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Abstract 

Diffusion of particles in solid-state materials generally involves several 

sequential thermal-activation processes. However, present diffusion coefficient theory 

only deals with single barrier, i.e., it lacks an accurate description to deal with such 

multi-barrier diffusion. Here, we develop a general diffusion coefficient theory for 

multi-barrier diffusion. Using our diffusion theory and first-principles calculated 

hopping rates for each barrier, we calculate the diffusion coefficients of Cd, Cu, Te, 

and Cl interstitials in CdTe for their full multi-barrier diffusion pathways. We found 

that the calculated diffusivity agrees well with the experimental measurement, thus 

justifying our theory, which is general for many other systems.  

 

PACS number(s): 66.30.Dn, 66.30.H-, 61.72.jj, 61.72.uj 
 



I. INTRODUCTION 

Diffusion of ions in functional materials is crucial in many applications such as 

lithium-ion batteries [1-3] and transition-metal-based resistive random access memory 

materials [4, 5]. In photovoltaic and microelectronic materials, dopants (especially 

external impurities) are often introduced by a diffusion process [6, 7]. Thus, the 

control of ion diffusion is important for the performance of semiconductor devices. 

Although various mechanisms of ion diffusions exist at the atomic scale, such as 

interstitialcy, kick-out and the vacancy mechanisms [8-11], macroscopically, the ion 

diffusion process can be well described by Fick’s laws [12]. In a homogenous media, 

the particle diffusion equation in 1-dimension is written as డఘడ௧ ൌ ܦ డమఘడ௫మ , where ߩ is 

particle density and D is diffusion coefficient, which is usually described by an 

Arrhenius relation [13], i.e., ܦ ൌ   is the energy barrier between a local minimum and a saddle point (transition state)ܧ  is the pre-factor, andܦ /݇ܶሻ, whereܧሺെ ݔ݁ ܦ

in the diffusion pathway. ܶ and ݇ in the equation are temperature and the Boltzmann 

constant, respectively. Experimentally, ܦ  is usually extracted from ion diffusion 

profiles by fitting Arrhenius relation. However, due to coexistence of possible 

different diffusion mechanisms, this kind of extraction can vary significantly and 

understanding of experimental data will require comparison with theoretical 

calculations. Theoretically, first-principles calculations are commonly used to get the 

diffusion paths and barriers. But the diffusion coefficients are difficult to calculate. 

Previous works has either adopted (semi)empirical approaches [14–17], which is not 

very accurate, or adopted classical ab initio molecular dynamics simulation 

techniques [18–20], which usually is very computationally intensive. Recently, 

transition state theory has been combined with first-principles methods to calculate 

diffusion coefficients with great success [21], but it is only for diffusion process with 

single energy barrier. However, ion diffusion in solid-state media generally involves 

multi-barriers associated with sequential hopping processes. For example, the 

diffusion pathways of Cu and Cd interstitials in CdTe have two energy barriers [22]. 

As a matter of fact, multi-barrier diffusion is prevalent in a variety of functional 



materials. To our knowledge, however, there is no diffusion coefficient theory and 

theoretical calculations of diffusion coefficients are lacking for systems with multi-

barriers, which highlight the requirement to develop a method to address multi-barrier 

diffusion coefficient problem. 

In this paper, we first develop a diffusion coefficient theory for multi-barrier 

diffusion processes using Monte Carlo (MC) simulations. Then, as an example of 

multi-barrier diffusion, we calculate the diffusion coefficients of Cui, Cdi, Tei, and Cli 

interstitials in CdTe based on our theory. As is well known that Cu and Cl treatments 

are necessary to produce high-efficiency polycrystalline CdTe solar cells [23-25], and 

generally, Cu and Cl are introduced into CdTe through diffusion. The diffusion of Cd 

and Te in CdTe is also of great interest because they exist naturally in the host and 

may be involved in the Cu and Cl diffusion process. The diffusion of these elements 

often involves complicated pathways with more than one barrier. Therefore, the 

diffusion coefficients can only be dealt with using multi-barrier diffusion coefficient 

theory. 

