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A unified molecular field theory (MFT) is presented that applies to both collinear and planar
noncollinear Heisenberg antiferromagnets (AFs) on the same footing. The spins in the system are
assumed to be identical and crystallographically equivalent. This formulation allows calculations of
the anisotropic magnetic susceptibility χ versus temperature T below the AF ordering temperature
TN to be carried out for arbitrary Heisenberg exchange interactions Jij between arbitrary neighbors j
of a given spin i without recourse to magnetic sublattices. The Weiss temperature θp in the Curie-
Weiss law is written in terms of the Jij values and TN in terms of the Jij values and an assumed
AF structure. Other magnetic and thermal properties are then expressed in terms of quantities
easily accessible from experiment as laws of corresponding states for a given spin S. For collinear
ordering these properties are the reduced temperature t = T/TN, the ratio f = θp/TN and S.
For planar noncollinear helical or cycloidal ordering, an additional parameter is the wavevector of
the helix or cycloid. The MFT is also applicable to AFs with other AF structures. The MFT
predicts that χ(T ≤ TN) of noncollinear 120◦ spin structures on triangular lattices is isotropic and
independent of S and T and thus clarifies the origin of this universally observed behavior. The high-
field magnetization and heat capacity for fields applied perpendicular to the ordering axis (collinear
AFs) and ordering plane (planar noncollinear AFs) are also calculated and expressed for both types
of AF structures as laws of corresponding states for a given S, and the reduced perpendicular field
versus reduced temperature phase diagram is constructed.

PACS numbers: 75.30.Cr, 75.10.Jm, 75.40.Cx, 75.50.Ee

I. INTRODUCTION

The Curie law1 χ ≡ M/H = C/T for noninteracting
spins and the Curie-Weiss law2,3

χ =
C

T − θp
(1)

for interacting spins describe the low-field magnetic sus-
ceptibility χ in the paramagnetic (PM) regime above
any long-range ordering temperatures. Here M is the
magnetization, H is the applied magnetic field, C is
the Curie constant, T is the absolute temperature and
θp is the Weiss temperature which is positive for ferro-
magnets (FMs) and generally negative for antiferromag-
nets (AFs). Néel showed that the molecular field theory
(MFT) for FMs developed by Weiss to derive Eq. (1)
allowed collinear AF ordering to occur.4 The simplest
model of an AF structure has each “up” spin with only
“down” nearest neighbor spins, and vice versa, called
a “bipartite” AF structure. A magnetically-ordered
(single-domain) FM in zero field has a net magnetic mo-
ment whereas an AF does not. The magnetic ordering
temperature of a FM is denoted as the Curie temperature
TC and of an AF as the Néel temperature TN. Van Vleck
used the Weiss MFT to calculate for a bipartite two-
sublattice model the anisotropic χ(T ) for T < TN in small
magnetic fields applied parallel (χ‖) and perpendicular
(χ⊥) to the magnetic moment ordering axis (easy axis)
of collinear AF structures for equal Heisenberg nearest-
neighbor interactions.5 He deduced TN = −θp where
θp < 0, but this equality is rarely observed quantitatively

in real AFs. The subject of collinear AF is usually dis-
cussed in terms of Néel’s two-sublattice MFT model.3,6,7

Because large deviations from Van Vleck’s requirement
TN = −θp are observed for real materials, Van Vleck’s
theory has not been used much in the past to fit experi-
mental χ‖(T ≤ TN) data for collinear AFs.
The anisotropic χ(T ≤ TN) and other properties of pla-

nar noncollinear AF ordering were investigated by Yoshi-
mori based on MFT for the “proper screw” helix mag-
netic structure,8,9 as shown in Fig. 1 of Ref. 10. A proper
screw helix is an AF structure in which planes of mag-
netic moments that are ferromagnetically aligned within
each plane rotate their ordered moment directions along
the helix axis (z-axis here) with the tips of the mag-
netic moment vectors tracing out the ridges on a screw
(see Fig. 1 of Ref. 10). Thus the ordered moment direc-
tions are perpendicular to the screw z-axis with a fixed
angle between the ordered moments in adjacent planes
along this axis. On the other hand, when the helix z-
axis is in the xy plane of the coplanar magnetic mo-
ments, the heads of the ordered moment vectors along
the z-axis trace out points on a cycloid, and hence Yoshi-
mori termed this a “cycloidal” AF structure8 as shown
in Fig. 1 of Ref. 11. Like Van Vleck’s theory, Yoshimori’s
predictions were very restrictive and have been little used
by experimentalists to fit their χ(T ≤ TN) data for helical
or cycloidal AFs.
This paper is a followup to our 2012 Letter,10 where

we formulated a generic version of MFT for Heisenberg
spin systems containing identical crystallographically-
equivalent spins that improves on previous MFT treat-
ments in ways that will be discussed. The paper is orga-
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nized as follows. Our MFT notation and the definition of
the exchange field in MFT are given in Sec. II. In Sec. III
we introduce the Brillouin function and derive expres-
sions for the exchange field and reduced ordered moment
versus temperature which are the same for collinear and
noncollinear AFs and for FMs. The static critical expo-
nents and associated dimensionless reduced amplitudes
are derived in Sec. IV. A Curie-Weiss law of correspond-
ing states is derived in Sec. V. In Sec. VI we present
our generic MFT formulation of χ(T ≤ TN) of collinear
AFs and in Sec. VII for the anisotropic χ(T ) of planar
noncollinear AFs. In Sec. VIIA a generic expression for
χ⊥ of collinear AFs and planar noncollinear AFs is de-
rived. Our MFT calculation of χxy(T ≤ TN) of planar
noncollinear AFs is presented in Sec. VII B. In Sec. VIII
we formulate a generic minimal and powerful J0-Jz1-Jz2
model for χxy(T ) of helical or cycloidal AFs that is widely
applicable to real materials and contains as parameters
only directly measurable quantities. The magnetization,
internal energy and magnetic heat capacity below TN of
both collinear AFs and planar noncollinear AFs in high
magnetic fields aligned perpendicular to the ordering axis
or plane of the AF structure, respectively, are derived
for both types of AF structures for which we obtain the
same generic laws of corresponding states, respectively,
in Sec. IX. In concluding Sec. X the MFT predictions
are discussed with respect to non-mean-field behaviors
observed for real systems.

II. MAGNETIC INTERNAL ENERGY,

ENTROPY, HEAT CAPACITY

We consider the Heisenberg model with no anisotropy
terms except that due to an infinitesimal H. The part
Hi of the spin Hamiltonian associated with a particular
central spin Si interacting with its neighbors Sj with
respective exchange constants Jij is

Hi =
1

2
Si ·

∑

j

JijSj + gµBSi ·H, (2)

where the factor of 1/2 appears in the first term because
the exchange energy is evenly split between the two mem-
bers of each pair of interacting spins, g is the spectro-
scopic splitting factor (g-factor) of a magnetic moment ~µ
and µB is the Bohr magneton.
In the Weiss MFT, one only considers the thermal-

average directions of Si and Sj when calculating their
interaction. Furthermore, it is the magnetic moment ~µ
that interacts with a magnetic field and not the angular
momentum S per se. The relationship between these two
quantities for an electronic spin and magnetic moment is

S = − ~µ

gµB
, (3)

where the minus sign arises from the negative sign of the
electron charge. Throughout the remainder of this paper,

the symbol ~µ refers to the thermal-average value of the
magnetic moment, as is appropriate in MFT. Then the
energy Emag i of interaction of magnetic moment ~µi with
its neighbors ~µj is given by Eq. (2) as

Emag i =
1

2g2µ2
B

~µi ·
∑

j

Jij~µj − ~µi ·H. (4)

In MFT, one replaces the sum of the exchange interac-
tions acting on ~µi in the first term by an effective mag-
netic field called the Weiss molecular field or “exchange
field” Hexch that is defined by the usual relationship for
the rotational potential energy of a magnetic moment in
a magnetic field, as in the second term of Eq. (4), as

Eexch i = −1

2
~µi ·Hexch i, (5)

where the factor of 1/2 again arises because in MFT all
of the exchange energy between ~µi and ~µj is attributed
to ~µj , thus canceling out the factor of 1/2 in Eq. (4).
From the first term in Eq. (4) one then obtains

Hexch i = − 1

g2µ2
B

∑

j

Jij~µj . (6)

Using ~µj = µj µ̂j where µj = |~µj |, the component of
Hexch i in the direction of ~µi is

Hexch i = µ̂i ·Hexch i = − 1

g2µ2
B

∑

j

Jijµj µ̂i · µ̂j

= − 1

g2µ2
B

∑

j

Jijµj cosαji,

(7)

where αji is the angle between ~µj and ~µi when H 6= 0.
If H = 0 we denote these angles instead by φji.
In the ordered magnetic state at H = 0, the lowest

energy of the spin system occurs when each magnetic
moment is in the same direction as the local exchange
field it sees. Therefore the component of the localHexch i0

in the direction of ~µi, and also its magnitude, is

Hexch i0 = µ̂i ·Hexch i0

= − µ0

g2µ2
B

∑

j

Jij cosφji,
(8)

where the subscript 0 in Hexch i0 designates that H =
0 and µ0 is the magnitude of the T -dependent ordered
magnetic moment in H = 0 observed, e.g., by neutron
diffraction measurements which is the same for all spins
because of their crystallographic equivalence.

