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We demonstrate that the entanglement entropy area law for free fermion ground states and the corresponding

volume law for highly excited states are related by a position-momentum duality, thus of the same origin.

For a typical excited state in the thermodynamic limit, we further show that the reduced density matrix of a

subsystem approaches thermal density matrix, provided the subsystem’s linear size is small compared to that of

the whole system in all directions, a property we dub eigenstate typicality. This provides an explicit example of

thermalization via entanglement, and reveals how statistical physics emerges from a single eigenstate by tracing

out a large number of degrees of freedom.

Introduction –Quantum entanglement is one of the most im-

portant concepts in the modern physics [1]. The most widely

used measure of bipartite block entanglement in many-body

systems is the entanglement entropy (EE), which is the von

Neumann entropy associated with the reduced density ma-

trix (RDM) of a subsystem, obtained by tracing out degrees

of freedom outside it. It is generally believed that the EE of

ground states of most local Hamiltonians follow the so called

“area law“ [2], which means that when a system is divided into

two subsystems, the EE is proportional to the boundary area

between these two subsystems. The area law is crucial for the

efficiency of density matrix renormalization group and ten-

sor network based variational methods for computing ground

state properties. Violations of the area law are rare (other

than in quantum critical one dimensional (1D) systems [3]),

and also weak in known examples. Above one dimension,

the only firmly established examples are free fermion ground

states with Fermi surfaces [4, 5] and coupled harmonic lattice

models with Bose surfaces where gapless bosonic excitations

live [6]; the violation is logarithmic (i.e., EE is proportional to

surface area multiplied by a factor that grows logarithmically

with subsystem size) in both cases. Heuristic argument [7]

and detailed perturbative calculation [8] strongly suggest that

such a violation also exists in Fermi liquids which takes the

same form as free Fermi gas, and numerics [9, 10] suggests

similar violations may exist in certain non-Fermi liquid states

with Fermi surfaces. Perhaps the strongest violation known

thus far is a power-law enhancement of EE in a very special

1D free fermion model involving random long-range hopping

[11].

Comparatively speaking much less effort has been devoted

to studies of EE associated with (highly) excited states (with

an extensive excitation energy that grows linearly with sys-

tem size) [12, 13]. While it is generally expected that EE

should be extensive (i.e. proportional to the volume of the

smaller subsystem) in such cases (except in many-body lo-

calized states [14]), explicit examples of this volume law are

very rare, and existing results are either of numerical nature

or on 1D systems (in fact often both) [15–20]. Closely related

to this is the issue of thermalization[14, 21–23], namely the

RDM of a (sufficiently) small subsystem approaches a ther-

mal density matrix even when the whole system is in a pure

state. If thermalziation holds then entropic volume law fol-

lows, but the opposite is not necessarily true. For random ini-

tial pure states this is known to be true after a long time evolu-

tion in many cases, and termed canonical typicality [24–27].

However much less is known if such thermalization occurs if

the initial states are exact eigenstates of a local Hamiltonian,

which form a very special set in the Hilbert space with zero

measure. We dub a term eigenstate typicality [28] to charac-

terize such thermalization of an eigenstate, if it occurs. There

exist numerical evidence and analytic arguments supporting

such eigenstate typicality for a variety of systems. However,

the general physical mechanism behind thermalization is un-

clear, and in particular, it is widely assumed that integrable

systems do not thermalize [27, 29–31], although there are a

few numerical studies suggesting the opposite. [32, 33]

In the present work we address the issues mentioned above,

by studying EE and thermalization in the integrable free

fermion systems. We demonstrate that for a “typical“ highly

excited state (in a sense to be specified below), (i) EE fol-

lows volume law. (ii) In the limit that the ratio between linear

sizes of subsystem and whole system vanishes for all direc-

tions, eigenstate typicality holds for the subsystem, in sharp

contrast to the previous belief. Furthermore, in (i) we show

that the area law followed by ground state EE and the vol-

ume law for excited state are related by a position-momentum

duality, and thus have the same origin. The conclusion (ii)

is a more striking result, where we find thermalization in the

(integrable) free fermion system, in which there are infinitely

many conserved quantities (namely occupation number of ev-

ery momentum state is a good quantum number). Our deriva-

tion of (ii) clearly illustrates how statistical physics emerges

from a single eigenstate by tracing out a large number of de-

grees of freedom. It sheds considerable light on the micro-

scopic origin of thermalization.

