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We revisit the dynamic spin susceptibility, χ(q, ω), of one-dimensional interacting fermions. To
second order in the interaction, backscattering results in a logarithmic correction to χ(q, ω) at
q ≪ kF , even if the single-particle spectrum is linearized near the Fermi points. Consequently,
the dynamic spin structure factor, Imχ(q, ω), is non-zero at frequencies above the single-particle
continuum. In the boson language, this effect results from the marginally irrelevant backscattering
operator of the sine-Gordon model. Away from the threshold, the high-frequency tail of Imχ(q, ω)
due to backscattering is larger than that due to finite mass by a factor of kF/q. We derive the
renormalization group equations for the coupling constants of the g-ology model at finite ω and q
and find the corresponding expression for χ(q, ω), valid to all orders in the interaction but not in
the immediate vicinity of the continuum boundary, where the finite-mass effects become dominant.

Introduction Bosonization is the most common way to
describe one-dimensional (1D) interacting fermions.1 If
the lattice effects are not essential, an exact correspon-
dence between the fermion and fermion-hole (boson) op-
erators maps the charge sector of the system onto a gas
of free bosons [the Tomonaga-Luttinger liquid (TLL)].
The spin sector, however, is not free but maps onto the
sine-Gordon model. The non-Gaussian (cosine) term of
this model results from backscattering of fermions with
opposite spins. If the interaction between the origi-
nal fermions is repulsive, the backscattering term repre-
sents a marginally irrelevant operator and is renormal-
ized down to zero at the fixed point, where the spin
sector also becomes free. At intermediate energy scales,
such marginally irrelevant operators lead to logarithmic
renormalizations of the observables.2 Since the original
paper by Dzyaloshinskii and Larkin (DL),3 it has been
known that the backscattering operator gives rise to the
logarithmic temperature (or external magnetic field) cor-
rections to the static spin susceptibility. In Refs. 4
and 5, it was shown that the static spin susceptibility
also depends logarithmically on the external momentum
q at small q. In addition, both the spin- and charge
susceptibilities at 2kF acquire multiplicative logarithmic
renormalizations.1,6

In this work, we focus on dynamics of the long-
wavelength part of the spin response. First, we need
to outline the differences between the charge and spin
sectors. As charge bosons are free at all energies, the
dynamical charge structure factor (the imaginary part of
the charge susceptibility at finite frequency, ω, and mo-
mentum, q) is a delta function centered at the boson dis-
persion, ω = vcq, which is represented by a straight line
in Fig. 1A. This result differs from that for free fermions
only in that the Fermi velocity, vF , is replaced by the
renormalized charge velocity, vc. A non-zero width of
the charge structure factor appears only if one goes be-
yond the TLL paradigm by taking into account finite
curvature (inverse mass) of the fermion spectrum. In the
pioneering paper7 and subsequent work (for a review, see
Ref. 8), it was shown that the combined effect of the cur-
vature and interactions results in many new features in
the charge structure factor, such as edge singularities at
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FIG. 1. A. Particle-hole excitations at small momenta and
frequency in 1D fermion system. The line ω = vF q corre-
sponds to the continuum. The hatched area is the domain
of incoherent spin excitations arising due to backscattering
processes. B. Schematic frequency dependence of the DSSF
at given momentum q. Renormalization group flows into the
strong coupling regime at frequency ∆g [Eq. (16)] above the
threshold. At distance ωq = q2/m to the threshold, the effect
of finite mass becomes more important than that of backscat-
tering.

the boundaries of the continuum and the high-frequency
tail both of which are absent for free fermions.
As far as the spin channel is concerned, it is com-

mon to treat the backscattering operator via renormal-
ization group (RG). As the fixed point corresponds to free
bosons, the formal result for the dynamical spin structure
factor (DSSF) at the fixed point is also a delta function
with vc replaced by the spin velocity, vs. The problem
with this argument is that DSSF is measured at finite ω
and q and thus away from the fixed point. Therefore, its
dependences on ω and q must reflect the flow at finite
rather than infinite RG time.
In this paper, we revisit the DSSF of a 1D interacting

fermion system. Besides being of a fundamental interest
on its own, the DSSF is relevant for a number of experi-
ments in both condensed-matter and cold-atom systems,
such as inelastic neutron and spin-resolved X-ray spec-
troscopies, nuclear magnetic resonance, spin Coulomb
drag,9 etc. First, we show by direct perturbation the-
ory that the logarithmic renormalization of the dynami-
cal spin susceptibility occurs in a Lorentz-invariant way,
via a ln(v2F q