III. SOME PROPERTIES AT TEMPERATURES

BELOW THE NÉEL TEMPERATURE

A. Brillouin Function, Néel Temperature, Ordered

Moment, Laws of Corresponding States and

Magnetic Energy

In general, in MFT the equilibrium (thermal-average)
direction of a specific ordered local moment ~µi is always



3

in the direction of its local magnetic induction Bi. The
magnitude µi of ~µi in that direction is determined by the
Brillouin function BS(y) according to3

µi = µsatBS(yi) (9a)

where

yi =
gµBBi

kBT
, (9b)

the saturation moment of each spin is

µsat = gSµB, (9c)

and g ≈ 2 for many 3d transition metal ions due to
quenching of the z-component of the orbital angular mo-
mentum, and also for spin-only Gd+3 and Eu+2 ions with
S = 7/2 and orbital angular momentum L = 0.
Our unconventional definition of the Brillouin function

is

BS(y) =
1

2S

{

(2S + 1) coth
[

(2S + 1)
y

2

]

− coth
(y

2

)}

,

(10a)
for which the Taylor series expansion about y = 0 is

BS(y) =
(S + 1)y

3
− 1

90
(1 + 3S + 4S2 + 2S3)y3 +O(y5).

(10b)
For y ≫ 1 and finite S one obtains

BS(y) ≈ 1− e−y

S
. (10c)

The derivative of BS(y) is

B′
S(y) ≡

dBS(y)

dy
(11)

=
1

4S

{

csch2
(y

2

)

− (2S + 1)2csch2
[

(2S + 1)
y

2

]

}

.

From Eq. (10b), the lowest-order terms of a Taylor series
expansion of B′

S(y) about y = 0 are

B′
S(y) =

S + 1

3
− 1 + 3S + 4S2 + 2S3

30
y2 +O(y4). (12)

The magnetic induction in Eq. (9b) is

Bi = Hexch i +H‖i, (13)

where Hexch i is the component of the exchange field par-
allel to magnetic moment ~µi and H‖i = µ̂i · H is the
component of the applied magnetic field in the direction
of ~µi. We define the direction of approach to a transition
temperature by superscript + and − symbols. Thus on
approaching the AF ordering temperature from below,
denoted as T → T−

N , an infinitesimal nonzero ordered
moment develops even in the absence of an applied mag-
netic field. One can Taylor expand the Brillouin function

for small arguments using Eq. (10b), and then Eq. (9a)
becomes

µi =
g2µ2

BS(S + 1)

3kBTN
Bi =

g2µ2
BS(S + 1)

3kBTN
(Hexch i +H).

(14)
For H = 0 one obtains

µ0 =
g2µ2

BS(S + 1)

3kBTN
Hexch i0. (15)

Substituting Eq. (8) for Hexch i0 into (15) gives the most
general expression for the AF ordering temperature in
MFT for a system of identical crystallographically equiv-
alent spins interacting by Heisenberg exchange as

TN = −S(S + 1)

3kB

∑

j

Jij cosφji. (16)

This equation also predicts the magnetic ordering tem-
perature (Curie temperature TC) of a ferromagnet where
φji = 0 and

∑

j Jij < 0. By comparing Eqs. (8) and (16),
one can write the zero-field exchange field Hexch i0 seen
by each magnetic moment ~µi0 as

Hexch i0 =
TN

C1
~µi0

Hexch 0 =
TN

C1
µ0,

(17a)

where the magnitude Hexch 0 of the exchange field in
H = 0 seen by each spin is the same for all spins be-
cause of their crystallographic equivalence, hence the
subscript i is dropped, and the single-spin Curie constant
C1 is defined as3

C1 =
g2µ2

BS(S + 1)

3kB
. (17b)

Equations (7), (8) and (17a) for the exchange field do
not make any reference to magnetic moments other than
the central magnetic moment ~µi and its generic neigh-
bors. In particular, the exchange field and relative mag-
netic moment direction in H = 0 are determined solely
by the local interactions of each magnetic moment with
its neighbors. Thus we do not define or identify distinct
magnetic sublattices in our formulation of MFT, in con-
trast to traditional approaches.
We define the reduced zero-field ordered moment and

reduced temperature respectively as

µ̄0 =
µ0

µsat
=

µ0

gSµB
, (18a)

t =
T

TN
, (18b)

where the saturation moment µsat of spin S is given by
Eq. (9c). The zero-field exchange field in the direction of
~µi in Eq. (17a) becomes

Hexch 0 =
3kBTNµ̄0

(S + 1)gµB
. (19)
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Then Eq. (9a) for calculating the ordered moment µ0

versus T in H = 0 can be compactly written as12

µ̄0 = BS(y0), with y0 =
3µ̄0

(S + 1)t
, (20)

and the Brillouin function BS(y0) is given in Eq. (10a).
This zero-field expression is valid within MFT for ferro-
magnets and both collinear and noncollinear AFs. Plots
of the zero-field reduced ordered moment µ̄0 versus re-
duced temperature t for several spin S values according
to Eq. (20) are shown in Fig. 10 of Ref. 12. The order
parameter for an AF transition is the single-spin ordered
moment. From Fig. 10 of Ref. 12, one sees that the or-
dered moment increases continuously from zero on enter-
ing the AF state from above. Thus the transition is a
continuous (second-order) transition with no latent heat.
The total temperature derivative dµ̄0/dt is calculated

from Eq. (20) as

dµ̄0

dt
= − µ̄0(t)

t
[

(S+1)t
3B′

S
(y0)

− 1
] , (21)

whereB′
S(y0) ≡ dBS(y)/dy|y=y0

and the function B′
S(y0)

is given in Eq. (11).
The expression for µ̄0 versus t in Eq. (20) is an ex-

ample of a so-called “law of corresponding states” for a
given spin S. Spin systems are said to be in correspond-
ing states when their reduced state variables such as t
and µ̄0 have the same values, respectively. Thus when
an equation in reduced variables such as Eq. (20) is a
law of corresponding states, the equation applies equally
well to different spin systems with the same S but with,
e.g., different exchange constants and Néel temperatures,
which are implicitly contained in the reduced variables t
and µ̄0. Many other laws of corresponding states for spin
systems with the same S are obtained in later sections
because we usually write MFT predictions in terms of
universal reduced variables.
Using the Taylor series expansion in Eq. (10b) of the

Brillouin function for small arguments to order y30 ap-
propriate for t → 1− and solving for µ̄0(t) yields the
behaviors on approaching the Néel temperature t = 1 to
the lowest two orders as

µ̄2
0 =

10(1 + S)2

3(1 + 2S + 2S2)
(1− t) (t → 1−) (22a)

+
25(1 + S)2(3 + 12S + 28S2 + 32S3 + 16S4)

21(1 + 2S + 2S2)3
(1 − t)2

µ̄0 =

√

10
3 (1 + S)

√
1 + 2S + 2S2

(1 − t)1/2 (t → 1−) (22b)

+
5
√

5
6 (1 + S)(1 + 2S + 4S2)(3 + 6S + 4S2)

14(1 + 2S + 2S2)5/2
(1− t)3/2.

