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We study the quantum phase diagram of the spin-1/2 Heisenberg model on the kagomé lattice with first-
, second-, and third-neighbor interactions J1, J2, and J3 by means of density matrix renormalization group.
For small J2 and J3, this model sustains a time-reversal invariant quantum spin liquid phase. With increasing
J2 and J3, we find in addition a q = (0, 0) Néel phase, a chiral spin liquid phase, an apparent valence-bond
crystal phase, and a complex non-coplanar magnetically ordered state with spins forming the vertices of a
cuboctahedron known as a cuboc1 phase. Both the chiral spin liquid and cuboc1 phase break time reversal
symmetry in the sense of spontaneous scalar spin chirality. We show that the chiralities in the chiral spin liquid
and cuboc1 are distinct, and that these two states are separated by a strong first order phase transition. The
transitions from the chiral spin liquid to both the q = (0, 0) phase and to time-reversal symmetric spin liquid,
however, are consistent with continuous quantum phase transitions.

PACS numbers: 73.43.Nq, 75.10.Jm, 75.10.Kt

I. INTRODUCTION

Quantum spin liquids (QSLs) are highly entangled states
of matter1 with remarkable properties of great intrinsic inter-
est. The simplest and perhaps most striking subclass of QSLs
comprises topologically ordered states2–4, which have a non-
vanishing excitation gap, and support emergent quasiparticles
with anyonic statistics and fractional quantum numbers5–9.
Although QSLs have been demonstrated in many contrived
models10–17, their relation to magnetically disordered phases
in different frustrated systems remains poorly understood.
This problem has been intensively studied in the past by many
theoretical approaches.

Apart from their intrinsic interest, motivation to under-
stand QSL phases comes from recent experimental discover-
ies. The kagomé antiferromagnets herbertsmithite and kapell-
asite have recently emerged as prominent examples18–24. The
absence of magnetic order is evidenced by many different
techniques including muon spin rotation and susceptibility
measurements18–24, and neutron scattering measurements of
herbertsmithite show a purely continuum spectrum, inter-
preted as a signature of fractional “spinon” excitations23. Fur-
ther instances of QSLs have been found in organic Mott insu-
lators with a triangular lattice structure25–27.

Theoretically, QSLs have been sought in spin-1/2 antifer-
romagnets with frustrated and/or competing interactions on
triangular28–31, honeycomb32–36, square37–39, and kagomé40–44

lattices. Amongst all these, the kagomé Heisenberg model
(KHM) appears to possess the most robust QSL phase, and
the only one consistently found in unbiased density matrix
renormalization group (DMRG) calculations. The nature of
the QSL is less clear. The DMRG studies suggest a gapped
QSL40–43, seemingly consistent withZ2 topological order42,43.
Variational studies using projected fermionic parton wave-
functions favor a different, gapless Dirac state45–47. A bosonic
parton wavefunction does, however, give a competitive energy
for a Z2 QSL state in the extended J1-J2 KHM with second-
neighbor antiferromagnetic exchange J2

48, and other studies

reinforce an enhanced QSL phase in this model43,49–51. Di-
rect evidence for Z2 topological order is mixed: in support, a
nearly quantized topological entanglement entropy was found
in the J1-J2 model43, but the expected four topological ground
state sectors have not been seen in DMRG52.

Interestingly, by introducing both second and third neigh-
bor couplings, DMRG studies53–56 recently discovered an-
other topological QSL on the kagomé lattice. This state spon-
taneously breaks time reversal symmetry (TRS) in the sense
of having a complex wavefunction and non-zero scalar spin
chirality χijk = Si · (Sj × Sk) for some triplets of nearby
spins i, j, k. Such a state, proposed more than 20 years ago
by Kalmeyer and Laughlin57,58, is known as a Chiral Spin
Liquid (CSL). It can be regarded as a spontaneous fractional
quantum Hall effect. The CSL occurs in several different
kagomé spin models with comparable J2 and J3

53,59,60 or chi-
ral interactions61, and indeed is more robust than the puta-
tive Z2 QSL state discussed earlier: all the expected universal
topological properties of the CSL state have been verified nu-
merically.

