
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Effect of single impurity on free fermion entanglement
entropy

Mohammad Pouranvari, Kun Yang, and Alexander Seidel
Phys. Rev. B 91, 075115 — Published 18 February 2015

DOI: 10.1103/PhysRevB.91.075115

http://dx.doi.org/10.1103/PhysRevB.91.075115


Effect of Single Impurity on Free Fermion Entanglement Entropy

Mohammad Pouranvari and Kun Yang
National High Magnetic Field Laboratory and Department of Physics,

Florida State University, Tallahassee, Florida 32306, USA

Alexander Seidel
Department of Physics, Washington University, St. Louis, MO 63160, USA

(Dated: January 27, 2015)

The one-dimensional free Fermi gas is a prototype conformally invariant system, whose entangle-
ment properties are well-understood. In this work, the effects of a single impurity on one dimensional
free fermion entanglement entropy are studied both analytically and numerically. Such an impurity
represents an exactly marginal perturbation to the bulk conformally invariant fixed point. We find
that the impurity leads to sub-leading contributions to the entanglement entropy that scale inversely
with the subsystem size. The origin of such contributions are identified.

PACS numbers:

I. INTRODUCTION

Entanglement is emerging as an important character-
istic of many-particle systems. While not yet a directly
accessible quantity experimentally, entanglement entropy
(EE) and spectrum have been studied theoretically and
numerically in many different models. In general they
are not simply related to correlation functions measured
in linear response, and thus provide alternative probes
of the system that are particularly useful in determining
the nature of phases and phase transitions.1

Among the many systems whose entanglement proper-
ties have been studied, the best understood are perhaps
one-dimensional (1D) conformally-invariant systems. In
this case it is not only understood that bipartite EE
grows logarithmically with subsystem size with a coef-
ficient depending on the central charge only,2 but also
much is known about how a single impurity affects EE.3

The effect of the impurity depends sensitively on whether
the perturbation it induces is relevant or not in the renor-
malization group (RG) sense. When it is relevant, it ef-
fectively cuts the chain into two decoupled pieces in the
scaling limit, and typically produces a finite correction
to entanglement entropy. On the other hand, when it is
irrelevant, its effect goes to zero in a power-law fashion
in the scaling limit.4 What has been left out in previous
studies is the case when the impurity is exactly marginal.
This is the case when a single potential scatterer is em-
bedded in a 1D free Fermi gas,5 which is the subject of the
present work. The non-interacting nature of the system
allows for detailed numerical studies in sufficiently large
systems sizes that yields results in the scaling regime.

Our main findings are the following. A single impurity
in a 1D free fermion lattice induces two subleading con-
tributions to EE, both of which scales as 1/NA, where
NA is the subsystem size. One of these contributions
oscillates with the Fermi wave vector, while the other
is non-oscillatory. The origin of both terms are identi-
fied by considering certain limiting cases, where analytic
treatment is available. We note that a closely related re-

cent work6 did not find any corrections to EE for such
impurities.

The rest of the paper is organized as follows. In sec-
tion II we show by analytic calculation that an inversion
symmetric potential adds to the continuum free Fermi
gas EE a term inversely proportional to the subsystem
size. We verify this numerically in the succeeding sections
for a discrete lattice system. In section III we introduce
the one dimensional single impurity Hamiltonian model
and the numerical method of calculating the EE. In sec-
tion IV, detailed numerical calculations are presented; we
first verify numerically asymptotic and subleading behav-
ior of the free fermion EE up to order of 1/N2

A. Then,
we show that the single impurity introduces a term on
the order of 1/NA to the EE. In the rest of this section,
behavior of the subleading term is examined numerically
in the regime of large impurity strength, small impurity
strength, and disorder on the order 1. Some concluding
remarks are offered in section V.