Position-Momentum Duality –We consider free fermion

systems with translational invariance, with Hamiltonian H =
∑

jℓ c
†
jhjℓcℓ, where cj(c

†
j) is the fermion annihilation (cre-

ation) operator at site j. For a real-space partition A and its

complement B ≡ Ā, the RDM ρA for any general fermion
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eigenstate |F 〉 takes the Gaussian form [34]

ρA = trB [|F 〉〈F |] = e−He , He =
∑

j,ℓ c
†
jκejℓcℓ, (1)

where the (single-particle) entanglement Hamiltonian He

within A is determined exclusively by the two-point correla-

tion function, Mjℓ ≡ 〈F |c†jcℓ|F 〉A, where the subscript A
means j, ℓ ∈ A, via

κe = ln
[

M−1 − 1VA×VA

]

, (2)

where 1 is a VA ×VA identity matrix with VA being the num-

ber of lattice sites inside A. Defining R =
∑

j∈A |j〉〈j| as the

projection operator onto A [5, 35, 36] and P =
∑

k∈F |k〉〈k|
as the projection operator onto the occupied states in the mo-

mentum space [Brillouin zone (B.Z.)], with |k〉 being an mo-

mentum eigenstate and also an eigenstate of the original single

particle Hamiltonian, we can write

M = RPR. (3)

The position-momentum duality in free fermion systems

means that the eigenvalues of M = RPR are exactly iden-

tical to the dual matrix M ′ ≡ PRP , as we now demon-

strate. For an eigenstate of M , |EM 〉, with eigenvalue λ,

M |EM 〉 = λ|EM 〉 and R|EM 〉 = |EM 〉 [37], we have

M ′ (P |EM 〉) = M ′R|EM 〉 = PM |EM 〉 = λ (P |EM 〉) ,(4)

namely P |EM 〉 is an eigenstate of M ′ with the same eigen-

value λ. Denoting the eigenvalue spectrum of M as spec(M ),

we have [35–37]

spec(RPR) = spec(PRP ). (5)

According to Eqs. (1)-(2), the spectrum of RDM, and thus the

corresponding EE, can be determined by either spec(M) or

spec(M ′). We take advantage of this duality in the following

section.

Duality between the ground state and the excited state –

We now show how to relate a ground state to a highly excited

state by this duality. Consider a free fermion system in d di-

mensional Cartesian lattice with total number of lattice sites

V in its ground state. The associated Fermi sea in momentum

space is shown in the top right panel in Fig. 1, where the ra-

tio between the number discrete momentum points enclosed

in the Fermi sea and that of the whole B.Z. is fixed to be less

than but of order 1. We consider a (somewhat unusual) par-

tition in the position space consisting of a huge number of

pockets distributed over the whole system that each encloses

a large number of lattice sites, top left panel in Fig. 1. In

such a situation the volume ratio between (possibly discon-

nected) subsystem and total system is held to be a constant

when V increases. EE of this special partition can be ex-

tracted using known results [5], although for the following

discussions we only need to use the area law scaling (with

logarithmic correction). If we assume the linear size of each

pocket is roughly L�, EE of this partition can be estimated as

SP ≃ nL� lnL� ≃ V lnL�/L
d−1
�

|V→∞≫Ld
�

∼ V , where

FIG. 1. (Color Online) Illustration of position-momentum duality

between the original system and its dual, where the roles of momen-

tum and position exchange. In the original system in its ground state

(top panel), we consider a fragmented real space partition involving

a huge number of pockets distributed over the whole system. The

associated Fermi sea of the corresponding ground state is shown in

the top right figure. This fragmented partition results in entangle-

ment entropy scaling with the total (sub)system volume. The dual

system (bottom panel) have exactly the same entanglement entropy.

