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We investigate spin entanglement in many-electron systems within the framework of density func-
tional theory. We show that the entanglement length, which is extracted from the spatial dependence
of the local concurrence, is a sensitive indicator of atomic shells, and reveals the character, covalent
or metallic, of chemical bonds. These findings shed light on the remarkable success of modern den-
sity functionals, which tacitly employ the entanglement length as a variable. This opens the way to
further research on entanglement-based functionals.
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Introduction — Entanglement arguably represents the
quintessential quantum mechanical effect [1], and has re-
cently emerged as a crucial resource in quantum tech-
nology [2]. The concept of entanglement was originally
referred to the case of non-identical or spatially separated
particles. On the other hand, indistinguishable quantum
particles within a many-body system cannot be labelled.
There one needs to reconsider the definition of entangle-
ment, by introducing suitable criteria for identifying the
subsystems [3]. In the case of a many-electron system,
for example, the subsystems can be identified with the
lattice sites [4–7] or with a set of relevant orbitals [8–11],
and their states are defined by the corresponding occu-
pation numbers. Most of the potential applications can
however be related to the so-called entanglement of par-
ticles [12, 13], where each subsystem is associated to a
definite number of particles (typically one). The entan-
glement between two electron spins, located at two given
positions within an extended many-body system [14], be-
longs to this latter class.

The main features of such spin entanglement in an
ideal Fermi gas can be derived from very general phys-
ical principles [9, 15, 16]. In fact, the Pauli exclusion
principle implies that the state of two electrons localized
at the same position is necessarily a spin singlet. Be-
sides, the spatial extension of such singlet-like character
– and of the resulting spin entanglement – is of order
of 1/kF (kF being the Fermi wave vector). This seems
to suggest that spin entanglement in real many-electron
systems may be remarkably short-ranged, with a charac-
teristic length scale that depends locally on the particle
density.

In this Letter, we show that the situation is actually
far more rich and interesting in inhomogeneous systems.
We find that the behavior of spin entanglement in atomic
shells and molecular covalent bonds differs substantially
from the case of a metallic bond – the paradigm of which
is an interacting uniform gas. Our analysis is carried
out within the framework of density functional theory
(DFT), in its Kohn-Sham formulation [17]. This enables
a practical and effective, albeit approximate, ab-initio es-

timation of spin-entanglement for not too strongly corre-
lated systems with up to thousands of electrons, includ-
ing atoms and molecules far from their dissociation limit.
Spin entanglement, in turn, provides modern insights for
developments within DFT.

The entanglement between two qubits can be quanti-
fied in terms of the so-called concurrence [18]. In our
case, this is a function of the positions of the two elec-
trons, whose spins represent the qubits in question. We
find that, the concurrence decays locally over an entan-
glement length lE(r), which depends explicitly not only
on the particle density – as for the case of a uniform gas
– but also on the kinetic energy density, the gradients
of the electronic density, and the paramagnetic-current
density (all taken in a gauge invariant combination).

We finally recognize that lE is a fundamental ingre-
dient of the electron-localization function [19, 20] – of-
ten invoked in quantum chemistry as a useful tool for
the visualization of atomic shells and bonds [21] – and
of modern exchange-correlation functionals – which im-
prove over the performance of standard semilocal approx-
imations for different kinds of bonds [22]. We conclude
that, leaps forward in DFT may greatly benefit from en-
tanglement based methods.

Spin entanglement in an N -electron system — The de-
gree of spin entanglement between electrons localized at
two different positions r1 and r2 can be evaluated from
the spin-dependent two-particle reduced density matrix

ρ2(x1, x2;x′1, x
′
2) = 〈ψ̂†(x′2)ψ̂†(x′1)ψ̂(x1)ψ̂(x2)〉 , (1)

where x ≡ (r, σ) is a composite position-spin variable.
The diagonal elements of interest are obtained by taking
r1 = r′1 and r2 = r′2. The resulting matrix ρ2(r1, r2) –
with understood indices (σ1, σ2) and (σ′1, σ

′
2) – represents

the state of a two-qubit system. For closed-shell systems
therefore the reduced density matrix is diagonal in the
singlet-triplet basis of the two-qubit system and has the
form of a Werner state [23]. Normalization with respect
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to spin-trace, yields the following expression:

ρnorm2 (r1, r2) = p(r1, r2) |Ψ−〉〈Ψ−|+ [1− p(r1, r2)] I/4,
(2)

where I is the identity matrix in the two-spin space
and |Ψ−〉 = 1√

2
(| ↑↓〉 − | ↓↑〉) is the singlet state. Here

p(r1, r2), varying in the range 0 < p < 1, determines
the difference between the occupation of the singlet state
and that of any of the three equivalent triplet states. The
concurrence of the above Werner state can be shown to
be [15]

C(r1, r2) = max{[3p(r1, r2)− 1]/2, 0} . (3)

The concurrence thus vanishes when the occupation of
the singlet state is less than 1/2 (i.e., for p ≤ 1/3), and
grows monotonically for p > 1/3, reaching the theoretical
maximum C = 1 for the singlet state (p = 1).

As the number of electrons increases a direct computa-
tion of the two-particle reduced density matrix becomes
rapidly prohibitive. Within DFT, however, the wave
function is represented by a single Slater determinant,
which satisfies the antisymmetry condition and yields,
in principle, the exact ground-state density of the inter-
acting system. Such a wave function captures quantum
correlations at the “exact exchange” level. Therefore, as
long as correlations due to the electron-electron interac-
tion are not too strong, the KS framework provides a very
useful first approximation to study the effects of system
inhomogeneities on spin entanglement. For the KS wave
function the two-particle density matrix [Eq. (1)] can be
factored into a product of one-particle density matrices.
It is then easily checked that, for a closed-shell system

FIG. 1: (Color online) Solid lines represent the concurrence of
the Fermi gas for different values (represented with different
colors) of the Wigner-Seitz (rs = 0.5, 1.0, 0.4 a.u.). Dashed
lines and bullets represent the approximate expressions of the
concurrence given in Eq. (15) and Eq. (17), respectively.

(equal numbers of up and down spins), the quantity in
Eq. (1) acquires the form

ρ2(r1, r2) = nσ(r1) [nσ(r2) + hσX(r1, r2)] I
− 2nσ(r1)hσX(r1, r2)|Ψ−〉〈Ψ−|, (4)

where nσ(r) is a half of the total electron density,
hσX(r1, r2) is the exchange-hole function

hσX(r1, r2) = −|ρσ1 (r1, r2)|2/nσ(r1) , (5)

and ρ1(r1, r2) is the KS one-body reduced density matrix.
This is expressed in terms of the (occupied) Kohn-Sham
spin orbitals ϕiσ as follows:

ρσ1 (r1, r2) =

Nσ∑
i=1

ϕiσ(r1)ϕ∗iσ(r2) . (6)

Note that, for simple and direct bookkeeping, we shall
keep track of the spin index explicitly and drop it in some
key expressions reported below when no ambiguities are
left over.

The exchange-hole function quantifies the correlation
between two electrons with equally oriented spins dic-
tated by their fermionic character. In particular, such
correlation may result in an excess of the singlet-state
occupation in the two-body density matrix (p > 0), and,
possibly, in two-particle spin entanglement (p > 1/3).
Comparison between Eq. (2) and Eq. (4) allows one to
express the probability p in terms of the exchange-hole
function:

p(r1, r2) = − hσX(r1, r2)

2nσ(r2) + hσX(r1, r2)
. (7)

The condition for the existence of spin entanglement
[C > 0, see Eq. (3)] is correspondingly given by:

hσX(r1, r2) < −nσ(r2)/2 . (8)

In order to get further insight, let us consider the
case in which only one occupied orbital is significantly
different from zero at both r1 and r2. In this case,
hσX(r1, r2) ' −nσ(r2), and thus C(r1, r2) ' 1. This
applies, approximately, in the asymptotic region of any
atom or molecule, and in the regions of the atomic shells
and molecular bonds. As r2 moves away from a fixed r1,
the concurrence may thus have revivals even at distances
comparable to the system size, if r2 is positioned within
the same shell or bond as r1. This is completely different
from the monotonic decrease of C that one expects in a
uniform Fermi gas.
Short-range (SR) behavior of the concurrence – The

example of the non-interacting Fermi gas suggests that,
locally, the concurrence should decrease with some char-
acteristic length. In order to investigate this important
aspect in realistic many-electron systems, we introduce
the spherical average of the two-body density matrix
[Eq. (4)]:

ρ2(r, u) =
1

4π

∫
dΩu ρ2(r1 = r, r2 = r + u) , (9)

where Ωu is the solid angle defined by u around r. Anal-
ogous averages apply to the exchange-hole and to the
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particle density: they are referred hereafter as hX(r, u)
and n(r, u), respectively. The SR behavior of these quan-
tities can be derived from their Taylor expansion in the
interparticle distance u [24, 25]:

nσ(r, u) ' nσ(r) +
1

6
∇2nσ(r)u2 + · · · (10)

h
σ

X(r, u)'−nσ(r) +
1

3

[
Dσ(r)− 1

2
∇2nσ(r)

]
u2 + · · · ,(11)

where

Dσ(r) = τσ(r)− 1

4

[∇nσ(r)]
2

nσ(r)
−

j 2pσ(r)

nσ(r)
. (12)

In the above equation,

τσ(r) =

Nσ∑
i=1

|∇ϕiσ(r)|2 (13)

is (twice) the positive definite kinetic energy density, and

jpσ(r) =
1

2i

Nσ∑
k=1

[ϕ∗kσ(r)∇ϕkσ(r)− ϕkσ(r)∇ϕ∗kσ(r)]

(14)
is the KS paramagnetic current density. Note that jpσ =
0 in the ground-state of closed-shell systems, but can very
well be different from zero in a time-dependent situation.

The SR behavior of the concurrence is readily derived
by replacing the Taylor expansions of hX and n given
above in Eqs. (3,7). The resulting expression is given, to
the lowest order in u, by

CSR(r, u) = max
{

0, 1− u2Dσ(r)/nσ(r)
}
. (15)

Equation 15 naturally leads to the introduction of a
length scale, lE(r) ≡ [Dσ(r)/nσ(r)]−1/2, which expresses
the “local range” of the spin entanglement around a given
point in space. Combining such expression with Eq. (12),
the length scale reads:

lE(r) ≡

{
τσ(r)

nσ(r)
− 1

4

[∇nσ(r)]
2

[nσ(r)]2
−

j2pσ(r)

[nσ(r)]2

}−1/2
. (16)

It is tempting to extrapolate the behavior of the con-
currence to larger interparticle distances, through an (ap-
proximate) exponential resummation, as follows

C(r, u) ≈ exp
[
−u2/ l2E(r)

]
. (17)

Figure 1 compares the concurrence of the noninteract-
ing Fermi gas, as a function of u, with the one obtained
from the uncontrolled extrapolation of the small-u ex-
pansion [Eq. (15)], and from the more educated extrap-
olation [Eq. (17)]. This is done for values of the Wigner-
Seitz radius rs ranging from typical metallic densities to

higher ones. Readily, one finds that lunifE =
√

5
3

1
kσF

(with

FIG. 2: (Color online) Argon atom. Radial dependences of
the inverse of the local entanglement-length (a), of the ELF
(b), and of the particle density n (c). All the input quantities
have been obtained using the APE code [26]. The approxima-
tion to the exchange-correlation energy functional employes
Dirac exchange [27] and Perdew and Zunger correlation [28].

kσF =
(
6π2nσ

)1/3
). As expected, the higher the den-

sity, the more the entanglement is short-ranged, the more
Eq. (15) gets accurate. Equation (17) tends to recover
the exact concurrence also at intermediate interparticle
distances, although it introduces a spurious tail for larger
values of u. More importantly, Eq. (15) and Eq. (17) also
apply – within the specified limitations and approxima-
tions – to non-uniform gases.
Entanglement length, ELF, and meta-GGA forms –

The SR behavior of the concurrence function explains
in a unified fashion the success of modern DFT expres-
sions. These include electron-localization function (ELF)
[19–21] – a useful quantity to visualize shells and cova-
lent bonds. Our previous analysis allows us to express
the ELF in terms of the entanglement length:

ELF (r) =
1

1 +
[
lunifE (r)/lE(r)

]4 . (18)

Therefore, the ELF quantifies the “difference” between
the actual lE(r) and the lunifE (r) of a uniform gas having
the same particle density at the position of interest.