II. ANALYTIC APPROACH

Let us consider a 1D free Fermi gas with states −kF <
k < kF fully occupied, and the entanglement between
a subsystem A defined by −L < x < L with the rest
of the infinite line (called B). All entanglement-related
properties are encoded in the two overlap matrices:

Aekk′ =

∫ L

0

cos(kx) cos(k′x)dx, (1)

Aokk′ =

∫ L

0

sin(kx) sin(k′x)dx, (2)

where we used the fact that there is no overlap between
even and odd functions. Equivalently, but perhaps done
less often, we can work with the analog of the above in
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subsystem B

Bekk′ =

∫ ∞

L

cos(kx) cos(k′x)dx, (3)

Bokk′ =

∫ ∞

L

sin(kx) sin(k′x)dx. (4)

Now introduce a inversion symmetric impurity potential
V (x) = V (−x) with range R such that V (x > R) = 0.
There are two special features of such potential that are
very useful for later considerations: (i) Energy eigen-
states will remain parity eigenstates, such that there is
no mixing between even and odd parity states. (ii) As
long as L > R, the only effect on the wavefunctions in
subsystem B is a phase shift: cos(kx) → cos(kx−δek), and
sin(kx) → sin(kx − δok). It is therefore advantageous to
work with the B matrices as they only involve the phase
shifts but not the complicated wavefunction in the region
|x| < R where it is not a plane wave. Furthermore, in
the low-energy limit kFR ≪ 1, the k-dependence of the
phase shifts can be parameterized by scattering lengths:

δe,ok ≈ kae,o. (5)

In the asymptotic limit where this behavior becomes ex-
act, we find

Bekk′ =

∫ ∞

L

cos(kx− kae) cos(k′x− k′ae)dx

=

∫ ∞

L−a
e

cos(kx) cos(k′x)dx, (6)

namely, the entanglement properties of the even sector is
identical to those of the original impurity free case with
L′ = L−a

e. Similarly the entanglement properties of the
odd sector is identical to those of the original impurity
free case with L′ = L − a

o. In particular, we expect
the entanglement entropy for the impurity free case to
behave as

EE(kF , L) =
1

3
ln(kFL) +O(1); (7)

the considerations above immediately suggest that the
impurity will lead to a correction

δEE(kF , L) = −
a
e + a

o

6L
+O(1/L2). (8)

We point out that equations such as (6) receive a con-
tribution proportional to δ(k ± k′) coming from the os-
cillation at infinity and which is independent of L and
the scattering length(s). On top of that, however, there
is a finite contribution that is in general non-vanishing
for different k, ±k′, owing to the fact that cutting off the
integration at L spoils the orthogonality of the factors in
the integrand. It is this finite piece that contains infor-
mation about the dependence of the EE on L and the
scattering lengths. We also note that Eq. (5) is exact
only for a hard wall potential that excludes the particle

from −a < x < a, in which case Eq. (8) becomes exact.
For generic potentials there are additional corrections to
the EE not captured by Eq. (5), as we will find out in
later sections.
We note in passing that qualitatively, most of the con-

siderations above carry over to high D cases with spher-
ically symmetric impurity potentials, as (i) they do not
mix different angular momentum sectors; and (ii) the
asymptotic behavior of the energy eigenstates is uniquely
determined by the corresponding phase shift. Quantita-
tively however, only the s-wave channel of the 3D case
works exactly like the 1D case above, and in particular,
in the low-energy limit where the k-dependence of the
s-wave scattering phase shift takes the form

δsk = kas, (9)

where a
s is the s-wave scattering length, its effects are

identical to those of a shift in the subsystem boundary.
We thus consider in the following a special case where we
have a 3D spherical that gives rise to s-wave scattering
only, with the phase shifts taking the form above. In this
case we find the s-wave energy eigenfunction in subsystem
B takes the form sin(kr− kas)/r, and the corresponding
overlap matrix takes the form

Bskk′ =

∫ ∞

L

4πr2[sin(kr − kas)/r][sin(k′r − k′aa)/r]dr

=

∫ ∞

L−as
sin(kr) cos(k′r)dr, (10)

where we see the effect of as is equivalent to shifting the
boundary from L to L− a

s. Also noticing the similarity
to the 1D odd channel case, we conclude in this 3D case
an s-wave scatterer induces a correction to entanglement
entropy