In this paper, we expose the relations between the two QSL
states and nearby ordered phases through a global DMRG62

study of the full phase diagram of the J1-J2-J3 model (with
all exchanges antiferromagnetic):

H = J1

∑
〈i,j〉

Si ·Sj +J2

∑
〈〈i,j〉〉

Si ·Sj +J3

∑
〈〈〈i,j〉〉〉

Si ·Sj . (1)

Good points of comparison are the classical and Schwinger
boson mean field phase diagrams, found in Ref. 63. These
studies found two magnetically ordered phases breaking TRS,
known as cuboc1 and cuboc2, as well as a simpler q =
(0, 0) coplanar ordered state which is time-reversal symmet-
ric. They also conjectured that a Z2 TRS breaking QSL
“descended” from the cuboc1 state by quantum disordering
of the spins might apply to the the pure nearest-neighbor
KHM, and also extend to the region with small J2 and J3

perturbations63. The DMRG phase diagram determined here
is shown in Fig. 1(a), and bears out some but not all of these
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FIG. 1: (a) Quantum phase diagram of the spin-1/2 J1-J2-J3

kagomé Heisenberg model for 0.0 ≤ J2 ≤ 0.25 and 0.0 ≤ J3 ≤
0.5. The phases shown are: a time-reversal invariant quantum spin
liquid (QSL) phase, a coplanar magnetically ordered q = (0, 0) Néel
phase, a time-reversal broken chiral spin liquid (CSL) phase, a non-
coplanar magnetically and chiral ordered cuboc1 phase, and a va-
lence bond crystal (VBC) phase. The cuboc1 phase remains stable
for larger J3 beyond the range shown here (we have checked up to
J3 ≤ 1.0). The dashed region indicates the uncertainty in locating
the phase boundary between the QSL and q = (0, 0) Néel phases.
The purple dashed line shows the line of classical degeneracy be-
tween the q = (0, 0) Néel and cuboc1 phases63. (b) The configu-
rations of spins (arrows indicate the direction of static moments) of
the cuboc1 state on the kagomé lattice. On each small triangle, the
spins are coplanar and sum to zero. In each hexagon, sets of three
consecutive spins are non-coplanar, as are the sets obtained by tak-
ing every second spin around the hexagon. This breaks time-reversal
symmetry in the sense that the scalar spin chirality is non-zero and
the wavefunction is intrinsically complex.

features. We indeed find the ordered cuboc1 (see Fig. 1(b) of
the spin configuration of cuboc1 state) and q = (0, 0) states
when J3 or J2 are large, roughly correlating with their classi-
cal positions. These classical states surround three more quan-
tum ones: the two aforementioned QSL states and a third state
tentatively identified as a Valence Bond Crystal (VBC) state,
which breaks translational but not spin-rotation or TRS sym-
metry. The relations between the spin liquid states and the
classical ones will be discussed below. We do not focus on the

(a) J2=0.2, J3=0.0, YC8, q=(0,0) state (b) J2=0.2, J3=0.3, YC8, CSL state

(c) J2=0.2, J3=0.5, XC8, cuboc1 state
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(d) J2=0.0, J3=0.1, XC8, VBC state

FIG. 2: (a)-(c) show the spin-spin correlations for different phases
on the YC8 and XC8 cylinders. The green site is the reference spin,
the blue and red colors denote positive and negative correlations, re-
spectively, of the site in question with the reference spin. The area
of circle is proportional to the magnitude of the spin correlation. The
large dashed hexagon in (b) shows the short-range spin correlations
in CSL phase. The arrows in (c) show the reference spin (the red
solid arrow) and the direction of other spins (the blue dashed arrow)
whose correlations are plotted in Fig. 3. Panel (d) plots the nearest-
neighbor bond energy on the XC8 cylinder in the VBC phase.

VBC phase here, but make a few remarks upon it in Sec. VI.
For this study, we use the DMRG with SU(2) spin rota-

tional symmetry64 on cylinders by keeping a number of U(1)-
equivalent states M as large as Mmax = 26000. Two cylinder
geometries, denoted XC and YC, are used, such that for the
XC (YC) cylinder, one of the three bond orientations is along
the x (y) axis, as shown in Fig. 2. We abbreviate specific
cylinders by XC2Ly-Lx and YC2Ly-Lx, where Lx (Ly) is
the number of unit cells in the x (y) direction. In general, we
obtain results with DMRG truncation error less than 1×10−6

and 1×10−5 for the cylinders withLy = 4 and 6, respectively.

