally depends strongly on the details of the interaction.

Unlike the case of the Hall conductance, however, the experimental measurements for fractional quantum Hall
(FQH) states at ν = n/(2n± 1) [9] and at ν = 5/2 [10] have not yet yielded a quantized tunnelling exponent and the
results seem to suggest a strong sample dependence. This motivated several theoretical proposals for explaining this
discrepancy [11–21]. In particular, it is found that the interplay between electron-electron interaction and confining
potential at shorter distances can cause an instability that drives edge reconstruction and in the edge reconstructed
phase, the quantum Hall state might lose some of its universal features, in particular, the tunneling exponent is
non-quantized and non-universal [20, 21]. Compared to the original state, the edge reconstructed state has at least
an additional anti-parallel edge modes and as we shall see, the interaction between counter propagating modes is a
necessary condition for a non-universal tunnelling exponent.

Tunneling exponent, however, is not the only observable that might lose universality due to interaction between
counter propagating modes. As noted in Ref. 22, the interaction between counter propagating modes renders the Hall
conductance non-quantized and non-universal. Even though the loss of universality in both Hall conductance and
tunneling exponent have been known and studied for a while, as far as we know, the direct relationship between them
has not been discussed in the literature. In this article, we aim to fill that hole. More precisely, by considering several
examples of quantum Hall states with counter-propagating modes, such as those arising from composite fermions
with reverse flux attachment and edge reconstructed states, we show that a quantization of the Hall conductance,
as measured in the two-terminal set up, implies a quantization of the edge exponent. In other words, within the
context of chiral Luttinger liquid, non-universality of the edge exponent implies non-universality of the two-terminal
conductance.

Let us start by first summarizing some formulas that will be used in what follows. For their derivation, see Ref.
23. Let us consider an edge theory whose bosonic sector is described by

Sb =
1

4π

∫

dτ dx (Kij ∂τφi ∂xφj + Vij ∂xφi ∂xφj) , (1)

where i, j = 1, · · · , n; n is the number of edge modes; K is a symmetric integer matrix; and V is a symmetric positive
matrix. The filling factor is given by ν = tT ·K−1 · t, where the vector t specifies the charges of quasiparticles. As
such, K and t are determined (modulo basis transformation) by the bulk topological properties, while V parametrizes
the interaction and edge potential (here, we only consider contact interaction). We say that an observable is not
quantized if one can continuously tune its value by tuning V and furthermore, a strong dependence on V renders an
observable non-universal. We note that Ref. 23 also included disorder induced tunneling terms in the action. Such
terms cause a regime of parameter space to be a renormalization group (RG) attractor. It turns out that this regime
is only a subspace of the parameter regime we are interested in and therefore, our result holds not only when the edge
is clean but also when it is disordered.

Continuing with our formalism, for an operator that is expressed by Oℓ = eiℓiφi , the charge is given by qℓ = tT ·K−1·ℓ
and its exchange statistics with respect to another operator Ok (which can be itself) is given by θkℓ = π kT ·K−1 · ℓ.
For electron operators, the charge must be equal to unity while the exchange statistics must be that of a fermion.

In order to determine the Hall conductivity and the tunneling exponent, we need to diagonalize the action in Eq.
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(1). First, let us consider a basis transformation φ′ = M−1
1 · φ, under which

K ′ = MT
1 ·K ·M1 =

(

−1n−
0

0 1n+

)

, (2)

where 1n±
is an n± × n± identity matrix and n− + n+ = n. Next, we can diagonalize V ′ = MT

1 · V ·M1 by

V ′′ = MT
2 ·MT

1 · V ·M1 ·M2, (3)

where V ′′ is a diagonal matrix and M2 ∈ SO(n−, n+) such that K ′′ = K ′. We can express the second basis
transformation as M2 = B · R, where R is an orthogonal matrix, i.e., the rotation, and B is a positive matrix, i.e.,
the pure boost of Lorentz group. It turns out that the scaling dimension of an operator Oℓ′′ is given by

∆ℓ′′ = ℓ′′
T ·∆ · ℓ′′. (4)

where

∆ =
B2

2
. (5)

We are particularly interested in the smallest scaling dimension of electron operators ∆el due to the fact that under
the assumption that the outside electron couples to all the edge modes with equal strength, the scaling exponent
of electron tunneling into the edge at long time scale will be given by 2∆el. Furthermore, the two-terminal Hall
conductance is given by

σH = 2 t′′
T ·∆ · t′′. (6)