δEE(kF , L) = −
a
s

6L
+O(1/L2). (11)

III. NUMERICAL METHOD

Coming back to the 1D case, we now consider the
Hamiltonian of a tight binding model with constant hop-
ping amplitude t and only one non-zero on-site energy.
We refer to this as the single impurity (SI) Hamiltonian:

HSI = −t

N
∑

i=1

[c†i ci+1 + c†i+1ci] + wc†ncn, (12)

where we choose periodic boundary conditions (PBC)
and there is one impurity with strength w on a specific
site n (we specify n below). N is the total system size.
The free fermion model corresponds to the special case
of w = 0. We always choose t = 1 and compare w with
1.
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In this work we study the block entanglement entropy
(EE) of the single impurity Hamiltonian. To calculate
EE, we consider a system with a finite size N and with
NF fermions. We divide the system into two parts, part
A from site 1 to site NA and the rest as part B. In this
paper we always choose N to be even number and NA
to be odd number such that we can put the impurity at
the center of subsystem A, i.e. we choose index n in Eq.
(12) to be the mid-point of the subsystem A.
For a system in a pure state |ψ〉, the density matrix is

ρ = |ψ〉 〈ψ|. The reduced density matrix of each sub-
system (A or B) is obtained by tracing over degrees
of freedom of the other subsystem: ρA/B = trB/A(ρ).
The block EE between the two subsystems is EE =
−tr(ρA ln ρA) = −tr(ρB ln ρB). For a single Slater-
determinant ground state,

ρA/B =
1

Z
e−H

A/B

(13)

are characterized by the free-fermion entanglement

Hamiltonians

HA/B =
∑

ij

h
A/B
ij c†i cj, (14)

where Z is determined by the normalization condition
trρA/B = 1. We calculate EE by using the method of
Ref. 7 by diagonalizing correlation matrix of subsystem
A

Cmn =
〈

c†mcn
〉

, (15)

and find its eigenvalues ζ’s. Then EE can be expressed
as follows:

EE = −

NA
∑

l=1

[ζl ln(ζl) + (1 − ζl) ln(1− ζl)] . (16)

IV. NUMERICAL RESULTS AND DISCUSSION

The asymptotic behavior of EE in the one dimensional
free fermion continuum system is as follows8:

EE =
1

3
ln (2kFL) + Υ +O(1/L2) (17)

where L is the subsystem size and the Fermi wave vector
kF = πNF /N and the constant Υ ≈ 0.4950. Our initial
calculations focus on checking this asymptotic behavior
for a finite and discrete system. In our numerical calcu-
lation, in order to approach an infinite and continuous
system, subsystem A is chosen to be much smaller than
the total system and kF is chosen to be small compared
to π. More specifically NA = N/10 + 1 and NF = NA.
Also we choose N to be a multiple of 100, in this way
NA is an odd number and as explained before, we put
the single impurity at the middle of subsystem A. NF is
also chosen to be odd to remove the ambiguity of which
state the last fermion will occupy.
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FIG. 1: [Color online] Panel (a): Free fermion entanglement
entropy in log-linear scale. We set NA = NF = N/10 +
1, and N goes from 100 to 17000 with step of 100. Blue
dots are numerical results and the red line is fitted line with
slope of 0.3315 and root mean square error (RMSE)=0.0014.
The slope is in agreement with analytical value of 1/3. Panel
(b): main plot is EE − 1/3 logNA in linear -linear scale with
same setting of panel (a). EE−1/3 logNA approaches 0.3293
for big subsystem size, close to the analytic value of 0.3401.
The inset plot is EE − 1/3 lnNA − 0.3293 versus NA in a
log-log scale. Slope of the fitted line is −2.0270 and with
RMSE=0.0014.