II. q = (0, 0) NÉEL PHASE IN THE J1-J2 KHM

We begin by studying the q = (0, 0) Néel order in the small
J2 region with J3 = 0, and first investigate the spin correla-
tions on cylinders of varying widths. A gapped magnetically
disordered phase would be expected to show exponentially
decaying correlations. In a long-range magnetically ordered
phase, the correlations should remain non-zero in magnitude
at long distances in two dimensions. On a long cylinder of
even width, exponential decay is still expected even when the
two dimensional limit is ordered, but in that case the decay is
characterized by a correlation length ξ which grows linearly
with system width. Thus it is crucial to investigate the scaling
of the correlation length.

Fig. 3(a) shows the correlations between spins on the same
sublattice, 〈S0 · Sd〉, on the XC8-24 cylinder. One sees that
the spin correlation length continues to grow with increasing
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FIG. 3: Panels (a) and (c) are log-linear plots of the spin corre-
lations between sites of one sublattice versus site distance d on
the XC8 and XC12 cylinders. Panel (b) illustrates the dependence
upon the number of states kept, M , in the DMRG, for the case
J2 = 0.2 on the XC12 cylinder. The geometry of the sites in the
first three panels is shown in Fig. 2(c). Panel (d) shows the finite
size scaling of the (squared) magnetic order parameter m2 versus
1/L on the XC4, XC8, and XC12 cylinders using the fitting formula
m2(1/L) = m2(1/L = 0) + a/L + b/L2. All plots in this figure
are for J3 = 0.

J2. At J2 = 0.2, the system appears to develop longer-range
correlation. While the results on the XC8 cylinder are fully
converged, those on the wider XC12 cylinder are not, and dis-
play dependence on the number of states kept in DMRG. In
particular, ξ grows as more states are included. Therefore we
measure the spin correlations for several different numbers,
M = 4000 − 24000, of U(1)-equivalent states and extrapo-
late the result. For example at J2 = 0.2 (shown in Fig. 3(b)),
ξ is 4.0 lattice spacings for M ≈ 6000 states while it grows to
6.78 lattice spacings when M ≈ 24000 states. Thus, the less
converged results may underestimate Néel order. In Fig. 3(c),
we show the spin correlations on the XC12 cylinder obtained
with M ≈ 24000 states. Comparing to Fig. 3(a), we observe
that for J2 = 0, the correlation length decreases with cylinder
width, while it increases with width for J2 = 0.1 − 0.2. The
trend is at least indicative of growing order.

Next, we study the J2 dependence of the magnetic order pa-
rameter, extrapolating to the thermodynamic limit from finite-
size systems. We calculate the finite-size order parameter
from the middle half of each system to minimize boundary ef-
fects, i.e. the 3×L×L sites out of a total of 3×L×2L sites for
the XC2L-2L (L = 2, 4, 6) cylinders. The order parameter of
the q = (0, 0) Néel state is defined as m2 = 1

N2

∑
i,j〈Si ·Sj〉

(N is the number of unit cells, and i, j are sites in the same

sublattice). In Fig. 3(d), we show m2 versus 1/L for various
J2

65. For J2 ≥ 0.15, we find that m2 extrapolates to finite
values in the thermodynamic limit, indicative of q = (0, 0)
Néel long range order. Because of the limited range of sys-
tem width, we have considerable uncertainty in the location
of the phase boundary and cannot reliably estimate an error
bar. However, we feel confident that the magnetic order is ro-
bust for J2 = 0.2, as shown in Fig. 3(b-c), which sets a lower
bound on the transition point.