Here, the two-terminal conductance is defined following Refs. 24 and 25, where one applies electric field along the
edge and evaluate the current response.
We would like to note that the parameters of the boost B describe the mixing between counter-propagating modes,

while the parameters of the rotation R describe the mixing between modes propagating along the same direction.
Since Eq. (5) shows that the non-trivial part of ∆ only depends on B (but not R), the renormalization, and thus
the non-universality, of the Hall conductance and scaling dimensions of operators depend on the mixing between
counter-propagating modes.
Now we are ready to consider some examples of FQH states that features backward moving neutral modes. First,

let us treat the case of FQH states arising from composite fermions with reverse flux attachment. The state with
filling factor ν = n

2pn−1
is described by

K = −1n + 2pCn, t = (1, · · · , 1)T , (7)

where Cn is an n× n matrix whose entries are all equal to 1. In a basis where the K-matrix is diagonal, we have

K = diag(2pn− 1,−1, · · · ,−1), t = (
√
n, 0, · · · , 0)T . (8)

In this basis, we have a forward moving charge mode and n − 1 backward moving neutral modes. In general, these
modes are not the eigenmodes as we expect interaction to mix them.
Parametrizing the boost such that

B2 =



















γ β1γ β2γ · · · βn−1γ

β1γ 1 +
β2
1γ

2

γ+1

β1β2γ
2

γ+1
· · · β1βn−1γ

2

γ+1

β2γ
β1β2γ

2

γ+1
1 +

β2
2γ

2

γ+1
· · · β2βn−1γ

2

γ+1

...
...

...
...

βn−1γ
βn−1β1γ

2

γ+1

βn−1β2γ
2

γ+1
· · · 1 +

β2
n−1γ

2

γ+1



















, (9)

where γ = 1/
√

1− β2, β2 =
∑n−1

i=1 β2
i and |β| ≤ 1, yields

σH =
ν

√

1− β2
. (10)
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This means that in order for the two-terminal conductance to be quantized and taking the “correct” value, all of the
boost parameters βi’s must vanish. In other words, since βi’s describe the mixing between the charged mode and
the counter-propagating neutral modes, Hall conductance is quantized if and only if the charged mode is decoupled
from all the backward moving neutral modes. In this case, however, B2 is just an identity matrix, and therefore, the
scaling dimension of the electron operator will also be quantized and universal.
For the next case, let us consider edge reconstructed Laughlin states and edge reconstructed Pfaffian. For Laughlin

state and the bosonic sector of Pfaffian state, the edge reconstructed state is described by

K =





−m 0 0
0 m 0
0 0 m



 , t =





1
1
1



 , (11)

where m is an odd integer for Laughlin state and m = 2 for Pfaffian state. Doing a basis transformation such that
K → W ·K ·WT , with

W =







√
2√
m

− 1√
2m

− 1√
2m

0 1√
2m

− 1√
2m

− 1√
m

1√
m

1√
m






, (12)

we obtain

K =





−1 0 0
0 1 0
0 0 1



 , t =





0
0
1√
m



 . (13)

In this basis, we have a forward moving charge mode and a couple of anti-parallel neutral modes. As before, these
modes are generally not the eigenmodes as we expect interaction to mix them.
Parametrizing the boost exactly as in Eq. (9) but with n = 3 yields

σH =
1

m

(

1 +
β2
2

1− β2 +
√

1− β2

)

. (14)

This means that in order for the Hall conductance to be quantized at the correct value, β2 must vanish. Even though
the quantization of the Hall conductance requires the charged mode to be decoupled from the backward moving
neutral move, the two anti-parallel neutral modes can still interact. Nevertheless, as we shall see, this interaction does
not render the smallest scaling dimension of the electron operators to be non-universal.
The electron operators can be written as

Oel = exp[i(xφn1 + yφn2 +
√
mφc)], (15)

where φc is the charged mode, φn1,n2 are the backward and forward moving neutral modes, respectively, and y2−x2 =
2p, where p is an integer. This condition needs to be satisfied in order for the electron operators to have fermionic
statistics. If Hall conductance is quantized, the scaling dimension of the electron operator is then given by

∆el =
x2 + 2β1xy + y2

2
√

1− β2
1

+
m

2
. (16)