First, we calculate the EE of free fermion system (Eq.
(12) with w = 0) and plot it versus lnNA (Fig. 1, panel
(a)). The slope of the fitted line is 0.3315 ≈ 1/3, con-
firming the logarithmic behavior in Eq. (17). Second, to
obtain the constant term, we calculate EE − 1/3 lnNA
and plot it versus NA (Fig. 1, panel (b)). EE−1/3 lnNA
approaches 0.3293 for large subsystem size. This num-
ber is in agreement with the constant term of Eq. (17)
which is 1/3 ln (2πNF /N) + 0.4950 ≈ 0.3401. And fi-
nally, to verify that there is subleading term on the order
of 1/N2

A, we plot EE−1/3 lnNA−0.3293 versus NA in a
log-log scale (see inset plot in Fig. 1, panel (b)). Fitted
line has slope of ≈ −2 as expected. Note that there is no
oscillation in the behavior of EE in Fig. 1.
Up to now we have verified Eq. (17), the EE of the

free fermion model (w = 0) numerically. Now, we focus
on the effect of a single impurity on the EE. We begin
our calculations by comparing the free fermion and single
impurity EE. In Fig. 2, the EE of the free case, EE0, and
the EE corresponding to different values of w’s, EEw, are
plotted. The inset of the plot shows the EE for different
impurity strength including w = 0 in log-linear scale,
demonstrating that the single impurity does not change
the log term of Eq. (17). This has been proven in a
recent paper6. However, when we zoom in (main plot)
we see that the single impurity EE is oscillating around
the free fermion EE. According to Fig. 2 it is evident
that the deviation from EE0 is small compared to EE0

at each point.
Now, to investigate the effect of the single impurity

on the sub-leading terms, we calculate the difference be-
tween the single impurity EE and the free fermion EE:
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FIG. 2: [Color online] Main plot: entanglement entropy cor-
responding to different values of impurity strength w. Free
fermion case is plotted in red. Small range of subsystem size
is chosen to see the deviations of single impurity entanglement
entropies. The inset is a log-linear plot of entanglement en-
tropy for different value of impurity strength including w = 0.
Slope of fitted line is same for all value of w and it is 0.3315.
In both plots, we set NF = NA = N/10+1. N goes from 100
to 17000 with step of 100.
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FIG. 3: The absolute value of difference between single im-
purity and free fermion entanglement entropy |∆EE| for dif-
ferent values of w in log-log scale. Beside oscillation, absolute
difference goes to zero with slope approximately equals to −1.
The slope and root mean square error (RMSE) are indicated
for each plot. We set NF = NA = N/10 + 1. N goes from
100 to 17000 with step of 100.

∆EE = EEw − EE0. The absolute value of this differ-
ence, |∆EE| for different values of w is plotted in Fig.
3 in log-log scale (with the same settings as in Fig. 1).
Numerical calculations of this figure show that although
there is an oscillation, |∆EE| goes to zero in log-log scale
with the slope of ≈ −1. Thus, the single impurity adds
a sub-leading term of order 1/NA to Eq. (17) which has
oscillating characteristics.
Next, we study the quantity NA×(EEw−EE0) to un-

derstand the oscillating characteristic of the sub-leading
term of order 1/NA better. We calculate this quantity
for two settings. In one setting, we set N = 4000, NF =
41, 81, and NA is changing, panel (a) and (b) Fig. 4.
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FIG. 4: [Color online] Subsystem size NA times difference
between single impurity and free fermion entanglement en-
tropy, NA × (EEw − EE0) when NA is changing. We set
N = 4000, NF = 41 in panel(a) and N = 4000, NF = 81
in panel (b) and N = 2000, NF = 21 in panel (c). Panel
(d): 2π/kF versus calculated oscillation periodicity T for
NA × (EEw − EE0) when NA is changing. We set N =
5000, NF = 51, 101, 201, 501, 1001. for different values of im-
purity strength w. Slope of the fitted line for different w’s is
≈ 1.