However, the momentum occupation corresponds to a highly excited

state, while the real-space partition into two contiguous regions is

regular. The duality provides a natural understanding of the entropic

volume law, expected to be satisfied by typical highly excited states.

we approximate the number of pockets to be n ≃ V/Ld
�

. We

thus find EE of such a fragmented partition actually scales

with the system volume.

The dual system is illustrated in the lower panel of Fig. 1,

in which real space partitioning and momentum space occupa-

tion exchange. We now have in the momentum space a huge

number of Fermi pockets distributed in the whole B.Z. This

corresponds to a highly excited state. On the other hand, the

position space partitioning is the regular one normally consid-

ered in bipartite entanglement. Using the exact duality dis-

cussed above, and the fact that the real and momentum space

volumes (as measured by the number of discrete points in

them) scale the same way, we conclude that EE of such highly

excited states exhibits volume instead of area law.

In the above we assumed L� ≫ 1 so that we can use the

known (area-law) results for ground states. It should be clear,

however, that its actually value is unimportant for the volume

law to hold. In particular, for a typical highly excited state,

we expect L� ∼ 1, and volume law should still hold. For a

simple illustration, let us consider a highly excited state with

staggered number occupation in the momentum space (even

points are occupied and odd points are unoccupied in the B.Z.,

which is half-filling), in a large 1D chain with total lattice sites

L. Again EE between a contiguous subsystem A and its com-

plement can be extracted from the matrix Mjℓ ≡ 〈c†jcℓ〉ES,A,

[34, 38] where the subscript ES means we are focusing on

an excited state. Once we know the eigenvalues λj of the

matrix M , we can obtain EE from SA = −Tr[ρA ln ρA] =
−
∑

j∈A [λj lnλj + (1− λj) ln(1− λj)]. Regardless of the
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simplicity of the formula for calculating EE, it is not a trivial

task. In most cases, a heavy numerical work needs to be in-

volved. Going around this issue, we instead calculate the par-

ticle number fluctuation ofA: 〈∆N2〉ES,A = Tr[M(1−M)],
which provides the lower bound of the SA. [39] We consider

a subsystem A with fixed LA/L = γ ≤ 1, in which (we drop

the subscript ES to simplify notation)

〈

∆N2
〉

A
= Tr

[

M (1LA×LA
−M)

]

=
∑

j∈A

1

L

∑

k

nk −
∑

j,ℓ∈A

1

L2

∑

k,k′

nknk′e−i(k−k′)·(j−ℓ)

=
LA

L

∑

k

nk −
1

L2

∑

k,k′

nknk′

sin2
[

(k−k′)LA

2

]

sin2
(

k−k′

2

)

= γ(1− γ)
∑

m

nm −
∑

m 6=m′

nmnm′

sin2 [(m−m′)πγ]

L2 sin2
[

(m−m′)π
L

] ,(6)

where we define nk ≡ 〈c†kck〉, and change the momentum la-

beling from k = 2πm/L to m = 1, 2, · · · , L. For the special

case of equal partition, we have γ = 1/2. In this case the sec-

ond term of Eq. (6) vanishes because of the staggered occupa-

tion pattern in momentum space: Since only even momentum

points are occupied, we have nmnm′ = 1 when m − m′ is

an even integer only, resulting in a vanishing numerator for

γ = 1/2. We thus find in this case

〈

∆N2
〉

equal−partition
=

L

8
∝ L ∝ LA, (7)

which scales as the subsystem volume, confirming the heuris-

tic duality picture above. The situation we discussed above

is exactly dual to the case studied by Ref. [40] that gives a

consistent result to ours.