III. CHIRAL SPIN LIQUID PHASE

Prior work has fully established the CSL state in the J1-
J2-J3 KHM along the parameter line J2 = J3 = J ′ with
0.1 . J ′ . 0.753. Moreover, the topological order of the
CSL was found to be that of the ν = 1/2 Laughlin state53.
This completely fixes the universal topological aspects of the
CSL. Here we study some non-universal aspects of the CSL
which help to show its relation to the surrounding phases.
First, we determine the complete domain of the CSL phase
through a study of the scalar spin chirality. In Fig. 4(a), we
show the correlation function between chirality on pairs of
the smallest triangles of the kagomé lattice (indicated with the
number “1” in the inset of Fig. 4(b)), for the YC8-24 cylin-
der with J2 = 0.2 and various J3. In the q = (0, 0) Néel
phase, for example for J3 = 0.1, the chiral correlations de-
cay rapidly and exponentially to zero. With increasing J3,
the chiral correlations gradually grow, apparently establishing
long-range order (i.e. saturating to a finite value at large dis-
tance) at J3 ' 0.22. This behavior persists to J3 ' 0.4, be-
yond which the chiral correlations exhibit a sharp decrease.
We define χ as the square root of the long-distance chiral
correlations in Fig. 4(a) χ ≡

√
|〈χ0χd〉| (d is the longest

available distance) to describe the variation of chiral correla-
tion. Fig. 4(b) shows the J3 dependence of χ, which clearly
indicates the CSL phase exists over a well-defined but lim-
ited range of J3. From this figure, we conservatively estimate
χ = 0 for J3 . 0.2 and J3 & 0.4. We note that chiral order,
which breaks the discrete Z2 time reverse symmetry, can ex-
ist even in a one-dimensional system. So we must carefully
consider the behavior on wider cylinders to firmly establish
the presence of chiral order in two dimensions. To do so, we
compare the behavior on the YC8 cylinder to that on XC12
and YC12 cylinders, as in Figs. 4(c) and 4(d). We see that for
some exchange parameters, the chiral order grows stronger
with increasing system width, which we take as evidence for
time-reversal symmetry breaking in two dimensions. Using
this behavior as a first criterion for the CSL, and the second
that magnetic correlations are short-ranged, we arrive at the
shaded boundary between the q = (0, 0) Néel phase and the
CSL shown in Fig. 1(a).

To further reveal the structure of the chirality in the CSL,
we study the chiral correlations between pairs of triangles of
each of the four types shown in the inset of Fig. 4(b). Re-
sults for J2 = 0.2, J3 = 0.24 on YC8-24 and YC12-24 cylin-
ders are shown in Figs. 4(c) and 4(d). Clearly correlations
of all four types of triangles have long-range order, which
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FIG. 4: Numerical results for scalar spin chirality. Panel (a)
shows correlations between pairs of the smallest triangles ∆1 on the
kagomé lattice for J2 = 0.2 and different values of J3 on the YC8-
24 cylinder. In (b), the long-distance value of these correlations is
extracted and plotted versus J3, which clearly shows the CSL re-
gion. Plots (c) and (d) compares the correlations of different types
of triangles (defined in the inset of (b)) for J2 = 0.2, J3 = 0.24 on
the YC8-24 and YC12-24 cylinders. Panel (e) shows the chiral order
parameter 〈χ∆i〉 calculated directly from the complex code for the
indicated triangles on the YC8-24 cylinder at J2 = 0.2, J3 = 0.3.
The red arrows indicate the order of the three spins in the triple prod-
uct defining the scalar spin chirality.

demonstrates spontaneous scalar spin chirality on all triangles.
The largest chirality occurs on the smallest triangles (labeled
∆1). As a check, we also calculate the expectation value of
the local scalar spin chirality directly using a complex code,
which allows broken time-reversal symmetry. The results for
the YC8-24 cylinder at J2 = 0.2, J3 = 0.3 are shown in
Fig. 4(e). We see that the expectation values are indeed all
non-zero and of a uniform sign. Moreover the magnitudes
of the spontaneous spin chirality obtained in this way obey
|〈χ∆1

〉| > |〈χ∆3
〉| > |〈χ∆2

〉| > |〈χ∆4
〉|, consistent with the
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FIG. 5: Log-linear plot of spin correlations for J2 = 0.2 on the
YC8-24 cylinder. These correlations decay more quickly with J3 –
a consequence of the transition from the q = (0, 0) Néel to the CSL
phase. This is seen more clearly from the plot of the long-distance
spin correlation S versus J3, shown in the inset.

results of the correlation function analysis. We note that, up to
very small discrepancies which we attribute to the boundary
effects due to the cylinder geometry, the spontaneous chirali-
ties respect the translational and rotational symmetries of the
lattice.