TABLE I: Numerical data observed in Fig. 4, panel (a) and
(b): N = 4000, NF = 41, 81 and NA is changing. α is ampli-
tude of oscillation, β is the shift in vertical direction, and T
is periodicity of term NA × (EEw − EE0).

NF = 41 NF = 81
w α β T α β T
10 30.85 1.98 200 16.05 0.73 100
1 30.38 2.53 200 15.54 1.21 100
0.1 23.41 5.96 200 8.87 2.57 100
−0.1 26.00 −6.52 200 9.65 −2.80 100
−1 31.64 −2.45 200 15.91 −1.40 100
−10 31.94 −1.92 200 16.22 −0.89 100

In the other one, we set N = 2000, NF = 21 and NA is
changing, panel (c) in Fig. 4.

By examining panel (a) and (b) in Fig. 4, we see
NA× (EEw−EE0) is oscillating with a constant period-
icity. The approximate periodicity (T ) of this oscillation
is listed in Table I which shows that T does not depend
on impurity strength w but it is inversely proportional to
kF . Furthermore, the average value of the oscillation is
shifted up and down for different values of w (we denote
this shift in Table I by β) and the amplitude of oscilla-
tion α is also w-dependent. By comparing the two cases
ofNF = 41 andNF = 81 we see that β and α also depend
on kF . Thus, the NA × (EEw −EE0) term has an oscil-
lating term plus a non-oscillating term. The amplitude
and non-oscillating term depend on w and kF .

To compare two cases with same kF , we consider
panel (a) and panel (c). In panel (a) we have: N =
4000, NF = 41, kF ≈ π/100 and in panel (b) we have
N = 2000, NF = 21, kF ≈ π/100. These two cases have
equal T . We conclude that the oscillating term has the
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form of cos (ckFNA + θ), where c is a constant and θ is
a phase shift. To measure c, we set N = 5000 and for
different NF = 51, 101, 201, 501, 1001, we calculate oscil-
lation periodicity of NA×(EEw−EE−0) term. Then we
plot 2π/kF versus T . As we can see in panel (d) of Fig.
4, the slope of the fitted line, c, is the same for different
w’s and is ≈ 1. Thus the subleading term introduced by
the single impurity has the following form:

α cos (kFNA + θ) + β

NA
. (18)

In the following subsections, we discuss the behavior of
the oscillating amplitude α and the non-oscillating term
β in different regimes of impurity strength.

A. Large impurity strength

First, we consider the case of w → ∞. For a discrete
lattice system, large on-site energy means that electrons
are banned from the impurity site. This corresponds to
cutting the system at the impurity site (which is located
at the middle of the subsystem). When we use a sys-
tem with PBCs, cutting the system at the middle of the
subsystem results in a system with open boundary con-
ditions and half of the subsystem is located at the begin-
ning and the other half of the subsystem is located at the
end of the system. The calculation of the EE of a semi
infinite lattice system has been done before9. In Ref. 9
the subleading terms of the Rényi EE of order n for a
subsystem with length ℓ (where the subsystem starts at
the beginning of system), ∆n, are calculated as follows:

∆n =
2 sin [kF (2ℓ+ 1)]

1− n
[2(2ℓ+1)| sinkF |]

−1/nΓ(1/2 + 1/2n)

Γ(1/2− 1/2n)
.

(19)
The von Neumann EE corresponds to n → 1. By re-

placing ℓ → (NA − 1)/2 and considering two of these
semi infinite systems, subleading term of EE of two semi
infinite subsystems for small kF is:

∆ =
sin (kFNA)

NAkF
(20)

Thus, in the very large impurity strength limit (when
w ≫ 1), the subleading term goes to zero as 1/NA
and the oscillation amplitude α = 1/kF and the non-
oscillating term β = 0.
On the other hand, to compare our results with Eq.