2 − ω2) term. This already implies that,
in contrast to the free-fermion case, the DSSF is non-
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FIG. 2. Scattering amplitudes of the fermion-fermion inter-
action g1,2,4.

zero in the entire sector |ω| > vF |q| (the hatched region
in Fig. 1A). In contrast to the charge sector, this high-
frequency tail occurs even without taking into account
the finite-curvature effects. Next, we collect all leading
logarithmic terms by using RG for the spin vertex. Our
final result for the spin susceptibility reads

χ(q, ω) = χ0
vsvF q

2

(vsq)2 − ω2 − iδ
(1)

×







1 +
g1
2

1

1 + g1
2 ln

[

(vsΛ)2

(vsq)2−ω2−iδ

]







,

where χ0 = 2µ2
B/πvF is the spin susceptibility of 1D free

fermions, µB is the Bohr magneton, g1 is the (dimension-
less) backscattering amplitude, Λ is the ultraviolet cutoff,
δ = sgnω0+, and

vs = vF
√

1− g1 (2)

is the spin velocity.10,11 At ω = 0 and to second order in
g1, Eq. (1) reduces to the ln q correction of Refs. 4 and 5.
Also, setting ω = 0 and replacing vF q by either temper-
ature (T ) or the Zeeman energy in the external magnetic
field (H), we reproduce the DL result.3 To second order
in g1, our result is in line with those of Refs. 14 and 15 for
a spin-1/2 Heisenberg antiferromagnetic chain. In that
case, the high-frequency tail of the DSSF occurs due to
a marginally irrelevant operators arising from umklapp
scattering. The profile of Imχ(q, ω) is shown schemati-
cally in Fig. 1B. Sufficiently close to the threshold, the
divergence in Imχ(q, ω) must be regularized by the finite-
curvature effects–see below for a more detailed discus-
sion of the crossover between the high-frequency tail and
threshold singularities.
Feynman diagrams in the fermion language. As usual,
we linearize the fermion spectrum near the Fermi energy
and decompose the fermion operators into the left- and
right-movers, so that the Hamiltonian of a free system is

H =
∑

s=±,α

∫

dp ξs(p)c
†
s,α(p)cs,α(p), (3)

where ξ±(p) = ±vF p, with p being a deviation from the
Fermi momenta, vF the Fermi velocity, and c±,α(p) the
right/left-moving fermion with spin α. Linearization pre-
sumes that the fermion momenta are bounded by ±ΛF .
Fermions interact via a short-range and SU(2)-invariant
potential U(q), parameterized by three (dimensionless)

scattering amplitudes, g1, g2, and g4, which are defined
in Fig. 2. To first order in U , g2 = g4 = U(0)/πvF
and g1 = U(2kF )/πvF . We assume that the Fermi mo-
mentum is not commensurate with the lattice and thus
neglect umklapp scattering.
We now calculate the spin susceptibility at small but

finite ωm and q via a perturbation theory in the coupling
constants g1, g2, and g4. The free spin susceptibility–
diagram A in Fig. 3– is given by

χ(0)(q, ωm) = χ0
(vF q)

2

ω2
m + (vF q)2

, (4)

where ωm is the Matsubara frequency. Upon analytic
continuation to real frequencies (ωm → −iω + 0+), the
imaginary part of the susceptibility is ∝ q2δ(ω2 − v2F q

2),
which corresponds to well-defined spin excitations.
The first-order corrections are given by diagrams 3B

and 3C. It can be shown [see Supplementary Material
(SM)] that diagrams with g4 sum up to zero, while dia-
grams with g2 cannot be constructed at this order. For
the backscattering contribution, we obtain

δχ(1)(q, ωm) = g1χ0

[

(vF q)
2

ω2
m + (vF q)2

]2

. (5)

To second order in the interaction, there are five non-
trivial diagrams for the spin susceptibility, presented in
Fig. 3D-H. Calculations show that all the g1g2 terms from
diagrams 3F-H sum up to zero. All the g24 terms from all
the second-order diagrams sum up to zero as well. Fi-
nally, the g22 terms from diagrams 3D and 3E cancel each
other. What remains is the backscattering, g21 contribu-
tion from diagrams 3D and 3E. In the leading logarithmic
approximation, we find

δχ(2)(q, ωm) = −1

4
g21χ0

(vF q)
2

ω2
m + (vF q)2

ln

[

(vFΛ)
2

ω2
m + (vF q)2

]