Finally, we consider the spin correlations on passing be-
tween the q = (0, 0) phase and the CSL state. We take
J2 = 0.2 as an example – see Fig. 5. When J3 is small,
the system is in the q = (0, 0) phase and the spin correlations
are large and slowly decaying with a correlation length that
grows with system width. With increasing J3, the spin corre-
lations decrease gradually. We define the long-distance spin
correlation S ≡

√
|〈S0 · Sd〉| (d is the longest distance) as a

crude estimate of magnetic order. The inset of Fig. 5 shows
the J3 dependence of S, which decreases rather smoothly and
for practical purposes vanishes around J3 = 0.2. This corre-
sponds to the onset of the CSL phase. For larger J3, the short
range q = (0, 0) spin correlation pattern is destroyed and the
system shows instead a pattern of spin correlations which at
short distances is consistent with that of the cuboc1 state. One
such an example for J2 = 0.2, J3 = 0.3 is shown in Fig. 2(b).

IV. CUBOC1 PHASE

The cuboc1 state was first proposed for a kagomé anti-
ferromagnet in an exact diagonalization study of the J1-J3

KHM for J3 & 0.2566. It is characterized by a 12-sublattice
non-coplanar magnetic ordering in which the spins point to-
wards the corners of a cuboctahedron (see Fig. 1(b)), one of
the archimedean solids63. In the classical J1-J2-J3 KHM, the
cuboc1 phase occurs for J3 > J2 (J2 < 1.0), and shares a di-
rect phase boundary with the q = (0, 0) Néel phase as shown
in Fig. 1(a)63. Owing to its non-coplanarity, the cuboc1 state
breaks time-reversal symmetry and it is natural therefore to
imagine it may be the classical ancestor of a CSL state. Here
we investigate this possibility in more detail, and argue that
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the CSL in the KHM is not the descendent of the cuboc1 state.
We first however verify the magnetic order of the cuboc1

state by studying the spin-spin correlation function. The spin
correlation pattern is, in sign and magnitude, consistent with
the cuboc1 state for several cylindrical geometries, provided
they are chosen compatible with the enlarged unit cell of this
state. An example is shown in Fig. 6(a), where a cuboc1 pat-
tern with a 12-site unit cell indicated by the dashed hexagon is
clearly seen. A characteristic feature is that the spin correla-
tions in the columns denoted by the red arrows are small and
decay quickly. This follows naturally from the classical pic-
ture of the cuboc1 state, because these spins are perpendicular
to the reference spin.

To quantify the magnetic ordering, we study the evolution
of the spin correlations with increasing J3. An example is
shown in Fig. 6(b) for J2 = 0.2, 0.24 ≤ J3 ≤ 0.5 on the
YC8-24 cylinder. One sees that the spin correlations decay
quite fast for J3 < 0.4, consistent with the gapped CSL shown
in Fig. 4(b). At J3 = 0.4, the spin correlations are sharply
enhanced and approach finite values at long distance for J3 >
0.4. We define S as the square root of the long-distance spin
correlations in Fig. 6(b) S ≡

√
|〈S0 · Sd〉| (d is the longest

distance), and plot it versus J3 in the inset, which shows a
jump of S from zero to a finite value at J3 ' 0.4. The abrupt
simultaneous onset of spin order and vanishing chiral order on
small triangles (Fig. 4(b)), together indicate a phase transition
from the CSL to a magnetically ordered phase.

To be fully confident of magnetic ordering, we must con-
sider finite size effects. We compare the spin correlations on
YC8 and YC12 cylinders (the XC12 cylinder is incompatible
with cuboc1 state). Interestingly, the cuboc1 state has signif-
icantly enhanced entanglement entropy – a point which we
return to below – which prevents us from obtaining fully con-
verged results on YC12 cylinder. Therefore, we instead com-
pare the spin correlations on the YC8 and YC12 cylinders as
obtained with similar truncation errors. As shown in Figs.
6(c) and 6(d) for J2 = 0.2, J3 = 0.5, the spin correlations
grow with decreasing truncation error (increasing M ) in both
systems. For similar truncation errors, the correlation length
ξ on the wider YC12 cylinder is always larger than that on
the YC8 cylinder. Consequently, the converged spin correla-
tions (obtained from extrapolation with respect to truncation
error, as shown by the plus symbol) on the YC12 cylinder are
stronger than those on the YC8 cylinder. The growing spin
correlation length is consistent with the presence of magnetic
order in two-dimensional thermodynamic limit.