The leading
√
1− t temperature dependence of the or-

der parameter [the ordered moment in Eq. (22b) in this

case] is characteristic of the critical behavior predicted
by mean-field theories of second-order phase transitions
on approach to the ordering temperature from below.
In H = 0, the magnetic energy per spin Emag/N is

defined within MFT by Eq. (5) as

Emag

N
= −1

2
~µi ·Hexch i, (23)

where N is the number of spins. Then using the rela-
tions ~µi ‖ Hexch i for H = 0 and therefore ~µi · Hexch i =
µ0Hexch 0 and also using Eqs. (18) and (19) one obtains
the magnetic energy per spin as

Emag

NkB
= − 3STN

2(S + 1)
µ̄2
0. (24)

B. Magnetic Heat Capacity

Using Eqs. (18b) and (24), the molar magnetic con-
tribution Cmag(t) to the heat capacity in zero applied
magnetic field is given in MFT by

Cmag(t)

R
= − 3S

2(S + 1)

dµ̄2
0(t)

dt
= − 3S

S + 1
µ̄0(t)

dµ̄0(t)

dt
,

(25)
where we have set N = NA, NA is Avogadro’s number
and R = NAkB is the molar gas constant. Substituting
dµ̄0/dt from Eq. (21) into the second equality in Eq. (25)
yields

Cmag(t)

R
=

3Sµ̄2
0(t)

(S + 1)t
[

(S+1)t
3B′

S
(y0)

− 1
] . (26)

Thus Cmag(t) for H = 0 is determined solely by the
spin S and by the temperature dependence of the re-
duced ordered moment and hence is a law of corre-
sponding states for a given S. Plots of Cmag(t)/R for
various values of S from the minimum quantum value
S = 1/2 to the classical limit (S → ∞) are shown in
Fig. 11 of Ref. 12. The magnetic entropy Smag at TN

calculated from Cmag(T ) for each of the finite S val-
ues satisfies the quantum statistical mechanics prediction
Smag(T → ∞) = R ln(2S + 1).
One can obtain the behavior of Cmag for t → 1− by

taking the temperature derivative of µ̄2
0(t) in Eq. (22a)

and inserting the result into the first equality in Eq. (25),
yielding

Cmag

R
=

5S(1 + S)

1 + 2S + 2S2
(t → 1−) (27a)

+
25S(1 + S)(3 + 12S + 28S2 + 32S3 + 16S4)

7(1 + 2S + 2S2)3
(1− t).

Since Cmag = 0 for t > 1 as seen in Fig. 11 of Ref. 12,
the heat capacity jump on cooling below TN in Fig. 11 of
Ref. 12 is given by Eq. (27a) as

∆Cmag

R
=

5S(1 + S)

1 + 2S + 2S2
, (27b)
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FIG. 1: (Color online) Reduced ordered plus induced mo-
ment µ̄i ≡ µi/µsat versus reduced staggered magnetic field
h†

≡ gµBH
†/kBTN at the indicated reduced temperatures

t ≡ T/TN for (a) spin S = 1/2 and (b) spin S = 7/2. The
curves were calculated using Eqs. (28a) and (28d). The tem-
peratures of the curves from top to bottom are the same as
in the figure legends. The behaviors for a single-domain fer-
romagnet are identical to those shown, with the reduced uni-
form field h ≡ gµBH/(kBTC) replacing the reduced staggered
field h†, where TC is the ferromagnetic ordering (Curie) tem-
perature.

which has the narrow range ∆Cmag/R = 3/2 for S = 1/2
to ∆Cmag/R = 5/2 for S → ∞.
Equations (20), (26) and (27) are generally applica-

ble to Heisenberg magnets containing identical crystal-
lographically equivalent spins in H = 0 within MFT in-
cluding FMs and both collinear and noncollinear AFs.

C. Staggered Magnetization versus Staggered

Magnetic Field Isotherms

If one applies a parallel field to a single-domain FM
below the Curie temperature, at zero field the ordered
moment is µi. On increasing the field µi increases be-
cause it accrues a field-induced moment that increases

with increasing field. Similarly, in an AF, one can imag-

ine a staggered magnetic field H
†
i for each ordered mo-

ment ~µi that is applied in the direction of each moment
in the sample and is therefore also in the direction of the

exchange field Hexch i for each moment. Thus H
†
i does

not change the angles of the spins with respect to each

other, irrespective of the magnitude of H†
i . Due to the

assumed crystallographic equivalence of each spin, the

magnitude H†
i is independent of i and hence we write it

as H†. The expression for the exchange field Hexch i for
that moment is therefore the same as that for Hexch0 i

in Eq. (19) but with a field-dependent µ̄i replacing µ̄0.
The magnitude Hexch0 i is the same for each moment and
hence we drop the index i. Within MFT, the dependence
of µi on H in a FM is identical to the dependence of µi on
H† in an AF. This equivalence applies to both collinear
and noncollinear AFs. The calculations in the present
and following section are not usually presented when the
predictions of MFT are discussed.
Here we calculate the ordered plus induced moment µi

of each spin i versus H† for an AF below its TN. From
Eqs. (9) and (13), one has

µ̄i = BS(y), (28a)

where

y =
gµB

kBT
(Hexch0 +H†). (28b)

Using Eq. (19) and defining the reduced staggered field

h† ≡ gµBH
†

kBTN
, (28c)

the variable y in Eq. (28b) becomes

y =
3µ̄i

(S + 1)t
+

h†

t
, (28d)

where we have used the definition of the reduced temper-
ature t in Eq. (18b).
Numerical solutions of Eqs. (28a) and (28d) for µ̄i ver-

sus h† were obtained for spins S = 1/2 and S = 7/2 and
the results are plotted in Fig. 1 for seven values of t < 1.
The values of µ̄i at h

† = 0 are the ordered moments for
these spin values at the respective temperatures in Fig. 3
below. The initial slope of µ̄i versus h

† increases with in-
creasing t and diverges to ∞ for t → 1−. This means that
the reduced staggered susceptibility χ† ≡ (µ̄i/h

†)|h†→0

increases with increasing t and diverges for t → 1−, which
also means that χ ≡ (µ̄i/h)|h→0 diverges for a single-
domain FM on approaching its Curie temperature from
below. Indeed, the t-dependent values of χ(t) for a single-
domain FM and for χ†(t) of collinear and noncollinear
AFs for t < 1 are identical within MFT. For a bulk FM
χ(t) is difficult to measure in the FM-ordered state due
to formation of multiple FM domains and their relative
size and number dependence on field, which introduces a
contribution to the uniform M(H) behavior beyond that
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predicted by MFT. For AFs, it is usually not possible
to apply a real staggered magnetic field. However, the
staggered susceptibility of an AF can be determined in-
directly from inelastic neutron scattering measurements.
At t = 1, the system is in the PM state since the

ordered moment is zero at that temperature. We define
the reduced uniform magnetic field h for a paramagnet
as

h ≡ gµBH

kBTN
. (29)

By expanding Eq. (28a) at t = 1 to third order in µ̄i and
first order in h with y given by Eq. (28d) with h replac-
ing h† and solving for µ̄i gives the asymptotic isothermal
critical magnetization versus field at the ordering tem-
perature as

µ̄i = (S + 1)

[

10

9(1 + 2S + 2S2)

]1/3

h1/3 (t = 1, h → 0).

(30)
This shows that the initial dependence of µ̄i versus h at
t = 1 in Fig. 1 has an infinite slope for h → 0.