 

II. MULTI-BARRIER DIFFUSION COEFFICIENT THEORY 

Before studying multi-barrier cases, we first briefly discuss diffusion in a one-

dimensional lattice where all the sites are equivalent and a particle can hop to one of 

its nearest-neighbor sites with rate ݄, as shown in Fig. 1. In this case, the particle 

density ߩ at the site ݅ changes with time following the equation:                               ߲ߩ߲ݐ ൌ ݄ሺߩାଵ  ିଵሻߩ െ ߩ2݄ ൌ ܽଶ݄ ߲ଶߩ߲ݔଶ   .                   ሺ1ሻ   
Here, ܽ is diffusion length, which is the distance between the neighboring sites. In the 

continuum limit and compared to Fick’s second law, the diffusion coefficient ܦ is 

then given by ܦ ൌ ܽଶ݄, in agreement with the formula derived from transition state 

theory [26, 27]. Here, according to dynamical matrix theory [27], the hopping rate h is 

given by ݄ ൌ ,/݇ܶሻܧሺെ ݔ݁ ߤ  where μ is the attempting frequency of particle 

hopping. In harmonic approximation, μ can be calculated as: 



ߤ                                        ൌ  ߱ଷேିଷ
ୀଵ /  ߱ଷேିସ

ୀଵ                                                ሺ2ሻ 
where ߱ are 3ܰ െ 3 positive phonon frequencies at the local minimum configuration 

and ߱ are 3ܰ െ 4 positive phonon frequencies at the saddle-point.  

We now turn to the case with multi-barriers. Here, we first present our results for 

diffusion with two barriers, and it can be easily generalized to the cases with more 

barriers, as we will show later. Figure 2 shows one-dimensional lattice models for 

two-barrier diffusion. The unit cell of the lattice contains two sublattice sites, black 

and grey, and each of them is indexed by ݅  and ݆ , respectively. Without losing 

generality, we assign ݄ଶ and ݄ଵ for the hopping events from the site ݅ to ݆ and from 

the site ݆ to ݅  1, respectively. There are two different types of diffusion on the two-

barrier diffusion model: for type-I diffusion [Fig. 2(a)], the subsequent particle 

hopping occurs from the site ݅  1 to ݆ at rate ݄ଵ and from the site ݆ to ݅ at rate ݄ଶ. On 

the other hand, for type-II diffusion [Fig. 2(b)], the same subsequent hopping events 

involve ݄ଶ first and ݄ଵ later. Notice that here we assume the particle is diffusing in a 

uniform media, so the whole diffusion path is symmetric, i.e., there is no drift motion 

of particles in the system. As we will see later, Cui diffusion in CdTe is type-I, 

whereas Cdi diffusion is type-II. For type-I diffusion, the diffusion of particles is 

described by the pair of hopping equations:  ߲ߩ߲ݐ ൌ ݄ଵ ߩିଵ  ݄ଶ ߩ െ ሺ݄ଵ  ݄ଶ ሻߩ,                                   ߲ߩ߲ݐ ൌ ݄ଶ ߩ  ݄ଵ ߩାଵ െ ሺ݄ଵ  ݄ଶ ሻߩ.                       ሺ3ܽሻ   
Similarly, the governing equations for type-II diffusion are given as:           ߲ߩ߲ݐ ൌ ݄ଵߩିଵ  ݄ଵ ߩ െ 2݄ଶ ߩ,                                        ߲ߩ߲ݐ ൌ ݄ଶߩ  ݄ଶ ߩାଵ െ 2݄ଵ ߩ.                            ሺ3ܾሻ   
    Regardless of microscopic details of particle motions, diffusion of particles in a 

uniform medium is generally described by the diffusion equation, డఘడ௧ ൌ  at the ,ߩଶߘܦ

continuum level. Our lattice model also is uniform and symmetric. We performed 

Monte Carlo simulations to describe the probability distributions ρi(t) and ρj(t) of a 



particle at the sublattice sites i and j, respectively, starting from a particle at i = 0 and t 

= 0. Because we are interested in the particle distribution at a large length scale, we 

only take the black sublattice as a coarse-grained lattice model and define the average 

particle density ߩ௩  on the site i as ߩ௩ ൌ ߩ  ሺߩିଵ  ሻ/2ߩ . After transient 

Monte-Carlo steps, the Gaussian distribution of ρi
ave(t) emerges with <x2> = 2Dt. Our 

MC simulations reveal that from the microscopic particle motions governed by Eq. 