For an arbitrary excited state with completely random pop-

ulation in the momentum space, it is not easy to establish a

rigorous bound for EE for a generic partition. Instead in the

following we will consider appropriate limits in which eigen-

state typicality holds, in which case the entropic volume law

follows.

Eigenstate typicality for a typical excited state – Entropic

volume law is a necessary, but insufficient condition for ther-

malization, namely the RDM taking form of thermal density

matrix corresponding to the original Hamiltonian. In this sec-

tion we consider the condition under which thermalization oc-

curs for a typical highly excited state. To this end we consider

a generic lattice and fermion occupation pattern. Explicitly

the element Mjℓ is

Mjℓ = 〈c†jcℓ〉A =
1

V

∑

k

nke
−ik·δrjℓ∈A , (8)

where the occupation number nk = 〈c†
k
ck〉 for a typical ex-

cites state is 1(0) for a occupied (unoccupied) state at momen-

tum k, with components kj = 2πnj/Lj , nj = 1, 2, · · · , Lj

andLj is the linear size along the jth direction (j = 1, · · · , d).

FIG. 2. (Color Online) Schematic illustration of the coarse-graining

process in momentum space. In the thermodynamic limit, the dis-

crete momentum points become very dense [red (black) dots repre-

sent occupied (unoccupied) points], and we can divide the B.Z. into

a huge number of cells, the brown boxes, where we only show four

such cells for illustration. For a typical excited state (top left panel),

the momentum sites are randomly occupied. Under the coarse-

graining process, the average occupation in each cell varies smoothly

from one cell to the next in the whole B.Z., as illustrated in the right

panel; they follow the usual Fermi-Dirac distribution with two pa-

rameters α and β that are determined by the fixed total energy E and

total fermion number N . For an atypical excited state in which the

cells are not randomly populated (bottom left panel), coarse-graining

process will not give rise to a continuous distribution. The probabil-

ity of encountering such an atypical state vanishes in the limit of large

cell size (measured by the number of momentum points it encloses).

For the moment we set Lj = L, corresponding to a (hyper)

cubic system.

As L → ∞, the discrete momentum points in the B.Z.

become very dense and we can divide the B.Z. into a large

number of cells (see left panels in Fig. 2). Each cell con-

tains g ≫ 1 points associated with the original momenta k.

When L/LA → ∞ (we assume the subsystem A is suffi-

ciently isotropic such that it is characterized by a single linear

size LA), we can require the linear size of each cell, δkcell to

satisfy

1/L ≪ δkcell ≪ 1/LA. (9)

With the condition above, for all the momentum points within

the same cell the phase factor in Eq. (8) can be treated as a

constant, exp[−ikm · δrjℓ∈A], where m is the cell index and

km is its average momentum; we also introduce the corre-

sponding single particle energy ǫm = ǫkm
for later usage [ǫk

is band dispersion]. We can thus divide the sum over mo-

menta in Eq. (8) into two steps, first summing over momenta

within each cell, and then sum over all cells,. We refer to the

first step as a “coarse graining” procedure in momentum space

[41], after which the matrix element Mjℓ becomes

Mjℓ ≃
g

V

∑

m

(

Nm

g

)

e−ikm·(rj−rℓ)

=
1

Veff

∑

m

nme−ikm·(rj−rℓ), (10)
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where Nm is the total occupation number within cell m and

nm = Nm/g is the corresponding average occupation.

It should be clear by now while a specific excited state is

characterized by the detailed occupation pattern {nk}, Mjℓ

and thus RDM ρA depends on the coarse-grained variables

{nm} only. Therefore many different excited states’ will give

rise to essentially the same ρA, and the most likely ρA corre-

sponds to {nm} consistent with the maximum number of dif-

ferent {nk}; using standard statistical physics terminology, a

specific {nk} corresponds to a microstate, while {nm} corre-

sponds to a macrostate. Based on standard statistical physics

arguments, a typical excited state will result in ρA correspond-

ing to this most probable macrostate {n∗
m} in the appropriate

limits specified earlier. Let us find out what {n∗
m} is.