D. Staggered Magnetic Susceptibility

As seen from Fig. 1, for t < 1 the initial behavior of µ̄i

of an AF versus h† is

µ̄i(t, h
†) = µ̄0(t) + χ†(t)h†, (31)

where the reduced staggered susceptibility χ† is the ini-
tial slope of [µ̄i(t, h

†) − µ̄0(t)] versus h†. Since µ̄i(t, h
†)

versus h† is nonanalytic at the critical temperature t = 1
and h† = 0 according to Eq. (30), one cannot utilize a
Taylor series expansion of Eq. (28a) about h† = 0 to cal-
culate χ†(t). Instead one must obtain numerical values
from the expression

χ†(t) =
µ̄i(t, h

†)− µ̄0(t)

h†
, (32)

where h† has a value sufficiently small to obtain the re-
quired accuracy for χ†(t) at a given t. The zero-field or-
dered moment µ̄0 is calculated from Eq. (20) and µ̄i(h

†)
from Eqs. (28a) and (28d). Here, we used the fixed value
h† = 10−9, which gave an accuracy for the calculated
χ†(t) of better than 0.01% for t < 0.995.
The results for χ†(t < 1) are shown in Fig. 2(a) for

spins S = 1/2, 3/2, 5/2 and 7/2. The inverse stag-
gered susceptibilities are shown in Fig. 2(b), where the
respective dashed straight lines are the inverses of the
asymptotic Curie-Weiss-like critical behaviors given in
Eq. (45a) below. The uniform χ(t < 1) for a single-
domain Heisenberg FM containing spins S is identical
to the above result for χ†(t < 1) for the Heisenberg AF
with the same S, with the changes in notation given in
the caption of Fig. 1.
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FIG. 2: (Color online) (a) Reduced staggered magnetic sus-
ceptibility χ† and (b) its inverse for Heisenberg antiferromag-
nets with spins S = 1/2, 3/2, 5/2 and 7/2 versus reduced
temperature t = T/TN. The straight dashed lines in (b) are
extrapolations of the respective asymptotic Curie-Weiss-like
critical behaviors for 1/χ† at t → 1− in Eq. (45a). These
asymptotic critical behaviors are seen to be followed only at
temperatures very close to TN.

IV. STATIC CRITICAL EXPONENTS AND

AMPLITUDES

The static critical exponents α, α′, β, γ, γ′ and δ
and the corresponding dimensionless reduced amplitudes
a, a′, b, g, g′ and d for magnetic systems are defined
by Stanley, where the values obtained in mean-field the-
ory for the critical exponents are given, together with the
critical amplitudes for spin S = 1/2.13 Here we calculate
the critical exponents and amplitudes and give the gen-
eral dependences of the critical amplitudes on the spin S,
which upon setting S = 1/2 are found to agree with the
corresponding values calculated in Ref. 13 for S = 1/2.
The described critical behaviors are the same for collinear
and noncollinear AFs. Furthermore, because the thermo-
dynamic properties at H = 0 in MFT of a single-domain
ferromagnet and an antiferromagnet are the same, with



7

the reduced uniform field h and magnetic susceptibility χ
and the Curie temperature TC of a ferromagnet replac-
ing the reduced staggered field h† and staggered magnetic
susceptibility χ† and the Néel temperture TN of an an-
tiferromagnet, respectively, the static critical exponents
and amplitudes are the same within MFT for FM and
AF ordering.

1. Magnetic Heat Capacity

The critical behaviors of the molar magnetic heat ca-
pacity are defined by

Cmag

R
= a(t− 1)α (t → 1+), (33a)

Cmag

R
= a′(1− t)α

′

(t → 1−). (33b)

From Sec. III B, Cmag has the constant value of zero for
t → 1+. Therefore one obtains

α = 0, a = 0 (t → 1+). (34)

Equation (27a) shows that Cmag approaches the given
finite value on approaching TN from below, yielding

α′ = 0, a′ =
5S(1 + S)

1 + 2S + 2S2
(t → 1−). (35)

2. Order Parameter

The order parameter for a FM is the uniform magneti-
zation and that for an AF is the staggered magnetization
(the ordered moment per spin). In a finite uniform field
there is no FM phase transition because the order pa-
rameter for that transition (the uniform magnetization)
is greater than zero at all finite temperatures. In either
case, for H = 0 and H† = 0, respectively, and t → 1−

one has the same equation defining the critical exponent
and amplitude given by

µ̄0 = b (1− t)β . (36)

From Eq. (22b), the asymptotic critical behavior for t →
1− is

µ̄0 =

√

10
3 (1 + S)

√
1 + 2S + 2S2

(1 − t)1/2 (t → 1−). (37)

Comparing Eq. (37) with (36) gives the critical exponent
and amplitude as

β =
1

2
, b =

√

10
3 (1 + S)

√
1 + 2S + 2S2

. (38)

Comparisons of µ̄0 versus t for spins S = 1/2, 3/2
and ∞ (classical) from Fig. 10 of Ref. 12 with the asymp-
totic critical behaviors predicted by Eq. (37) are shown

0.0
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S = 7/2

Classical

T / T
N

FIG. 3: (Color online) Comparisons of the normalized ordered
moment µ̄0 ≡ µ0/µsat versus reduced temperature t = T/TN

for spins S = 1/2, 3/2 and ∞ (classical) (solid curves) from
Fig. 10 of Ref. 12 with the respective asymptotic critical be-
haviors predicted by Eq. (37) (dashed curves). The asymp-
totic critical behaviors describe the calculations rather well
for t >∼ 0.9. The order of the curves from top to bottom is the
same as in the figure legend.

in Fig. 3. One sees that the calculations follow the crit-
ical behavior for t >∼ 0.9. Quantitatively, the critical
behavior values are larger than the calculations by 1% at
t ≈ 0.97 (S = 1/2, ∞) and by 5% at t ≈ 0.89 for S = 1/2
and at t ≈ 0.84 for S = ∞.

3. Critical Magnetization versus Staggered Field Isotherm

At the critical temperature t = 1, there is no spon-
taneous (ordered) moment in zero field but a nonzero
moment can be induced in the direction of an applied
field H . The critical exponent δ and amplitude d for the
critical (t = 1) magnetization versus field isotherm are
defined in terms of our dimensionless reduced units by

h = d |µ̄i|δsgn(µ̄i) (µ̄i → 0, t = 1), (39)

where the reduced field h is defined in Eq. (29). If δ is
an integer, this relation becomes

h = d µ̄δ
i (µ̄i → 0, t = 1). (40)

Within MFT, Eq. (30) yields

h =

[

9(1 + 2S + 2S2)

10(1 + S)3

]

µ̄3
i . (41)

Comparing Eq. (41) with (40) gives the critical expo-
nent and amplitude as

δ = 3, d =
9(1 + 2S + 2S2)

10(1 + S)3
. (42)
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FIG. 4: (Color online) Comparisons of the critical (t = 1) nor-
malized induced moment µ̄i ≡ µi/µsat versus reduced mag-
netic field h ≡ gµBH/kBTN for spins S = 1/2, 3/2 and 7/2
(solid curves) calculated from Eqs. (28a) and (28d) together
with the respective asymptotic critical behaviors predicted by
Eq. (30) (dashed curves). The order of each set of dashed and
solid curves from top to bottom is the same as in the figure
legend.

Critical magnetization versus field isotherms at t = 1
for spins S = 1/2, 3/2 and 7/2 calculated with Eqs. (28a)
and (28d) with h replacing h† are compared with the cor-
responding asymptotic critical behaviors predicted from
Eq. (30) in Fig. 4. There is no ordered moment at t = 1
and hence the induced moment is in the PM regime with
all induced moments lined up with the field H. One sees
that the asymptotic critical behaviors are followed by the
corresponding µ̄i versus h calculations only very close to
h = 0.

4. Magnetic Susceptibility

To obtain the asymptotic isothermal magnetic suscep-
tibilities for t → 1± we follow Stanley’s exposition for a
single-domain ferromagnet13 and first expand Eq. (28a)
using (28d) in a Taylor series to first order in h† and
∆t ≡ t− 1 and to third order in µ̄i and obtain

0 =

(

1 + S

3

)

(1−∆t)h† −∆t µ̄i (43)

−
[

3(1 + 2S + 2S2)

10(1 + S)2

]

(1− 3∆t)µ̄3
i .

For t < 1 one has µ̄i > 0 for h = 0. Taking the partial
derivative of both sides with respect to h† and recogniz-
ing that ∂µ̄i/∂h

† ≡ χ†, where χ† is the dimensionless

reduced staggered susceptibility, gives

0 =

(

1 + S

3

)

(1−∆t)− χ†∆t (44)

− χ†

[

9(1 + 2S + 2S2)

10(1 + S)2

]

(1− 3∆t)µ̄2
i .