(20), we calculate the oscillation amplitude α and the
non-oscillating term β for large values of w numerically.
We calculate α and β for a fixed kF = π/100 and as
we approach large system sizes. The results are plot-
ted in Fig. 5, panel (a) for w = 102, 103, 104. We
see that large w’s all lead to the same behavior. The
oscillation amplitude is approximately constant ≈ 31.2
which is close to the oscillation amplitude of Eq. (20):
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FIG. 5: [Color online] Panel (a): the oscillation amplitude α
(blue) and non-oscillating term β (red) of NA× (EEw−EE0)
for a constant kF = π/100 corresponding to w = 102, 103,
104. Panel (b): The non-oscillating term in a log-log scale.
slope of the three w’s is approximately the same: ≈ −0.87.
panel (c): the oscillation amplitude α of NA × (EEw −EE0)
for a constant kF = π/100 corresponding to w = 10−2, 10−3,
10−4 from top to bottom. Inset plot is saturated value of
α versus w. Panel(d): absolute value of the non-oscillating
term |β| of NA × (EEw − EE0) for a constant kF = π/100
corresponding to w = 10−2, 10−3, 10−4 from top to bottom.
Inset plot is saturated value of β versus w.

1/kF = 1/(π/100) = 31.8. Moreover, Fig. 5, panel (b)
demonstrates the behavior of the non-oscillating term |β|
in a log-log scale. We see that the non-oscillation term
goes to zero, which is in agreement with Eq. (20).

B. Small impurity strength

For small values of impurity strength, w ≪ 1, numer-
ical calculations (Fig. 5, panel (c) and panel (d)) show
that the oscillation amplitude and the non-oscillation
term saturate when we approach large system size for
a fixed kF = π/100. This saturation occurs faster for
smaller w’s. Saturated value of α and |β| are plotted ver-
sus w in inset plots. We see that both α and |β| depend
linearly on the impurity strength w and as we expect α
and |β| go to zero as w → 0.

C. Disorder on the order of 1

After discussing limiting case of very large and very
small impurity strength, we now consider w ∼ O(1). We
claim that in this regime the analytic calculation pre-
sented in section II (which is for the continuum case)
provides us with the mean value of the subleading term,
i.e., the non-oscillating term. We use our lattice model
to verify this by choosing a small kF to approach the
continuum case. We will restrict the regime under con-
sideration more precisely later. First, we calculate the
phase shift in the case of a one dimensional free fermion
lattice, where there is an impurity with strength of w at
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the origin. The odd sector of the Hilbert space does not
see the impurity at the origin and thus there is no phase
shift (δok = 0 and thus ao = 0), while for the even sector
a phase shift can be calculated as follows:
We write the discrete even wavefunction of a free

fermion lattice in presence of a single impurity at the
site with the index j = 0 as:

ψevenj =

{

C1e
ikja + C2e

−ikja, j < 0

C2e
ikja + C1e

−ikja, j > 0
(21)

By writing the Schroedinger equation H |ψ〉 = ε |ψ〉
and |ψ〉 =

∑

j ψj |j〉, we can obtain the equation for the
amplitudes:

−t(ψ1 + ψ−1) + wψ0 = εψ0 (22)

By substituting the wavefunction from Eq. (21), we
obtain:

C2 = −C1

w−ε
2t − cos ka+ i sinka
w−ε
2t − cos ka− i sinka

. (23)

Now, if we write C2 = eiδ
e
kC1, we have:

tan δek =
2(w−ε

2t − cos ka) sin ka

(w−ε
2t − cos ka)2 − sin2 ka

, (24)

in the low energy limit where kFa ≪ 1 and thus εF ≈
−2t, and also if we set t = 1, a = 1, we will have:

tan δek =
4 kw

1− 4( kw )
2
. (25)

Writing the phase shift as δek = kae casts a condition
on w: kF /w ≪ 1. In this regime the scattering length is:

a
e = lim

k→0

4k/w

k
=

4

w
. (26)

On the other hand, writing Eq. (22) at the Fermi level,

where εF ≈ −2t, we have: ψ0 = t(ψ1+ψ−1)
w+2t . Continuity

of the ψ yields the condition w/t≪ 1. Putting these two
conditions on w, we have:

kF ≪ w ≪ 1. (27)