,

(6)

where Λ is the cutoff imposed on the interaction. At
ωm = 0, Eq. (6) reduces to the result of Refs. 4 and 5.
Upon analytic continuation, the logarithmic factor gives
rise to a non-zero DSSF at |ω| > vF |q|. In the next sec-
tion, we will employ RG to calculate the spin susceptibil-
ity to first order in the renormalized vertex. We outline
the resulting expression for the spin susceptibility:

χ(q, ωm) = χ0

{

(vF q)
2(1− g1/2)

ω2
m + (vF q)2

+ g1
(vF q)

4

[ω2
m + (vF q)2]

2

+
g1
2

(vF q)
2

ω2
m + (vF q)2

1

1 + g1
2 ln

[

(vFΛ)2

ω2
m+(vF q)2

]







,(7)

where a factor of −g1/2 in the numerator of the first
term was added to compensate for the first-order con-
tribution from the third term. The first and second
terms in Eq. (7) can be combined into an expansion of
χf(q, ωm) ≡ χ0vsvF q

2/
[

ω2
m + (vsq)

2
]

to order g1, which
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FIG. 3. Feynman diagrams for the spin susceptibility to sec-
ond order in the interaction (wavy line). The Aslamazov-
Larkin diagrams (not shown) vanish identically by SU(2) sym-
metry. The second-order RPA diagram (also not shown), ob-
tained from diagram B by inserting one more wavy line paral-
lel to the first one, does not contain a logarithmic singularity
and is thus ignored.

is the spin susceptibility of free bosons at the fixed
point, where the Luttinger parameter of the spin chan-
nel is renormalized to unity. We surmise that all non-
logarithmic terms can be absorbed into χf(q, ωm). In the
last term of Eq. (7), we cannot distinguish between vs and
vF within the leading logarithmic approximation. How-
ever, guided by the general RG principle, we conjecture
that vF in the last term must be replaced by vs as well.
Performing these replacements, we obtain (after analytic
continuation) the result announced in Eq. (1). Next, we
are going to show that RG does indeed reproduce the
logarithmic part of the result in Eq. (7).
Renormalization group. From now on, we neglect the g4
processes, as they do not flow under RG. The interaction
vertex, shown graphically in Fig. 4A, can be decomposed
into the spin and charge parts as

1

πvF
Γαβ
µη = −1

2
γ1~σαβ · ~σµη −

(

1

2
γ1 − γ2

)

δαβδµη, (8)

where γ1,2 are the renormalized back- and forward-
scattering amplitudes. As these vertices will be used to
find the spin susceptibility at finite ω and q, we will need
to know them away from the Fermi surface along both
the energy and momentum axes. The equations for γ1
and γ2, derived in SM and shown graphically in Fig. 4D,
are of the standard form1,16,17

dγ1(ℓ)

dℓ
= −γ2

1(ℓ),
dγ2(ℓ̃)

dℓ̃
= −γ2

1(ℓ̃)

2
, (9)

except that the RG times, ℓ and ℓ̃, are different. The ver-
tex γ1, which is renormalized in the particle-hole chan-

nel, evolves with ℓ ≡ ln

[

vFΛ√
Ω2

n+(vFQ)2

]

, where Ωn and

Q are the Matsubara frequency and momentum trans-
fers through the vertex, correspondingly. The vertex γ2,
which is renormalized in the particle-particle channel, de-
pends on the total incoming frequency and momenta.

β
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FIG. 4. A. Interaction vertex given by Eq. (8). B,C. Spin sus-
ceptibility to first order in renormalized vertex. D. Graphical
equation for the backscattering amplitude γ1.

The meaning of Eq. (9) is that one first solves for γ1
as a function of ℓ and then replaces ℓ by ℓ̃ to find γ2.
The initial values are γi(ℓ = 0) = gi, i = 1, 2. (Details
of the derivation are given in SM.) Solving Eq. (9), one
obtains

γ1(ℓ) =
g1

1 + g1ℓ
, γ1(ℓ̃)− 2γ2(ℓ̃) = const. (10)

We are now in a position to calculate the renormalized
spin susceptibility at finite ωm and q, using γ1 as an
effective interaction. To first order in γ1, there are only
two diagrams for the spin susceptibility: diagrams B and
C in Fig. 4. Combining the two diagrams together and
using Eq. (10), we obtain renormalized the part of the
spin susceptibility along with the linear in g1 term (see
SM for details of the calculations):

χ(ln) = −4

[

(vF q)
2

|ω̄|4
]
∫

dQdΩn

(2π)2
ln

[

(vFΛ)
2

|Ω̄ + ω̄|2
]

γ1(ℓ)