Inserting the asymptotic critical behavior for µ̄i in
Eq. (37) into (44) one obtains

χ† =
(1 + S)/6

1− t
(t → 1−), (45a)

where we have used the definition ∆t = −(1 − t). This
has the form of a Curie-Weiss-like law even though it
applies to the ordered state.

In the PM temperature regime t ≥ 1, the third term in
Eq. (43) is negligible compared to the second, and from
Eq. (43) one obtains

χ† ≡ µ̄i

h
=

(1 + S)/3

t− 1
(t → 1+), (45b)

which is a Curie-Weiss law where the Curie constant is a
factor of two larger than in Eq. (45a) for the temperature
regime t < 1 as noted by Stanley.13

The critical exponents and amplitudes for the isother-
mal staggered susceptibility of an AF are defined by

χ† = g′ (1 − t)−γ′

(t → 1−), (46a)

χ† = g (t− 1)−γ (t → 1+), (46b)

where the direction of the staggered field for each spin
for t > 1 is the same as for t < 1. Comparing Eqs. (45)
with (46) gives the respective exponents and amplitudes
as

γ = 1, γ′ = 1, (47a)

g =
S + 1

3
, g′ =

S + 1

6
. (47b)

The straight dashed lines in Fig. 2(b) are plots of the
asymptotic critical behaviors at t < 1 of the inverse stag-
gered susceptibility of an AF obtained from Eq. (45a) for
spins S = 1/2, 3/2, 5/2 and 7/2. As seen from the fig-
ure, the asymptotic critical behavior for each spin value
is only realized at temperatures very near TN.

Thus the staggered susceptibility of an AF diverges on
approaching TN both from below and above. For T ≥ TC,
the uniform susceptibility of a FM diverges for T → T+

C ,
whereas as discussed in the following section, the uniform
susceptibility of an AF does not diverge at TN. Another
way of saying this is that a uniform applied magnetic
field does not directly couple to the AF order parame-
ter, which is the staggered magnetization instead of the
uniform magnetization as for a FM.
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V. THE CURIE-WEISS LAW FOR

TEMPERATURES IN THE PM REGIME

In the PM state at temperatures above TN, the thermal
average of each magnetic moment is in the direction of
the applied field. Hence αji = 0 in Eq. (7) and one
obtains

Hexch i = − µi

g2µ2
B

∑

j

Jij , (48)

where µi is the thermal-average magnetic moment in the
direction of H, which is the same for all spins and can
therefore be taken out of the sum. Then Eqs. (9), (10b)
and (48) yield the Curie-Weiss law

χ(T ) =
µi

H
=

C1

T − θp
(49a)

with

θp = −S(S + 1)

3kB

∑

j

Jij , (49b)

where the single-spin Curie constant C1 is given above in
Eq. (17b) and θp is the Weiss temperature. It is possible
for a system of interacting spins to have a Curie-law sus-
ceptibility (θp = 0). From Eq. (49b), this can happen if
the sum of the exchange constants accidentally satisfies
∑

j Jij = 0.

One can write calculations of χ(T ) for local moment
Heisenberg AFs within MFT in terms of the physically
measurable ratio

f ≡ θp
TN

=

∑

j Jij
∑

j Jij cosφji
, (50)

where for the second equality Eqs. (16) and (49b) were
used. For a FM, φji = 0 for all j, and hence f = 1.
For AFs, at least one of the Jij has to be positive (AF
interaction) and at least one of the φji 6= 0, leading to
f < 1. Thus within MFT, if AF ordering is caused solely
by exchange interactions, one requires

−∞ < f < 1. (51)

By definition TN > 0, whereas θp for an AF can be either
negative (the usual case) or positive, leading via the first
equality in Eq. (50) to a corresponding negative or pos-
itive value of f . The latter result occurs when the dom-
inant Jij interactions are FM (negative), but where AF
(positive) interactions cause the overall magnetic struc-
ture to be AF. For AFs, |f | is called the “frustration
parameter” for AF ordering.14–16 A value |f | ≫ 1 means
that TN is suppressed far below the value |θp| expected
from MFT for bipartite AFs with equal nearest-neighbor
interactions, which is suggestive of strong frustration ef-
fects for AF ordering that arise from geometric and/or
bond frustration.

The Curie-Weiss law in Eq. (49a) can be written as a
law of corresponding states

χ(t)TN

C1
=

1

t− f
(T ≥ TN), (52a)

where the reduced temperature t was previously defined
in Eq. (18b). The right side of Eq. (52a) has no explicit
dependence on S, on the detailed type of spin lattice, or
on the exchange constants in the system. These quanti-
ties are implicitly contained in t and f . At the ordering
temperature T = TN (t = 1), Eq. (52a) gives

χ(TN)TN

C1
=

1

1− f
. (T = TN) (52b)

The ratio of the isotropic χ(T > TN) to χ(T = TN) is
given by Eqs. (52) as

χ(t)

χ(TN)
=

1− f

t− f
(T ≥ TN). (53)

Since the left-hand side of Eq. (52b) must necessarily
be positive, MFT and the Heisenberg model require the
right-hand side also to be positive. This constrains f to
be in the range already given in Eq. (51). This equality
can be violated in practice if the Heisenberg model and
MFT are inadequate to describe the spin system in the
PM state above TN.
From Eqs. (16) and (49b), one obtains

TN − θp =
S(S + 1)

3kB

∑

j

Jij(1 − cosφji), (54)

where φji is the angle between ordered moments j and i
in the ordered AF state with H = 0. Using Eq. (54), the
(isotropic) PM susceptibility at the Néel temperature is
given by the Curie-Weiss law (49a) as

χ(TN) =
C1

TN − θp
(55a)

=
g2µ2

B
∑

j Jij(1− cosφji)
, (55b)

which, perhaps surprisingly, is independent of S.

A. Van Vleck’s Solution for TN and θp

Van Vleck’s solution for TN and θp for the bipartite AF
with identical nearest-neighbor AF interactions J > 0 be-
tween identical spins using the two-sublattice formulation
of MFT theory is5

TN =
S(S + 1)zJ

3kB
, (56a)

θp = −S(S + 1)zJ

3kB
, (56b)

f =
θp
TN

= −1, (56c)
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where z is the nearest-neighbor coordination number of
a magnetic moment by magnetic moments in the oppo-
site sublattice and f is defined in the first equality in
Eq. (50). Thus TN = −θp, where θp < 0 . By compar-
ing Eqs. (56) with (16) and (49b), one sees that in going
from Van Vleck’s theory to the general formulation of
the MFT, one replaces zJ in Eq. (56a) by−∑

j Jij cosφji

and zJ in Eq. (56b) by
∑

j Jij . Van Vleck’s value f = −1
is very restrictive compared with the range of values in
Eq. (51) allowed by the general expression (50).

B. Van Vleck’s Solution for Anisotropic Magnetic

Susceptibility in the Antiferromagnetic State

In this paper we consider Heisenberg spin systems con-
taining identical crystallographically equivalent spins in
which the magnetic structure contains ordered magnetic
moments that are all aligned within the same plane.
Collinear spin systems and also planar helical and cy-
cloidal noncollinear magnetic structures all fall into this
category, and therefore have either one axis (for pla-
nar noncollinear magnetic structures) or two axes (for
collinear magnetic structures) that are perpendicular to
the plane or axis of the ordered moments, respectively.
The MFT prediction for the perpendicular susceptibility
per spin χ⊥ of such systems for T ≤ TN all have the same
behavior, and as shown in Sec. VIIA below is given by

χ⊥(T ≤ TN) = χ(TN) =
C1

TN − θp
, (57)

which is the same as has been previously derived for sev-
eral special cases,5,8,12 where the second equality is ob-
tained from the Curie-Weiss law in Eq. (49a).
Van Vleck’s MFT solution5 for χ‖(T ≤ TN) per spin

of a collinear bipartite AF with only nearest-neighbor
interactions in his Eq. (15) is given in our dimensionless
notation as

χ‖(t)TN

C1
=

1

τ∗(t) + 1
, (58a)

where we define the dimensionless variable τ∗ containing
the reduced temperature t as

τ∗(t) =
(S + 1)t

3B′
S(y0)