Thus, by using the Eq. (8) in the regime of Eq. (27)
the non-oscillating term is :

|β| =
a
e + a

o

6
=

2

3w
. (28)

Now, we compare Eq. (28) with our numerical cal-
culation of non-oscillating term. To approach the con-
tinuum case we choose a small kF = π/100 and to
fulfill the requirement in Eq. (27), we choose w =
0.1, 0.2, 0.3, 0.4, 0.5. The results for the oscillating am-
plitude α and the non-oscillating term β are plotted in
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FIG. 6: [Color online] Panel (a): the oscillation amplitude α
(blue) and non-oscillating term β (red) of NA× (EEw−EE0)
for a constant kF = π/100 corresponding to w = 0.1, 0.2, 0.3,
0.4, 0.5, from bottom to top for α and from top to bottom
for β. Panel (b): Comparison between saturated valued of β
and Eq. (28).

Fig. 6, panel (a). The saturated value for β and its be-
havior according to Eq. (28) are plotted in Fig. 6, panel
(b) for comparison. As we can see in this plot, numeri-
cal results are close to the value calculated by Eq. (28).
Moreover, the saturated value of the oscillation ampli-
tude becomes closer to the value 1/kF = 31.8 for larger
w’s.

V. CONCLUDING REMARKS

In this work we have studied in detail the effects of
a single impurity on the entanglement entropy of a 1D
free Fermi gas, where we find subleading corrections that
scale inversely with the subsystem size, using a com-
bination of analytical and numerical techniques. This
subleading term has an oscillating and a non-oscillating
part. The period of oscillation is independent of impurity
strength, but the amplitude of the oscillation α, and the
non-oscillation term β, both depend on impurity strength
w: in the limit of large w, the amplitude approaches the
value 1/kF and the non-oscillating term goes to zero. On
the other hand, in the limit of small w, both α and β are
proportional to w. We also found that when w is in the
regime of Eq. (27), our analytical calculations predict
the average β of the subleading term, Eq (28).
Our results may be surprising from the perspective of

scaling analysis. An exactly marginal operator is charac-
terized by a dimensionless coupling constant, which, in
this case, is the phase shift at the Fermi energy. One
would expect this operator to induce a correction to the
entanglement entropy that is independent of the subsys-
tem size LA. Our results suggest that the correction due
to the phase shift is identically zero! This has been con-
firmed by an explicit CFT calculation10. The corrections
we have found, therefore, come from the derivative of
the phase shift with respect to the Fermi wave vector,
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which is actually an irrelevant operator with scaling di-
mension one. This explains the 1/LA dependence of these
corrections10.
Our results are also relevant for the free Fermi gas in

higher dimensions. This is particularly true for spheri-
cally symmetric impurity potentials and a partition that
respects rotational symmetry. In this case different an-
gular momentum channels decouple, and each channel
behaves as a half-infinite 1D chain. The correction to
the EE due to the impurity is thus the sum of its correc-
tion to each (1D) channel.
Simple as they may be, free fermion systems are in fact

highly non-trivial from an entanglement point of view.
They represent the first known examples of area law vio-
lation in ground state entanglement entropy,11–13 which
were found in other systems only recently.14,15 Very re-
cent work has also elucidated entanglement properties of
highly excited states in such systems.16 Extensive work
on entanglement in disordered free fermion systems has
also been carried out.17–25 The present work is a new
addition to this body of results.

We note that a single impurity in a free 1D Fermi gas is
very special. Interactions change its scaling dimension5,
making it a relevant perturbation for repulsive interac-
tion, and an irrelevant one for attractive interaction. We
thus expect finite corrections to the entanglement en-
tropy for the former, and a subleading one for the lat-
ter, with an exponent varying continuously with interac-
tion strength. While these conclusions follow straightfor-
wardly from scaling analysis3, it is not immediately clear
if there will be oscillatory contributions, and if so, with
what period. These questions deserve further investiga-
tion.
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