= χ0
g1
2

(vF q)
2

ω2
m + (vF q)2

1

1 + g1
2 ln

[

(vFΛ)2

ω2
m+(vF q)2

] , (11)

where Ω̄ = Ωn + ivFQ and ω̄ = ωm + ivF q. This result
indeed coincides with the last term in Eq. (7), and thus
the conjecture leading to Eq. (1) is proven.
Equation (1) is the central result of this paper, which

shows that DSSF is non-zero at |ω| > vF |q|. Away from
the free-boson pole, the DSSF is given by

Imχ(q, ω) = χ0
πg2

1

4
vF vsq

2

ω2−(vsq)2
sgnω

{

1+
g1
2 ln

[

(vsΛ)2

ω2
−(vsq)2

]}2
+[πg1

2 ]
2
.

(12)

The conditions for the validity of Eq. (12) near the
threshold are discussed before the concluding paragraph
of this paper.
Fermi liquid in 1D. Putting ωm = 0, replacing vF q →
max{T, µBH} under the logarithm, and expanding back
the non-logarithmic term to order g1 in Eq. (1), we re-
produce the DL result for the static spin susceptibility:3

χ(T,H) = χ0







1 +
g1
2



1 +
1

1 + g1 ln
[

vFΛ
max(T,µBH)

]











.

(13)
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We now show that the DL result can be reproduced by
the Fermi-liquid (FL) theory, if one replaces the FL pa-
rameters by running values of the scattering amplitudes.
We recall the FL expression for the spin susceptibility18

χ = χ0
m∗

m

1

1 + Γs
m∗

m Z2
, (14)

wherem∗ = m [1− ∂ωΣ(ω, k)] / [1 + ∂kΣ(ω, k)/vF ] |ω,k=0

is the effective mass, Z = [1− ∂ωΣ(ω, k)]
−1 |ω,k=0 is

the quasiparticle residue, and Γs is the spin part of
the interaction vertex. Since the original interaction is
static, it gives a frequency-independent self-energy to
first order. Therefore, the Z-factor is not renormalized
to this order, while the momentum dependence of the
self-energy amounts to renormalization of the effective
mass m∗ = m(1 + g1/2) both for right- and left-moving
fermions. According to Eq. (8), Γs = −γ1/2, where γ1

is given by Eq. (10) with ℓ = ln
[

vFΛ
max(T,µBH)

]

in the

static case. Substituting these m∗ and Γs into Eq. (14)
and expanding to first order in γ1, we reproduce the DL
result, Eq. 13. Although the FL theory is not valid in
D = 1, it is still valid in D = 1 + ε with ε → 0+. Our
example shows that a logarithmic flow of the scattering
amplitude with ε reproduces the correct result even in
D = 1.
Another interesting feature of the DL result is that the

fixed-point value χ = χ0(1+ g1/2) is renormalized by g1.
This seems to contradict RG because g1 flows to zero
at the fixed point. In fact, this means that not all the
coupling constants in the perturbative result should be
replaced by their running values: some remain at their
bare values evaluated at the ultraviolet cutoff. This is
an example of the “anomaly” frequently encountered in
massless field-theoretical models.19 Another example of
such an anomaly is the specific heat of 1D fermions.10

Connection to bosonization. The fermion language is not
a preferred one: one can equally well obtain the same
results in the boson language. However, one has to be
careful about not taking the limit of local interaction
too soon. Assuming a non-local interaction potential
U(x− x′), we bosonize the Hamiltonian, treating the in-
teraction as local in the Gaussian part as non-local in the
non-Gaussian part. For clarity, we distinguish between
the backscattering amplitudes of fermions with the same
and opposite spins, g1|| and g1⊥, correspondingly. This

yields10

H =
1

2π

∑

i=c,s

∫

dx

[

vi
Ki

(∂xφi)
2 + viKi(∂xθi)

2

]

(15)

+
Λ2
F

2π2

∑

α=±

∫ ∫

dxdx′ cos
{√

2 [φs(x) + αφs(x
′)]
}

× cos
{√

2 [φc(x) − φc(x
′)] + 2kF (x− x′)

}

U(x− x′),

where φc(s) and θc(s) are usual position and momen-
tum boson fields in the charge (c) and spin (s) sec-
tors, vs = vF , Ks = 1, and explicit expressions for

vc and Kc are given in SM. If the local limit is taken
also in the non-Gaussian part, we obtain a spin-charge
separated sine-Gordon model with the coupling g1⊥ in
the cosine term and vs = vF