(3), the diffusion equation emerges after transient particle redistribution. As the MC 

simulation time increases, the time evolution of the ߩ௩ in the coarse-grained lattice 

model can be described by the simple diffusion equation. We found that there exists a 

function ݂ that bridges the macroscopic diffusion coefficient ܦ and the microscopic 

hopping rates as follows: 

ܦ                      ൌ ቀ2ܽቁଶ ඨ݄ଵ݄ଶ݂ሺ݄ଶ݄ଵሻ   .                                ሺ4ሻ 
Here, ݂ renormalizes the effective hopping rate for the coarse-grained diffusion model. 

We note that ݂ depends only on the ratio of ݄ଶ/݄ଵ, but not on the absolute values of ݄ଵ and ݄ଶ (Fig. 3). For the two-barrier case, the renormalization factor ݂ turns out to 

be identical for both type-I and type-II diffusion models in Fig. 2. However, we found 

that for n-barrier cases with ݊  2, ݂  is generally different for different diffusion 

types.   

We can rationalize the form of ݂ in Fig. 3 in the two limiting cases. (i) For ݄ଵ ൌ݄ଶ ൌ ݄, the two-barrier diffusion model is reduced to the one-barrier diffusion in Fig. 

1 with the diffusion length of ܽ/2. Thus, ܦ ൌ ሺܽ/2ሻଶ݄, in consistent with ݂ሺ1ሻ ൌ 1 

in Eq. (4). (ii) For ݄ଶ ا ݄ଵ, f is approximated to 4݄ଶ/݄ଵ, and ܦ can be analytically 

written as ܽଶ݄ଶ/2. The factor 1/2 in ܦ can be understood as follows: for the type-I 

case, a particle moves rapidly back and forth between site ݅  and site ݆ െ 1  (or 

equivalent site pairs) with large hopping rate of ݄ଵ [Fig. 4(a)]. If we regard site ݅ and 

site ݆ െ 1  as one site as denoted by 2  in Fig. 4(a), the diffusion equation can be 

written as ߲ሺߩ  ݐ߲/ିଵሻߩ ൌ ݄ଶ ߩିଵ  ݄ଶ ߩ െ ݄ଶ ൫ߩ   ିଵ൯. Because the barrierߩ

between site ݅ and ݆ െ  1 is very small, the particles are expected to move very fast 



between these two sites, therefore, we should have ߩ ൌ ߩ ିଵ andߩ ൌ  ାଵ. Finallyߩ

we have 2߲ߩ/߲ݐ ൌ ݄ଶ ߩିଵ  ݄ଶ ߩାଵ െ 2݄ଶߩ = ܽଶ݄ଶ߲ଶߩ/߲ݔଶ  or ߲ߩ/߲ݐ ൌଵଶ ܽଶ݄ଶ߲ଶߩ/߲ݔଶ. Therefore, the share of particles between site ݅ and ݆ െ  1 reduces 

half of hopping particle densities and gives the diffusion coefficient analytically as ܦ ൌ ܽଶ݄ଶ/2. Generally, the share of particles among ܰ connected sites between large 

barriers reduces the effective hopping rate by 1/ܰ. For the type-II case, the effective 

rate for the hopping from site ݅  to site ݅   1 will be reduced by half, because a 

particle at site ݆ will move forward or backward with equal chance [Fig. 4(b)].  In this 

case, the diffusion equation is ߲ߩ/߲ݐ ൌ మଶ ିଵߩ   మଶ ାଵߩ  െ 2  మଶ =ܽଶߩ  మଶ ߲ଶߩ/߲ݔଶ 

or ߲ߩ/߲ݐ ൌ ଵଶ ܽଶ݄ଶ߲ଶߩ/߲ݔଶ. As a result, the diffusion coefficient is reduced by half 

and has the analytical form ܦ ൌ ܽଶ݄ଶ/2. However, except the limited cases discussed 

above, the function ݂ሺ݄ଶ/݄ଵሻ in Eq. (4) needs to be calculated using MC simulation. 

The numerical data is plotted in Fig. 3. Thus, Eq. (4) provides a general formula and 

numerical solution for two-barrier diffusion coefficient problems and will greatly 

simplify future calculation of diffusion coefficient of multi-barrier system. 