Remarkably, lE(r) also turns out to be a fundamen-
tal quantity for exchange-correlation meta-GGAs’ func-
tionals (EmGGA

xc ). These forms are capable of adapt-
ing to different types of bonds and, thus, of improving
over the performance of standard semilocal approxima-
tions [22]. They employ the kinetic energy density as an
additional variable. In Ref. [22], the dependence on τ
enters in the EmGGA

xc through α which can be expressed

as α(r) =
(
lunifE (r)/lE(r)

)2
. Note, for current-carrying

states, α(r) requires a correction [29] which is automati-
cally included in lE(r).
Atomic shells – Let us visualize the remarkable behav-

ior of spin entanglement in atoms and molecules. As a
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representative example of a closed-shell atom, we con-
sider the case of Ar. Panel (a) of Fig. (2) shows the
inverse of lE(r) rather than the length itself, for the sake
of a simpler visualization. This quantity exhibits a strong
dependence on the shell structure. In particular, the local
maxima of l−1E (r) correspond to local minima of the ELF
[panel (b)], and viceversa. Therefore, the entanglement
gets more short-ranged between atomic shells and more
long-ranged within the atomic shells. Moving outwardly
from the last shell, one enters the asymptotic region of
the Ar atom. Here, the entanglement length tends to in-
finity – but the probability of finding an electron vanishes
exponentially for increasing radius. Note that lunifE (r) can
only follow the structureless profile of the particle den-
sity [panel (c)], and thus fails to capture features such as
shells and bonds.

It is worth asking to what extent the Coulomb interac-
tion between electrons affects the distribution of entan-
glement. We may get some insight by comparing the pre-
vious results with those obtained by setting the Hartree
and exchange-correlation potentials to zero in the Kohn-
Sham equation (dashed curves in Fig. 2). Underlying
this comparison is the idea that the single-particle or-
bitals and eigenvalues of the Kohn-Sham systems repre-
sent, in a first approximation, quasi-particles obtained by
screening the otherwise purely non-interacting quantities
with correlations of both classical (Hartree) and quan-
tum mechanical (exchange-correlation) origin. The most
prominent difference between the KS and the truly non-
interacting solution is that, in the latter, both the shell
structure and particle density move towards the core of
the atom. Besides, the local entanglement-length is re-
duced both in correspondence of the atomic shells and in
the spatial region between them.

Molecular bonds – The previous analyses suggest that
the SR behavior of spin entanglement in molecules may
be related to the presence of chemical bonds. As a rep-
resentative case, we consider the case of C2H2. Being
mainly interested in the bond region, we perform our
calculation with pseudopotentials for the Carbon atoms,
and explicitly include only the 2s and 2p electrons. The
spatial dependence of l−1E (r) is reported in Fig. 3. Mov-
ing along the axes of the molecule, l−1E (r) has a local
minimum in correspondence of the central bond between
the two Carbon atoms. The plot of l−1E (r) also reveals
that entanglement is long-ranged in the asymptotic re-
gion of the molecule and around each Hydrogen atom,
where the local two-spin state essentially coincides with
a singlet. Overall our results show that the local con-
currence contains detailed information about inhomoge-
neous electronic structures.

Conclusions – We have presented a practical and effec-
tive ab-initio approach for the estimation of spin entan-
glement in realistic inhomogeneous many-electron sys-
tems composed of even up to hundreds of atoms. We have
shown that the behavior of spin entanglement in atomic

FIG. 3: (Color online) C2H2 molecule in the xy plane. Figure
shows the inverse of the local entanglement-length, l−1

E (r). All
the input quantities have been obtained using the OCTOPUS
code [30]. The approximation to the exchange-correlation en-
ergy functional employes Dirac exchange [27] and Perdew and
Zunger correlation [28].

shells and molecular covalent bonds is clearly distinguish-
able from that in a uniform metallic system. Thus, we
have revealed that modern DFT expressions useful to
deal with these structures tacitly exploit local informa-
tion on the spin entanglement. This calls for further DFT
developments based on entanglement analyses. An ex-
tension to time-dependent states – within the framework
of time-dependent DFT – is straightforward. This may
usefully characterize the signatures of entanglement in
excitations.
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