√

1− g1‖, and Ks =

1/
√

1− g1‖. With Hamiltonian (15), one can construct a

perturbation theory for the spin susceptibility χ(x, τ) =
−〈Tτ∂xφs(x, τ)∂xφs(0, 0)〉. In doing so, we reproduce
the same diagrams for the spin susceptibility as in the
fermion approach. The first-order term of the fermion
approach, Eq. (5), is reproduced correctly only if one
keeps non-local interaction in the non-Gaussian term.
The reason is that a part of this result comes from mass
renormalization (diagram C in Fig. 3), which is absent
to first order in the local interaction. Starting from sec-
ond order, one can take the local limit. The results
of the boson and fermion approaches are identical, as
they should be. In particular, the second-order result
for χ(q, ω) [Eq. (6)] can obtained by expanding the par-
tition function of the sine-Gordon model to second or-
der in the backscattering operator, as it was done in
Ref. 15 for the umklapp operator. In our case, this gives
Imχ(q, ω) ∝ g21⊥q

2(ω2−v2sq
2)2Ks−3 which, upon expand-

ing near weak coupling (Ks ≈ 1 + g1||/2) and setting
g1⊥ = g1||, reproduces Eq. (12) to third order in g1.
Finite-mass effects. Taking into account finite curvature
of the fermion dispersion is the only way to smear the
delta-function singularity in the dynamic charge struc-
ture factor.7,8 In the spin sector, there are two competing
effects that lead to a non-zero DSSF outside the contin-
uum: the marginally irrelevant backscattering operator
and finite curvature. For massive fermions with disper-
sion p2/2m, the effect of finite curvature becomes impor-
tant when the distance to the threshold, ∆ ≡ |ω| − vs|q|,
becomes comparable to ωq ≡ q2/m. On the other hand,
the RG flow develops at ∆ <∼ ∆g, where

∆g ≡ (vsΛ
2/q) exp(−2/g1). (16)

The results of this paper are valid the RG flow develops
before the curvature becomes important, i.e., if ∆g ≫ ωq

or q ≪ (mvsΛ
2)1/3 exp(−2/3g1) (see Fig. 1).

Even in this case, the RG result (1) diverges at the
threshold |ω| = vs|q| and the divergence must be regu-
larized by finite curvature. A detailed analysis of match-
ing between the threshold singularities due to finite mass
(Ref. 20) with our RG result is outside the scope of this
paper. However, one can compare the high-frequency
tails due to each of these effects. For ∆ ≫ ∆g, the RG
result reduces to the second-order one; up to a numerical
coefficient

Imχ(q, ω) ∼ χ0g
2
1

v2F q
2

ω2 − v2F q
2
Θ(|ω| − vF |q|). (17)

On the other hand, the high-frequency tail for spineless
fermions arising from finite mass was calculated via an
expansion in 1/m in Refs. 7, 15, and 22 For massive
fermions, however, the difference in the 1/m expansions
of the charge and spin susceptibilities amounts only to
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a numerical coefficient. Up to this coefficient, we can
simply borrow the result of Refs. 15, 21, and 22:

Imχ1/m(q, ω) ∼ g2
(

q

mvF

)2
v2F q

2

ω2 − v2F q
2
Θ(|ω| − vF |q|),

(18)
where g is some dimensionless coupling constant. Com-
paring Eqs. (17) and (18), we see that the high-frequency
tail due to a marginally irrelevant operator is larger than
that due to finite mass by factor of mvF /q ≫ 1.
Conclusions. We have studied the dynamical spin struc-
ture factor (DSSF) of one dimensional interacting
fermions for small momenta (q ≪ kF ). In contrast to
the charge structure factor, the DSSF is non-zero above
the continuum even in a model with linearized fermion
spectrum due to the effect of a marginally irrelevant
backscattering operator. We found the DSSF by di-

rect perturbation theory in the fermion language, supple-
mented by RG. The high-frequency tail due to backscat-
tering is larger than that due to finite mass by a factor
of mvF /q ≫ 1. One immediate consequence of our re-
sult is the non-analytic temperature dependence of the

nuclear spin relaxation rate T−1
1 ∝ T

∫

dq Imχ(q,ω)
ω

∣

∣

∣

ω→0
resulting from the region q ≪ kF . Logarithmic renor-
malization of χ(q, ω) modifies the Korringa law as 1/T1 ∝
T/ ln(vFΛ/T ), which is line with the logarithmic correc-
tions to the FL theory discussed early in this paper. At
weak coupling, renormalization from the q = 0 region is
comparable to the usually considered 2kF contribution.1
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