Now we justify the claim that the CSL cannot be regarded
as a quantum fluctuating cuboc1 state. To see this, we first
consider the pattern of scalar spin chirality in the cuboc1 state.
Classically, the spins in triangles ∆1 and ∆2 are coplanar, so
these possess zero scalar spin chirality. Spin chirality is in-
stead concentrated in triangles ∆3 and ∆4, where the spins
are non-coplanar63. We indeed see precisely this behavior in
the numerical calculations of chirality correlations, which are
large and consistent with long-range chiral order only for tri-
angles ∆3 and ∆4, as shown in Fig. 6(e). This is why the
chirality calculated for the small (∆1) triangles in Fig. 4(b)
jumps to zero in the cuboc1 state. In Fig. 6(e), we see some

(a) J2=0.2, J3=0.5, YC12-24, spin correlations
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FIG. 6: Numerical studies of the cuboc1 phase. All plots in this
figure use J2 = 0.2. In (a) we show the spin correlations for a
central region of the YC12-24 cylinder with J3 = 0.5, follow-
ing the same conventions as Fig. 2. The dashed hexagon indicates
the 12-site unit cell. Panel (b) shows log-linear plots of the spin
correlations for various J3 values on the YC8-24 cylinder (here
J3 = 0.24, 0.3, 0.38, 0.4, 0.42, 0.45, 0.5 for the successive curves
with increasing values of the correlations). The inset plots the J3

dependence of the long-distance spin correlation S. Plots (c) and (d)
compare the spin correlation for J3 = 0.5 on the YC8-24 and YC12-
24 cylinders with different truncation errors ε. The data with plus
symbol give the results of an extrapolation to zero truncation error.
Panel (e) contrasts the correlations of the chirality on the four dif-
ferent types of triangles (as shown in the inset) well into the cuboc1
phase for J3 = 0.7 on the XC8-24 cylinder. The correlations on the
∆1,∆2 triangles are very small and sometimes change sign. This is
probably consistent with zero spontaneous chirality on these trian-
gles in the thermodynamic limit.
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FIG. 7: Entanglement entropy in the cuboc1 phase. In (a) the entan-
glement entropy versus the sub-system length lx for J2 = 0.2, J3 =
0.7 on the XC8-18 cylinder is fitted using the conformal field the-
ory formula S(lx) = (c/6) ln[(Lx/π) sin(lxπ/Lx))] + g with
c = 3.0, g = 3.3. In (b), the entanglement entropy is plotted versus
lnx (x = (Lx/π) sin(lxπ/Lx)) for J2 = 0.2, J3 = 0.7 on XC8-16
and XC8-18 cylinders. The dashed line is the fit curve used shown in
(a).

very small residual chirality correlations on the type 1 and
2 triangles, but these are consistent with short-range correla-
tions, which are always non-zero and do not indicate symme-
try breaking. The absence of scalar spin chirality in the small
triangles in the cuboc1 state reflects an invariance of this state
under a combined C2 rotation in spin space (about an axis
through two antipodal points on the cuboctahedron) and a real
space reflection through a plane bisecting a column of small
triangles. The CSL state breaks this symmetry. Hence the two
phases are symmetry distinct even beyond the presence of spin
ordering.

Finally, we return to the entanglement entropy in the
cuboc1 state. The large entropy may be understood from
general arguments. In the two-dimensional limit, the cuboc1
phase fully breaks SU(2) spin symmetry, and so has three gap-
less Goldstone modes (a number equals to the number of gen-
erators of SU(2)). This is described field-theoretically by an
2+1-dimensional SO(3) matrix non-linear sigma model67. If
we now imagine placing the cuboc1 state on a (compatible)
cylinder, the momentum along the circumferential direction
ky becomes quantized, and we naı̈vely expect three gapless
one-dimensional bosonic modes with ky = 0. In general,
these modes are interacting, and for long cylinders fluctuate
strongly and are expected to open up a gap, since the non-
linear sigma model in 1+1-dimensions is asymptotically free.
However, this gap is exponentially small when the cylinder
circumference is large, and so we can expect a wide regime in
which the cylinder behaves like a system of three gapless free
bosonic modes.