For three-barrier diffusion, our MC simulations show that the diffusion coefficient ܦ is given by:  

ܦ                   ൌ ቀ3ܽቁଶ  ݄ଵ ݄ଶ ݄ଷ ݂ ൬݄ଶ݄ଵ  , ݄ଷ݄ଵ ൰൨ଵ/ଷ ,                        ሺ5ሻ 
which is a generalization of Eq. (4). Here, the renormalization factor ݂ now depends 

on the two ratios of the hopping rates. The generalization for n-barrier cases with ݊  3 would be straightforward. In many practical cases, however, there exist only 

one or two dominant energy barriers among the ݊ barriers in a full diffusion pathway. 

When ݄ଷ is much smaller than other ݊ െ 1 hopping rates, i.e., the barrier associated 

with ݄ଷ is much larger than the others, the ݊-barrier diffusion can be reduced to one-

barrier diffusion, as we demonstrated for ݊ ൌ 2 in Fig. 4: the share of particles among ܰ connected sites between large barriers reduces the diffusion coefficient by 1/ܰ [Fig. 

4(a)], whereas a diffusion plateau reduces it by half regardless of the number of sites 

at the plateau [Fig. 4(b)]. Likewise, when two hopping rates are much smaller than 



others, the n-barrier diffusion can be reduced to two-barrier diffusion. 

Note that for three-dimensional diffusion, the diffusion coefficient discussed above 

should be multiplied by 6/ݖ, where z is the number of diffusion paths accessible from 

a given site [28,29]. The diffusion length should be the total distance that a particle 

moves in a full diffusion path. 

 

III. FIRST-PRINCIPLES CALCULATION METHOD 

To get the hopping rate for a single barrier, first-principles calculations are 

performed using density functional theory (DFT) [30,31] as implemented in the VASP 

code [32,33]. The electron and core interactions are included using the frozen-core 

projected augmented wave (PAW) approach [34]. The initial atomic configurations of 

local minimum sites and saddle points were adopted from previous works [22], which 

were calculated using the generalized gradient approximation (GGA) formulated by 

Perdew, Burke, and Ernzerhof (PBE) [35]. To correct the bandgap error in the GGA 

calculation, we used the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functionals [36] 

(α=0.25) and nudged elastic band (NEB) method [37] to get the diffusion barriers for 

the full diffusion paths. We find that local minimum and saddle-point configurations 

are almost the same before and after the bandgap corrections. As a result, the zone-

centered phonon frequencies at the minimum sites and saddle points are calculated 

within the PBE framework by making finite displacements (0.015 Å) in these 

structures. An energy cut-off of 350 eV and a Gamma-centered k-point mesh 2×2×2 

are used. To reduce computational costs, for each barrier, only atoms within 5 Å from 

the diffuser are allowed to move and other atoms are frozen. Our test results for Tei 

diffusions show that the attempting frequencies obtained this way are similar with 

those obtained by allowing all phonons. 

 

IV. RESULTS AND DISCUSSIONS 

Figure 5 shows the diffusion paths of Cu, Cd, Te, and Cl interstitials in CdTe. 

Compared to PBE diffusion paths in Ref. 22, we found that HSE06 strengthened spin 

splitting, making Bc configuration of neutral Cl interstitial about 0.26 eV smaller than 



Tc site. All the other diffusions are similar to PBE results except for neutral Cu 

interstitial. In Cui case, HSE06 corrected the band gap of CdTe, thus reducing the s-d 

coupling, and consequently reduce the energy difference between Tc’ site and m site 

as explained in Ref. 38. 

Table 1 lists our calculated results of diffusion parameters for Cui, Cdi, Tei, Cli and 

their charged states. The attempting frequencies are only listed for the hopping with 

the highest barriers in their diffusion paths. Our results show that, for diffusions of Cui, 

Cui
+, Cdi, Cdi

2+, and ݈ܥି , although they all have two barriers, the hopping rates ݄ଶ of 

the larger barriers are actually much smaller than those ݄ଵ of the smaller barriers. 