(58b)

and B′
S(y0), t and y0 are defined above in Eqs. (11), (18b)

and (20), respectively. Using the first term in the Taylor
series expansion of B′

S(y0) in Eq. (12), when T = TN

(t = 1), Eq. (58b) becomes

τ∗(t = 1) = 1 (58c)

and Eq. (58a) yields a value of χ‖(t = 1) that is the
same as predicted at TN by the Curie-Weiss law (52b)

using f = −1 in Eq. (56c), as required. From Eqs. (58a)
and (58c) one obtains

χ‖(TN)TN

C1
=

1

2
(T = TN), (59)

which together with Eq. (58a) gives

χ‖(T )

χ‖(TN)
=

2

τ∗(t) + 1
. (60)

When t → 0, B′
S(y, t → 0) → 0 exponentially, τ∗(t →

0) = ∞, and from Eq. (58a) one gets

χ‖(t → 0) = 0. (61)

Plots of χ‖(t)TN/C1 versus t for f = −1 and spins S =
1/2 and S = 7/2 for t < 1 and t > 1 derived from
Eqs. (58a) and (52a), respectively, are given below in
Fig. 5 and corresponding plots of the ratio χ‖(T )/χ‖(TN)
versus t obtained from Eqs. (60) and (53) are given in
Fig. 6 below.

C. Magnetization versus Field in the Paramagnetic

State

The PM state is a state in which there is no long-
range magnetic order induced by interactions between
the moments. Let the applied field be in the +z direction
according to convention. In the PM state, each thermal-
average magnetic moment points in the direction of H,
and the exchange field (6) thus also points in the direction
of H with z-component

Hexch z = − µz

g2µ2
B

∑

j

Jij , (62)

which is the same for all spins i and hence the subscript i
has been dropped. Defining the reduced magnetic mo-
ment

µ̄z ≡ µz

µsat
, (63)

the exchange field can be written

Hexch z = − µ̄zS

gµB

∑

j

Jij . (64)

Using Eq. (49b), Eq. (64) becomes

Hexch z =
3µ̄zkBθp

gµB(S + 1)
(65a)

and we therefore have

gµBHexch z

kBT
=

3µ̄zθp
(S + 1)T

. (65b)
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Now Eq. (9a) becomes

µ̄z = BS

[

3µ̄zθp
(S + 1)T

+
gµBH

kBT

]

. (66)

For H → 0, using only the first term in the Taylor series
expansion (10b), Eq. (66) becomes the Curie-Weiss law
µz = C1H/(T − θp) in Eq. (49a).
In terms of the reduced temperature in Eq. (18b) and

the reduced magnetic field in Eq. (29), Eq. (66) becomes

µ̄z = BS

[

3µ̄zf

(S + 1)t
+

h

t

]

, (t ≥ 1) (67)

where the measurable ratio f = θp/TN is given in terms of
the exchange constants and the AF structure in Eq. (50).
This is the equation of state in MFT, in the form of a law
of corresponding states for a given value of S, for the PM
phase that relates the measurable reduced state variables
µ̄z, t and h to each other. Equation (67) must be solved
numerically for µ̄z for given values of S, f , h and t.

VI. UNIFORM PARALLEL SUSCEPTIBILITY

OF COLLINEAR ANTIFERROMAGNETS

BELOW THEIR NÉEL TEMPERATURES

Here we generalize Van Vleck’s MFT calculation of
χ‖(T ) at T ≤ TN for collinear AF structures5 to include
cases where the spin lattice can have a discrete distribu-
tion of exchange interactions with its neighbors includ-
ing possibly frustrating interactions. As in Van Vleck’s
theory, we consider the spins to be identical and crys-
tallographically equivalent. Most physical realizations of
Heisenberg spin lattices showing collinear spin ordering
are in this general category. In particular, very few, if
any, real collinear AFs exactly satisfy the Van Vleck the-
ory requirement that f = −1. Indeed, Eq. (51) shows
that a large range of f values is possible.
In order to develop a formulation of MFT that does

not use the concept of magnetic sublattices, one must
self-consistently calculate the exchange field Hexch i seen
by a representative ordered moment ~µi, where both ~µi

and Hexch i are changed by the applied magnetic field H.
When H is applied along the axis of a collinear magnetic
structure at temperatures 0 < T < TN, the magnetic field
increases the magnitudes of the ordered moments parallel
to H and decreases those antiparallel to H. In the limit
of small H , one can express this qualitative expectation
for the magnitude µj of an arbitrary magnetic moment
~µj as

µj = µ0 + δmaxµ̂j ·H = µ0 + δmaxH cosφj , (68)

where µ0 is the temperature-dependent magnitude of the
ordered moment in H = 0, δmax is a constant to be deter-
mined and φj is the angle between ~µj and H for H = 0.
For a collinear AF structure one has the two possibilities
φj = 0 or 180◦. In this section, without loss of gen-
erality our central magnetic moment ~µi in the collinear

AF structure is chosen to be in the direction of H, i.e.,
φi = 0. Thus, for the central magnetic moment ~µi one
has

µi − µ0 = δmaxH. (69)

Furthermore, the angle φji between magnetic moments
~µj and ~µi is the same as φj and Eq. (68) becomes

µj = µ0 + δmaxH cosφji. (70)

Since φji = 0 or 180◦, the component of the exchange
field Hexch i in the direction of ~µi is given by Eq. (7) with
αji = φji as

Hexch i = − µ0

g2µ2
B

∑

j

Jij cosφji −
δmaxH

g2µ2
B

∑

j

Jij cos
2 φji

= Hexch i0 −
δmaxH

g2µ2
B

∑

j

Jij , (71)

where we have used Eq. (8) for the first term and
cos2 φji = 1 in the second.
Using the definition of µ̄ in Eq. (18a), Eq. (69) becomes

δmaxH = gSµB(µ̄i − µ̄0). (72)

Substituting this into Eq. (71) gives

Hexch i = Hexch i0 −
S(µ̄i − µ̄0)

gµB

∑

j

Jij . (73)

From Eqs. (49) one has

∑

j

Jij = − 3kBθp
S(S + 1)

. (74)

Substituting this into Eq. (73) gives

Hexch i −Hexch i0 =
3kBθp(µ̄i − µ̄0)

(S + 1)gµB
. (75)

Using Eqs. (9) one obtains

µ̄i = BS

[

gµB

kBT
(Hexch i +H)

]

. (76)

Taylor expanding the Brillouin function about H = 0 to
first order in H gives

µ̄i = BS

(

gµB

kBT
Hexch i0

)

(77)

+

[

gµB

kBT
(Hexch i −Hexch i0 +H)

]

B′
S(y0),

where y0 is defined in Eq. (20) and the expression for
B′

S(y0) is given in Eq. (11). From Eq. (20), the first term
is just µ̄0 and we substitute Eq. (75) into the second term
to obtain

µ̄i − µ̄0 =

[

3(µ̄i − µ̄0)θp
(S + 1)T

+
gµBH

kBT

]

B′
S(y0), (78)
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Solving for µ̄i − µ̄0 gives

µ̄i − µ̄0 =

(S+1)gµBH
3kB

(S+1)T
3B′

S
(y0)

− θp
. (79)

Utilizing the definition µ̄i − µ̄0 = (µi − µ0)/(gµBS) as in
Eq. (18a), one obtains

µi − µ0 =
C1H

(S+1)T
3B′

S
(y0)

− θp
, (80)

where the single-spin Curie constant C1 is defined in
Eq. (17b).
The parallel susceptibility per spin is obtained from

Eq. (80) as

χ‖(T ) =
µi − µ0

H
=

C1

(S+1)T
3B′

S
(y0)

− θp
. (81)

Multiplying both sides of Eq. (81) by TN and dividing
both sides by C1 gives the dimensionless law of cor-
responding states for the parallel susceptibility for a
given S as

χ‖(t)TN

C1
=

1

τ∗(t)− f
, (82a)

where the definition of τ∗(t) is given in Eq. (58b) and is
a function of S in addition to t. Equation (82a) becomes
identical to Van Vleck’s prediction in Eq. (58a) by set-
ting f to his value f = −1. Another previous special case
described by Eq. (82a) is the two-sublattice collinear AF
with equal couplings between spins in the same and op-
posite sublattices, respectively [see Eq. (4.18) in Ref. 6].
As noted previously in Eq. (58c), τ∗(t = 1) = 1, so the

isotropic susceptibility at TN is predicted by Eq. (82a) to
be

χ(t = 1)TN

C1
=

1

1− f
(T = TN). (82b)