For a general free gapless bosonic system (actually any con-
formal field theory) in 1+1-dimensions, the entanglement en-
tropy of a bipartition into two halves follows the area law
S(lx) = (c/6) ln[(Lx/π) sin(lxπ/Lx))] + g68, where c is
the characteristic central charge of system, g is a nonuniver-
sal constant reflecting short-range entanglement, and lx and
Lx are the length of subsystem and the whole system, respec-

tively. The non-linear sigma model argument above implies
c = 3. Thus the large entanglement entropy of the cuboc1
state on cylinders could be attributed to its Goldstone mode
structure.

We verify this numerically in more detail, and find behavior
consistent with this prediction. An example of the lx depen-
dence of entropy is shown in Fig. 7(a) for J2 = 0.2, J3 =
0.7 on the XC8-18 cylinder. We bipartition the system col-
umn by column, and denote the number of columns as lx.
The entropy fits quite well using the area law behavior with
c = 3.0, g = 3.3. In Fig. 7(b), we plot the same data ver-
sus ln[(Lx/π) sin(lxπ/Lx))], where the slope of the dashed
line determines the central charge. We find that the entropy on
XC8-16 cylinder also follows the same central charge c = 3.0.

V. QUANTUM PHASE TRANSITIONS

It is interesting to study the phase transitions between the
well established topological CSL and other phases surround-
ing it. Continuous phase transitions from such a topologically
ordered phase are of general interest as examples of unconven-
tional quantum criticality70,71. Thus we attempt to establish if
any of the transitions in our system are indeed continuous.

First, we consider the phase transition from the CSL to the
q = (0, 0) Néel phase. For J2 = 0.2 on YC8 cylinder, we find
the transition occurs at about J3 ' 0.2, based upon the behav-
ior of chiral and spin correlations in Fig. 4(b) and Fig. 5. To
gauge the order of the transition, we plot in Figs. 8(a) and 8(b)
the J3 dependence of the ground-state energy and entangle-
ment entropy for J2 = 0.2 in a range spanning the q = (0, 0)
to CSL transition on the YC8-24 cylinder. We find that both
the ground-state energy and entropy vary smoothly with J3,
indeed so smoothly that a transition cannot be identified from
these data. This suggests the CSL to Néel transition may be
continuous. However, we should caution that the absence of
sharp features is not evidence for criticality – which in any
case would be difficult to verify on the small systems studied
here. It does indicate that the CSL to Néel transition is not
strongly first order.

This is in contrast to the transition from the CSL to the
cuboc1 phase. As shown in Figs. 8(c) and 8(d) of the re-
sults on XC8 cylinder for J2 = 0.2, we find both the energy
and the entropy have a sharp change at J3 ' 0.38, which are
also observed on YC8 cylinder at J3 ' 0.4. Note that for a
large system, the theoretical expectation at a first order transi-
tion between these two phases is a slope discontinuity in the
ground state energy and a jump in the entanglement entropy,
both of which are compatible with Figs. 8(c) and 8(d). The
sharp changes observed in these quantities are also consistent
with the sudden drop of chiral correlation in Fig. 4(b) as well
as the enhancement of spin correlations in Fig. 6(b). All these
results indicate a strong first-order transition from the CSL to
the cuboc1 phase. The first order nature of this transition is
another indication that the CSL phase should not be regarded
as a quantum fluctuating descendent of the cuboc1 phase, as
discussed above in Sec. IV.

Next we consider the J1-J ′ model with J2 = J3 = J ′ to
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FIG. 8: Scans of ground state energy and entanglement entropy of a
bipartition into equal halves, as probes of quantum phase transitions.
Panels (a) and (b) show the J3 dependence for J2 = 0.2 on the YC8
cylinder over a region spanning the transition from the CSL to the
q = (0, 0) Néel phase. No sharp features are observed, suggesting a
continuous phase transition. In panels (c) and (d) the same quantities
are shown for for J2 = 0.2 on the XC8 cylinder, to probe the transi-
tion from the CSL to the cuboc1 phase. In this case an abrupt feature
is observed, suggesting a first order transition. In the final two pan-
els, (e) and (f), the system is scanned with J2 = J3 = J ′ on the YC8
cylinder, to study the transition from the time-reversal invariant QSL
to the CSL. In this case, the transition again appears continuous.

investigate the transition from the CSL to QSL ground state
of the pure nearest-neighbor KHM. The latter phase itself is
under debate, and may be a gapped Z2 QSL41 or a gapless
QSL56 of either Z2 or U(1) type45,46. By studing the chiral
correlations, the transition point is determined to be J ′ ' 0.07
as shown in Fig. 1(a). In Figs. 8(e) and 8(f), we find that both
the energy and entropy appear smooth as a function of J ′,
leaving open the possibility of a continuous transition of the
nearest-neighbor QSL state into the CSL phase55,69.