The only constraints an excited state must satisfy are fixed

particle number N and total energy E:

∑

m Nm = N,
∑

m Nmǫm = E. (11)

Without these constraints, for each macrostate {Nm}, the

number of distinct microstates is denoted as W{Nm} =
∏

m ω(m), where ω(m) is the number of distinct microstates

associated with mth cell, ω(m) = g!/[Nm!(g − Nm)!].
The number of distinct microstates accessible to the state is

Ω(N, V,E) =
∑

{Nm} W{Nm}, where the summation goes

over all the distinct distribution set {Nm}. The distribution set

{Nn} that we are interested is the most probable one and can

be obtained by considering the fluctuations of Nm combined

with the two constraints above. We introduce Lagrange multi-

pliers α and β and examine the fluctuation of the distribution

set {Nm},

δ

[

lnW{N∗
m} −

(

α
∑

m

δNm + β
∑

m

ǫmδNm

)]

= 0

⇒ n∗
m =

N∗
m

g
=

1

eβǫm+α + 1
, (12)

which is exactly the same expression as the Fermi-Dirac dis-

tribution from the grand canonical thermal ensemble if we

identify α = −µ/T and β = 1/T .

The above does not apply, of course, to an atypical excited

state like that illustrated in the lower left panel of Fig. 2. In

the limit g → ∞ which follows from thermodynamic limit

L → ∞, the chance of encountering such states vanishes and

we do not consider them further. Using the fact that n∗ is a

smooth function in momentum space, the matrix element Mjℓ

for a typical excited state approaches

Mjℓ =
1

(2π)d

∫

ddk

eβǫk+α + 1
e−ik·(rj−rℓ) (13)

for L/LA → ∞. We thus find that the RDM of a typical

excited state becomes the same as the thermal state density

matrix corresponding to the original Hamiltonian, which gives

an explicit example of the thermalization [21–23].

We remark again that the realization of eigenstate typical-

ity is only valid in the limit that we are considering here,

L/LA → ∞ (for sufficiently isotropic subsystem), since only

in this limit the coarse-graining procedure is well-defined. For

highly anisotropic subsystems, we needL/LA → ∞ along all

directions for Eq. (9) to be valid, so that the coarse graining

procedures outlined earlier can be followed. This is a slightly

more stringent condition than simply having V/VA → ∞,

which is the normally expected condition for thermalization

to hold. We also emphasize that the key step leading to the

conclusion above, namely momentum space coarse-graining,

is not an ensemble averaging process; it is averaging the oc-

cupation number in a momentum space cell within a single

excited state. Last, the difference here, as compared to other

integrable system, lies in the fact that the conserved quantities

(occupation number of every momentum state) do not have

corresponding local densities.

One diagnostic of thermalization is comparing the von Neu-

mann entropy with the entropy of the thermal state with en-

ergy and particle densities corresponding to those of the ex-

cited state. If thermalization occurs, these two entropies

should be the same, as observed numerically [42, 43] under

the appropriate conditions specified above. On the other hand,

if we fix VA/V ∼ O(1) while taking the thermodynamic

limit, thermalization is not expected to occur. In this case

EE, while still following the volume law as demonstrated ear-

lier, does not approach thermal entropy, as is also seen [42].

Thus all of our results are fully supported by the numerics of

Ref. [42].

Conclusion–In this Letter we show that in free fermion sys-

tems the entanglement entropy volume law of a typical ex-

cited state can be understood from the area law followed by

their dual ground states via a position-momentum duality. For

the subsystems whose sizes are much smaller than the total

system, the reduced density matrix of the subsystem is shown

to be the same as in the thermal state via a coarse-graining

procedure in momentum space, which we dub eigenstate typi-

clity. This gives the simplest demonstration of the emergence

of the thermalization in free fermion systems.
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