(For Pfaffian, this is only the bosonic part of the electron operator and the full operator is obtained by multiplying
this expression with the Majorana fermion.) It is then easy to see that the long time behavior of electron tunneling
will be dominated by the electron operator with scaling dimension ∆el = m/2. To see that, we note that 1 ≥ β1 ≥ −1

and thus, x2 + 2β1xy + y2 ≥ |x|2 − 2|x||y| + |y|2 = (|x| − |y|)2 ≥ 0 where the minimum can always be reached by
setting x = y = 0 regardless of the value of β1.
Therefore, when the Hall conductance is quantized, then the scaling dimension of the most dominant electron

operator is also quantized to be ∆el = m/2 for edge reconstructed Laughlin state (c.f., [26]) and ∆el = 3/2 for
Pfaffian (c.f., [27]). In the light of tunneling experiments such as that of Refs. 9 and 10, where the edge exponent
is found to be non-universal (while the Hall conductance is quantized), edge reconstruction has been proposed as a
mechanism that results in the non-universal behavior of the edge [20, 21]. However, our result clearly shows that edge
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reconstruction as described by Eq. (11) cannot be the explanation of the non-universal behavior found in tunneling
experiments.
As the last examples, let us consider other FQH states with dim[K] = 3 and anti-parallel neutral modes, such as

ν = 1± 2
4p−1

. As before, we can do a basis transformation such that

K =





−1 0 0
0 1 0
0 0 1



 , t =





0
0√
ν



 . (17)

Using the same parametrization for the boost as above, we see that in order for the two-terminal conductance to be
quantized β2 must vanish. Furthermore, the scaling dimension of the electron operator is

∆el =
x2 + 2β1xy + y2

2
√

1− β2
1

+
1

2ν
, (18)

but with the condition

y2 − x2 = 2p+ 1− 1

ν
, (19)

where again, p is an integer. In this case, the first term of Eq. (18) is positive definite because x = y = 0 is not
a solution to Eq. (19). Solving Eq. (19) for y, substituting the solution into Eq. (18) and then minimizing it with
respect to x, we obtain

∆min
el =

∣

∣

∣

∣

pmin +
1

2
− 1

2ν

∣

∣

∣

∣

+
1

2ν
, (20)

where pmin is an integer chosen to minimize the first term. Since all dependence on β1 has dropped off the smallest
scaling dimension of the electron operators, we again conclude that if the two terminal conductance is quantized then
the electron tunneling exponent will also be quantized.
Some discussions are in order. In this article, we have considered three classes of FQH states: ν = n/(2n ± 1),

edge reconstructed ν = 1/m and ν = 1 ± 2
4p−1

; all of which contain counter-propagating modes. We started by
showing that the decoupling between the forward moving charged mode and the backward moving neutral modes
is the sufficient and necessary condition for quantized Hall conductance, as measured in two-terminal set up. Since
the parameter space in which such decoupling occurs is a lot smaller than the whole parameter space, this begs the
question of what mechanism confines us to the subspace of parameter space in which the forward moving charged
mode and the backward moving neutral modes are decoupled. One such mechanism was introduced in Ref. 22, where
it was shown that edge disorder can restore the quantization of Hall conductance because in the presence of disorder,
there is an RG fixed point, the so-called Kane-Fisher-Polchinski (KFP) fixed point, at which the Hall conductance
takes the correct quantized value. This KFP fixed point is obviously a subspace of the parameter subspace in which
the forward moving charged mode and the backward moving neutral modes are decoupled.
Anticipating the possibility of other mechanisms that can restore the quantization of Hall conductance, in this article

we did not make any assumptions of what such mechanisms should be. Instead of limiting ourselves to a subspace of
the parameter subspace in which the decoupling between the forward moving charged mode and the backward moving
neutral modes occurs, we simply observed that as long as the forward moving charged mode and the backward moving
neutral modes are decoupled, the tunneling exponent is universal. Providing a mechanism that will confine us to a
subspace of the parameter subspace we considered above, such as by introducing disorder, obviously will not change
the result. For the particular case of disordered edge, in a sense, what we did can be thought of as a generalization of
Refs. 23, 26, and 27, where the authors studied the tunneling exponents at the KFP fixed points of the three classes
of FQH states we considered here.
Taking into account the two statements:

• the decoupling between the forward moving charged mode and the backward moving neutral modes is the
sufficient condition for universal tunneling exponent,

• this modes decoupling is the sufficient and necessary condition for universal Hall conductance,

we concluded that quantization of the Hall conductance, as measured in two-terminal set up, implies the quantization
of tunneling exponent. Equivalently, at least within the framework of chiral Luttinger liquid theory, a non-universal
tunneling exponent implies a non-universal Hall conductance.
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Lastly, let us comment shortly on the case of four-terminal conductance. In this case, even though we do not have
a somewhat general formula akin to Eq. (6), at least for ν = 2/3, the decoupling between the charged mode and
the backward moving neutral mode is also the sufficient and necessary condition for quantized and universal four-
terminal conductance [22]. Therefore, in that case, a non-universal tunneling exponent also implies a non-universal
four-terminal conductance.
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