VI. SUMMARY AND DISCUSSION

We have studied the competing quantum phases of the spin-
1/2 J1-J2-J3 KHM for 0 ≤ J2 ≤ 0.25 and 0.0 ≤ J3 ≤ 1.0
by DMRG simulations. As shown in Fig. 1(a), we find five
phases: a time-reversal symmetric QSL state continuously
connected to that of the nearest-neighbor Heisenberg model,
a q = (0, 0) Néel phase, a chiral spin liquid (CSL) phase,
a non-coplanar cuboc1 phase, and an apparent VBC phase.

The CSL phase seems to arise as a result of quantum fluctua-
tions around the line of classical degeneracy between the two
types of classical order: the q = (0, 0) Néel phase and cuboc1
phase. The chirality structure of the CSL and cuboc1 phases
are distinctly different, and indeed we find a strong first order
phase transition between them.

Both the quantum phase transition between the CSL and the
q = (0, 0) Néel state, and that between the CSL and the time-
reversal symmetric QSL, are quite smooth and consistent with
continuous behavior. If continuous, these could be interesting
examples of unconventional quantum critical points70,71. It is
not clear even what to expect for the universal field theories
for these phase transitions from the theory of QSLs. The na-
ture of the time-reversal symmetric QSL itself is controversial,
making it hard to speak definitively about that transition. If we
suppose that the QSL itself is of the gapless U(1) Dirac type45,
then this transition could be understood as simple “chiral sym-
metry breaking”-type transition in which a scalar mass gap
appears for the Dirac fermions58,72. The mechanism for gen-
eration of an appropriate Chern-Simons term to describe the
universal aspects of the CSL from such a Dirac mass is well-
known58,73. However, it is not clear that the proposed U(1)
Dirac state is even stable as a phase. At this point, we have
only some speculative ideas for the field theories that might
describe transitions from a Z2 version of the time-reversal
symmetric QSL liquid state, or from the q = (0, 0) Néel state,
to the CSL. We suggest this may be a possibly fruitful problem
for future research.

We did not concentrate much in this work on the tentatively
identified VBC phase, which occurs in the small J2 region
(J2 < 0.05) as shown in Fig. 1. In this region, our DMRG cal-
culations converge to a ground state with non-uniform bond
energy, as shown in Fig. 2(d). On the XC8 cylinder, this pat-
tern does not appear to break the lattice translational symme-
try, but clearly breaks some point group symmetries of the
kagomé lattice. A similar VBC pattern is also found on the
XC12 cylinder74, though there may be some suggestions of
translational symmetry breaking in that case. Since a topolog-
ically trivial gapped state is not possible without an even num-
ber of spins per unit cell, the breaking of translational symme-
try is a key which must be established. In the future, it will be
interesting to address this issue with more care, and to com-
pare this VBC phase to the one found in the J1-J2 kagome
Heisenberg model with small negative second neighbor ex-
chage, J2 ∼ −0.0550.

We acknowledge useful discussions and correspondence
with L. Messio, W. J. Hu, T. Grover, S. Sachdev, Z. Y. Weng,
and X. G. Wen. This research is supported by the National
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DMR-1206809 (L.B.), and the U.S. Department of Energy,
Office of Basic Energy Sciences under grant No. DE-FG02-
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Note added.—Upon finalizing the manuscript we noticed
a recent preprint reporting a DMRG75 study of the J1-J2

Heisenberg model, and also finds that the q = (0, 0) order
emerges for J2 > 0.2. We also noticed a preprint on varia-
tional Monte Carlo studies76 of the same model based on the
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Gutzwiller projected fermion wavefunction, which claims that
the U(1) Dirac spin liquid may be stable in a region with finite

J2 > 0.
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