Equation (82b) for χ(TN) is identical with the prediction
of the Curie-Weiss law at TN in Eq. (52b), as required.
This is an important consistency check.
The parallel susceptibility normalized by the isotropic

value at TN is obtained by dividing Eq. (82a) by (82b),
yielding

χ‖(T )

χ(TN)
=

1− f

τ∗(t)− f
, (82c)

which only depends on the experimentally accessible pa-
rameters t, f and χ(TN), and the spin S that one can
often estimate from chemical or other considerations.
The temperature dependence of χ‖ comes only from
τ∗(t), which also depends on S. The exchange constants
and spin lattice geometry do not appear explicitly in
Eqs. (82a) or (82c) but are implicit in the values of f
and t, so these are laws of corresponding states for a

given S. By expanding Eq. (82c) in a Taylor series about
t = 1 to first order in 1− t, one obtains

χ‖(t)

χ(TN)
= 1− 2(1− t)

1− f
(t → 1−), (83)

where again the spin does not appear explicitly in this
expression. The initial slope d[χ‖(t)/χ(TN)]/dt = 2/(1−
f) near TN increases as f increases, where the allowable
range is −∞ < f < 1 as given in Eq. (51). We also
obtain

χ⊥ − χ‖(t) =
2(1− t)

1− f
χ(TN) (t → 1−), (84)

where χ(TN) = χ⊥(T ≤ TN) in MFT.
Plots of χ‖(T )TN/C1 versus T/TN for collinear antifer-

romagnets at T/TN ≥ 1 and T/TN ≤ 1 using Eqs. (52a)
and (82a), respectively, for several allowed values of f
are shown in Figs. 5(a) and 5(b) for spins S = 1/2
and S = 7/2, respectively. The plots for a given f are
the same above TN for the two spin values, but not be-
low. Plots of normalized χ‖(T )/χ(TN) versus T/TN for
T/TN ≥ 1 and T/TN ≤ 1 using Eqs. (53) and (82c),
respectively, for a large range of f values are shown in
Figs. 6(a) and 6(b) for spins S = 1/2 and S = 7/2, re-
spectively. One sees that the plots in Figs. 5 and 6 are
not particularly sensitive to the value of S, but are very
sensitive to the value of f .

VII. MAGNETIC SUSCEPTIBILITY OF

PLANAR NONCOLLINEAR

ANTIFERROMAGNETS

In the above-considered single-domain collinear
Heisenberg AFs, the orientations of the ordered moments
all lie along a single axis. In the present section we gener-
alize the MFT treatment to include noncollinear Heisen-
berg AFs where the ordered moments lie in a specified
plane that we denote as the xy-plane. The z axis is de-
fined in different ways depending on the type of mag-
netic structure and is not necessarily perpendicular to
the xy plane. For example, from Fig. 1 of Ref. 10 and
Fig. 1 of Ref. 11, the proper helix z axis is perpendicu-
lar to the xy plane and the cycloidal z axis is parallel to
the xy plane. Because of the different definitions of the
z axis, the out-of-plane direction is defined here as the

“perpendicular” (⊥) direction, where î×ĵ = ⊥̂. When the
theory is applied to specific compounds, the x, y, z and
⊥ axes are assigned to the appropriate crystallographic
directions.
We follow Yoshimori8 and calculate in MFT both the

out-of-plane (χ⊥) and in-plane (χxy) susceptibilities by
solving for the conditions under which the equilibrium
torque on a magnetic moment is zero in the presence of
the net sum of the exchange and applied magnetic fields.
Yoshimori calculated these susceptibilities specifically for
a proper helix magnetic structure for the body-centered
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FIG. 5: (Color online) Normalized magnetic susceptibility
parallel to the easy axis, χ‖(T )TN/C, versus temperature T
divided by the Néel temperature TN for the listed values of
f ≡ θp/TN and for spins (a) S = 1/2 and (b) S = 7/2. A
negative value of f reflects the dominance of antiferromag-
netic interactions, and a positive value ferromagnetic inter-
actions. All curves shown correspond to collinear antiferro-
magnetic ordering at T < TN. The data shown for T/TN ≥ 1
and T/TN ≤ 1 were obtained from Eqs. (52a) and (82a), re-
spectively. The data in the former range do not depend on
the spin S, but in the latter range they do. The maximum
range of f for Heisenberg antiferromagnets in MFT is given
by Eq. (51) as −∞ < f < 1.

tetragonal spin sublattice and for a specific configuration
of exchange interactions. In the following Secs. VIIA
and VIIB we generalize his treatment for calculating χ⊥

and χxy, respectively.

A. Magnetic Susceptibility Perpendicular to the

Ordering Plane

Since a collinear AF is a special case of a planar non-
collinear AF, the generic predictions for the perpendic-
ular susceptibility χ⊥ of the two types of ordering are
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FIG. 6: (Color online) Normalized magnetic susceptibility
parallel to the easy axis, χ‖(T )/χ(TN), versus temperature
T divided by the Néel temperature TN for the listed values of
f ≡ θp/TN and for spins (a) S = 1/2 and (b) S = 7/2. The
plots shown for T/TN ≥ 1 and T/TN ≤ 1 were obtained from
Eqs. (53) and (82c), respectively.

identical. The only assumptions made in this section for
planar AF ordering, in which the ordered moments for
H = 0 lie in the same xy plane, are that the spins are
identical and crystallographically equivalent. The spins
themselves do not have to occupy the same plane. The
crystallographic equivalence assumption means that the
spin coordination and exchange bond environment of ev-
ery spin are the same. To calculate the equilibrium con-
ditions on the parameters, we calculate the conditions
under which the net torque ~τi on a representative mag-
netic moment ~µi is zero

~τi = ~µi ×Bi = 0 (85)

or

~τi = ~µi × (Hexch i +H) = 0, (86)

where the magnetic induction seen by ~µi is

Bi = Hexch i +H. (87)
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γ

μxy

μ⊥

H μ

FIG. 7: Diagram showing the influence of an infinitesimal
magnetic field H along the ⊥ axis on each spin originally
aligned in the xy plane. The H induces a tilting of each
ordered magnetic moment ~µ towards the magnetic field di-
rection by an angle γ (radian measure), which results in an
induced ⊥-axis component µ⊥ of ~µ. The angle γ is greatly
exaggerated for clarity. To first order in γ ∝ H the magnitude
of the ordered moment µ0 in H = 0 is unaffected by H.

The χ⊥ is calculated with the magnetic field applied

along the ⊥̂ = î× ĵ direction, i.e.,

H = H⊥̂.

When calculating magnetic susceptibilities, we con-
sider a representative central ordered moment ~µi that in-
teracts with its neighboring ordered moments ~µj . To cal-
culate χ⊥ we use cylindrical coordinates for the moment
directions where the ⊥ axis is the cylindrical axis and the

moments in H = 0 are aligned within the xy plane. To
first order in the deviation angle γ in Fig. 7, one has

~µi = µ0(cosφi î+ sinφi ĵ+ γ ⊥̂)

~µj = µ0(cosφj î+ sinφj ĵ+ γ ⊥̂),
(88)

where µ0 is the magnitude of the ordered moment of each
spin in zero field at the particular temperature T < TN of
interest and φi and φj are the respective azimuthal angles
of ~µi and ~µj with respect to the positive x axis. From
Eqs. (88) the ordered moment is independent of γ to first
order in γ (or to first order in H , since we will find that
H ∝ γ). In this and the following section we express the
azimuthal angle φj of a neighboring magnetic moment ~µj

in terms of the azimuthal angle φi of the central magnetic
moment ~µi and the azimuthal angle φji = φj−φi between
them. Thus we write

φj = φi + φji,

sinφj = sinφi cosφji + cosφi sinφji,

cosφj = cosφi cosφji − sinφi sinφji.