Take Cui as an example: the attempting frequency of the small barrier (0.05 eV) is 

2.84 THz and the attempt frequency of the high barrier (0.28 eV) is 4.19 THz. 

According to our definition of hopping rate above, we have ݄ଵ ൌ ሺെ0.05 ܸ݁/݇ܶሻ THz and ݄ଶݔ2.84݁ ൌ  ሺെ0.28 ܸ݁/݇ܶሻ THz. At theݔ4.19݁

usual growth temperature, ܶ is less than 1000 K, so ݄ଶ/݄ଵ is less than 0.15 and the 

linear approximation of function ݂ሺ݄ଶ/݄ଵሻ  is enough to describe the full-path 

diffusion coefficient ܦ, which is ௭ ܽଶ݄ଶ/2 ൌ ௭ଵଶ ܽଶ ݔ݁ߤሺെܧ/݇ܶሻ ൌ  is the effective diffusion coefficient pre-factor ߤ12ܽଶ/ݖ , which equalsܦ ,/݇ܶሻ. Hereܧሺെݔ݁ܦ

for a two-barrier diffusion. Notice that, compared to one-barrier diffusion, ܦ  is 

reduced by half. For diffusions of Tei and Tei
2+, since they are both one-barrier 

diffusions, their diffusion coefficients ܦ  are simply ܦ݁ݔሺെܧ/݇ܶሻ  with ܦ ൌ6ܽ/ݖଶߤ . For ݈ܥି  diffusion, which involves three barriers, the effective diffusion 

coefficient pre-factor will be ܦ ൌ   .ߤ24ܽଶ/ݖ

Using our calculated effective energy barriers and effective diffusion coefficient 

pre-factors, we can get the diffusion coefficients of these defects at a given 

temperature. For example, at T=800 K, Cdi has a diffusion coefficient of 9.07 ൈ10ି ܿ݉ଶ/ݏ  and Cdi
2+ has a diffusion coefficient of 3.65 ൈ 10ି  ܿ݉ଶ/ݏ . Our 

theoretical result agrees very well with the experimental measurement for Cdi, which 

is 1.75 ൈ 10ି  ܿ݉ଶ/[39] ݏ. For Cui and Cui
+, the calculated diffusion coefficients at 

T=800 K are 6.22 ൈ 10ିହ  ܿ݉ଶ/ݏ  and  8.28 ൈ 10ି  ܿ݉ଶ/ݏ , respectively. The 



calculated results indicate that Cu diffuses faster than Cd, which can be explained by 

the strong s-d coupling for Cu [38]. The experimental reported value [40] of Cu 

diffusion in CdTe is quite small with ܦ ൌ 6.65 ൈ 10ିହ  ܿ݉ଶିݏଵ݁ݔ ሺെ0.57 ܸ݁/݇ܶሻ 

or 2.6 ൈ 10ି଼  ܿ݉ଶ/ݏ at T=800 K. This small experimental value might be because 

the measured result is not just for Cu interstitials but also involves other Cu diffusion 

mechanisms, such as through Cd vacancy, CuCd. When Cu is trapped at Cd site, it has 

a much smaller diffusion coefficient. This speculation is consistent with recent 

experimental observations [41]. We notice that the diffusion coefficient of Agi, which 

is experimentally measured to be 8.4 ൈ 10ି  ܿ݉ଶ/ݏ  under Te-rich and 2.0 ൈ10ିହ  ܿ݉ଶ/ݏ under Cd-rich conditions [39], has diffusion coefficients similar to our 

calculated value. We suggest that more studies on the Cu interstitial diffusions are 

needed. 

Our results shown in Table 1 indicate that the diffusion properties are actually very 

sensitive to the charge states of these interstitial atoms. Neutral Cui diffuses much 

faster than Cui
+, and Cli diffuses faster than ݈ܥି . Generally, the charge states of these 

defects are determined by the Fermi level in CdTe. For the case of Cui, it has a ሺ0/ሻ 

transition energy level of 0.14 eV below the conduction-band minimum (CBM) of 

CdTe (Fig. 6). Under Cd-rich conditions, the system will be more n-type, i.e., the 

Fermi level will be closer to the CBM; thus, there will be more neutral Cui and the 

diffusion of Cu is expected to be enhanced. In contrast, under Te-rich conditions, the 

Fermi level will be closer to the valence-band minimum (VBM) of CdTe; thus, more 

Cui will become ionic and the diffusion will be slowed. The same arguments can 

explain why experimental results show that Agi diffuses faster under Cd pressure than 

under Te pressure. For Cli, because it has ሺ0/െሻ transition level at 0.17 eV above the 

VBM of CdTe, we can expect that it will diffuse faster under Te pressure than under 

Cd pressure, with its diffusion coefficient varying between 8.50 ൈ 10ି ܿ݉ଶ/ݏ and 3.14 ൈ 10ି଼  ܿ݉ଶ/ݏ at 800 K. For Tei, although it has a much faster diffusion of 1.51 ൈ 10ିସ  ܿ݉ଶ/ݏ at 800 K, experimentally, there is no clear evidence showing that 

Te diffuses faster than Cd. This could be due to two reasons. First, at Te-rich 

conditions with the Fermi level close to VBM, most of the Tei become ionized with a 



smaller diffusion coefficient of 7.54 ൈ 10ି  ܿ݉ଶ/ݏ. Second, at Cd-rich conditions, 

the formation energy of Tei will be very high; thus, there could be a very small 

amount of Tei for observation. More accurate experimental measurements may be 

required to confirm this.  

  

IV. CONCLUSIONS 

In conclusion, we have developed a theory to easily calculate the diffusion 

coefficients for multi-barrier diffusion process. Using this theory, we studied the 

diffusion properties of Cui, Cdi, Tei, Cli in CdTe and their charge-state dependences. 

Our theoretical results provided a deep understanding on the diffusion mechanism of 

these defects in CdTe which are important for improvement of the stability and 

performance of CdTe solar cells. Our theory on the diffusion coefficient is general and 

can be applied to study many other diffusion processes with multi-barriers. 
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Figures 

 

FIG. 1 (color online). One-barrier diffusion with particle hopping rate ݄  between 

neighboring sites. 

 

 

 

 

 

 

 

 



 
FIG. 2 (color online). Two types of diffusions with two barriers. (a) Hopping between 

neighboring sites is symmetric, but hopping for one full diffusion path is not 

symmetric (Type I); (b) Hopping between neighboring sites is not symmetric, but 

hopping for one full diffusion path is symmetric (Type II). Note that from the periodic 

view, both types are symmetric because the diffusion medium is uniform.  

 

 

 

 

 

 

 



 

FIG. 3 (color online). MC simulated results of ݂ . At ݄ଶ/݄ଵ ൌ 1 , ݂ ൌ 1  and at ݄ଶ/݄ଵ ൏ 0.15, ݂ ൌ 4݄ଶ/݄ଵ. Note that ݂ depends only on the ratio of ݄ଶ/݄ଵ (݄ଶ ൏ ݄ଵ), 

but not on the absolute values of ݄ଵ and ݄ଶ. The geometric means of ݄ଵ and ݄ଶ are 

given in arbitrary unit. 

 

 

 

 

 

 

 

 

 



 

FIG. 4 (color online). (a) Type-I and (b) type-II diffusion pathways in the limit ݄ଶ ا ݄ଵ.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

FIG. 5 (color online). Full diffusion paths of Cui, Cdi, Tei, and Cli in their neutral and 

charged states in CdTe, calculated by the NEB method with bandgap corrected by 

HSE06 functionals.   

 

 



 

FIG. 6 (color online). Defect transition energy levels of Cui, Cdi, Tei, and Cli, 

referenced to VBM of CdTe calculated using HSE06 according to Ref. 42. The 

calculated bandgap is 1.5 eV using the HSE06 functional.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 1.  Calculated diffusion energy barriers ܧ , diffusion lengths ܽ , number of 
equivalent diffusion sites ݖ , attempting frequencies ߤ  associated with ܧ , and 
effective diffusion coefficient pre-factors ܦ. Here, ܧ is the highest barrier among a 
full diffusion path, which is also the effective barrier at a not too high temperature. 
The listed diffusion coefficient pre-factors are effective values for the full diffusion 
paths with effective barriers ܧ, as are discussed in the text. 

  

defect ܧ (eV) ܽሺÅሻ z ߤሺܶݖܪሻ ܦሺܿ݉ଶ/ݏሻ 

Cui 0.28 5.03 4 4.19 3.53 ൈ 10ିଷ 
Cui

+ 0.46 5.03 4 7.47 6.30 ൈ 10ିଷ 
Cdi 0.60 5.67 4 4.85 5.20 ൈ 10ିଷ 

Cdi
2+ 0.47 5.67 4 3.00 3.21 ൈ 10ିଷ 

Tei 0.09 4.45 6 0.28 5.54 ൈ 10ିସ 
Tei

2+ 0.38 2.91 6 2.14 1.81 ൈ 10ିଷ 
Cli 0.28 5.20 4 1.07 4.82 ൈ 10ିସ 
Cli

- 0.89 5.67 4 10.99 1.18 ൈ 10ିଶ 
    

 