(89)

Inserting Eqs. (88) and (89) into Eq. (6) for the exchange
field Hexch i and keeping only terms to order γ gives the
torque on ~µi due to Hexch i as

~µi ×Hexch i = − γµ2
0

g2µ2
B

{

(sinφi î− cosφi ĵ)
[

∑

j

Jij(1− cosφji)
]

− (cosφi î+ sinφi ĵ)
∑

j

Jij sinφji

}

(90)

− µ2
0

g2µ2
B

⊥̂
∑

j

Jij sinφji.

This equation gives a torque on ~µi even in zero field (γ =
0) unless the last term vanishes:

∑

j

Jij sinφji = 0. (91)

This condition must be satisfied by any planar AF struc-
ture in H = 0 so that the structure is stable. Condi-
tion (91) is satisfied identically by collinear AFs, since
for them φji = 0◦ or 180◦.
Using Eq. (91), the torque contribution due to the ex-

change field in Eq. (90) simplifies to

~µi×Hexch i = − γµ2
0

g2µ2
B

(sinφi î−cosφi ĵ)
∑

j

Jij(1−cosφji).

(92a)
Using Eqs. (16) and (49b) one has

∑

j

Jij(1− cosφji) =
3kB

S(S + 1)
(TN − θp).

Inserting this expression into Eq. (92a) and then using
Eqs. (17b) and (55a), Eq. (92a) becomes

~µi ×Hexch i = −γµ2
0

TN − θp
C1

(sinφi î− cosφi ĵ)

= − γµ2
0

χ(TN)
(sinφi î− cosφi ĵ). (92b)

The contribution of the applied magnetic field to the
torque in Eq. (86) to first order in H is

~µi ×H = µ0H(sinφi î− cosφi ĵ). (93)

Setting the sum of the torque terms (92b) and (93)
equal to zero according to Eq. (86) yields

µ0γ

H
= χ(TN). (94)

The χ⊥ per spin is obtained to first order in γ from
Eq. (94) and Fig. 7 as

χ⊥(T ≤ TN) =
µ⊥

H
=

µ0γ

H
= χ(TN). (95)
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FIG. 8: A change d~µ in an ordered magnetic moment ~µ due
to an infinitesimal magnetic field H = H î can come about
through (a) a change in direction µ̂ of the moment at constant
magnitude µ and/or by (b) a change in the magnitude µ of the
moment at constant direction µ̂. Positive azimuthal angles are
measured in the counterclockwise direction. Thus in panel (a)
γ is negative and φ and α are positive.

The T -dependent ordered moment µ0(T ) canceled out
of the calculation, so χ⊥ is independent of T below TN.
The standard result (57) for collinear Heisenberg AFs
obtained from MFT5 is of course identical to this general
result (95) for planar noncollinear AF structures with
Heisenberg interactions since the former is a special case
of the latter.

B. Magnetic Susceptibility Parallel to the Plane of

the Ordered Magnetic Moments

1. Introduction

In this section we consider noncollinear ordered mag-
netic moments lying in the xy-plane as in Fig. 8, with the

magnetic field applied in the azimuthal positive x-axis (̂i)
direction

H = H î. (96)

As in the previous section, the direction of the third
Cartesian ⊥ axis is defined by the right-hand rule as

î × ĵ = ⊥̂, which in Fig. 8 is pointed out of the page.
The direction of the moment ~µi in H = 0 is defined by

the azimuthal angle φi with respect to the î direction.
In the absence of any anisotropy, upon application of the
infinitesimal H the plane of the ordered moments would
flop to a perpendicular orientation to lower the magnetic
free energy of the system. Therefore we assume that

there is an infinitesimal XY anisotropy present that pre-
vents this from happening; this anisotropy has no observ-
able affect on any magnetic behaviors of the spin system
predicted from the Heisenberg model.
On applying the field H, the contribution to the torque

on ~µi due to H is ~τi = ~µi × H with magnitude τi =
µiH | sinφi|. This torque rotates ~µi towards the direc-
tion of H by an infinitesimal angle γi, as shown in exag-
geration in Fig. 8(a). The maximum magnitude of the
torque occurs for |φi| = π/2 rad, at which |γi| ≡ γmax

where γmax > 0. The exchange field provides the restor-
ing torque. Since all spins are crystallographically equiv-
alent by definition and the local exchange field in H = 0
at each spin position is therefore the same, the restoring
torque for each spin with the same value of φ is also the
same. Therefore the tilt angle for an arbitrary spin i due
to the applied infinitesimal field is given by

γi = −γmax sinφi, (97)

which takes into account the negative sign of γi in
Fig. 8(a) and the angle φi of particular magnetic moment
~µi with respect to H. On the other hand, if sinφi is neg-
ative, then γi is positive. It will turn out that γmax ∝ H ,
as expected, so we write Eq. (97) as

γi = −
(γmax

H

)

H sinφi, (98)

where the quantity in parentheses is independent of H .
This gives rise to an in-plane susceptibility component
χxy i

∣

∣

µ
arising from the rotation of ~µi due to the field

at constant moment magnitude µ given by Fig. 8(a) and
Eq. (98) as

χxy i

∣

∣

µ
=

dµi

∣

∣

µ
sinφi

H
= −µ0γi sinφi

H

= µ0

(γmax

H

)

sin2 φi, (99)

where µ0 is the T -independent ordered moment for
H = 0, from Fig. 8 the change dµi

∣

∣

µ
sinφi is the compo-

nent of d~µi

∣

∣

µ
in the direction of H, and dµi

∣

∣

µ
= −µ0γi

where the negative sign comes from the sign convention
for γ in Fig. 8. Then the average susceptibility per spin
for the entire spin system is obtained by averaging over i,
yielding

χxy

∣

∣

µ
= µ0

(γmax

H

)

〈sin2 φi〉, (100)

where 〈· · · 〉 denotes the average of the enclosed quantity
over all magnetic moments ~µi.
As shown in Fig. 8(b), the applied field can also change

the magnitude µi of an ordered moment. For infinitesi-
mal applied fields, we expect that the previous Eq. (68)
applies to planar noncollinear as well as collinear AFs,
i.e.,

µi = µ0 + δmaxH cosφi
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or

dµi

∣

∣

µ̂
= µi − µ0 = δmaxH cosφi, (101)

where δmaxH is the maximum change in the magnitude of
~µ due to H that occurs when ~µ ‖ H. One can now define
a susceptibility contribution at fixed magnetic moment
direction for spin i as

χxy i

∣

∣

µ̂
=

dµxy i

∣

∣

µ̂
cosφi

H
=

δmaxH cos2 φi

H

= δmax cos
2 φi. (102)

Here the component of d~µi

∣

∣

µ̂
parallel to H at fixed φi is

dµxy i

∣

∣

µ̂
cosφi according to Fig. 8(b). Then the average

of the contribution (102) over the whole spin system per
spin is

χxy

∣

∣

µ̂
= δmax〈cos2 φi〉. (103)

The total average susceptibility of the system per spin is
then obtained from Eqs. (100) and (103) as

χxy = χxy

∣

∣

µ
+ χxy

∣

∣

µ̂
(104a)

= µ0

(γmax

H

)

〈sin2 φi〉+ δmax〈cos2 φi〉. (104b)

Equations (97) and (101) are the keys to calculating
the in-plane susceptibility of large classes of planar non-
collinear Heisenberg AFs without needing to define mag-
netic sublattices. As in the calculation of χ‖(T ≤ TN)
for collinear AFs in Sec. VI, one must self-consistently
calculate the exchange field Hexch i seen by ~µi, where
Hexch i is itself changed by H. We solve for the two un-
knowns γmax and δmax in Eq. (104b) in the following two
sections, respectively. The resulting two simultaneous
equations each contain both γmax and δmax, which allows
us to solve for these two unknowns.

2. Calculation of γmax

In this section we solve for an expression relating γmax

and δmax derived from the condition that in equilibrium,
the net torque on ~µi in the presence of both the exchange
field and the applied field at fixed moment magnitude is
zero. The magnetic induction Bi seen by ~µi is

Bi = Hexch i +H. (105)

The net torque on ~µi is therefore

~τi = ~µi ×Bi

= ~µi ×Hexch i + ~µi ×H = 0.
(106)

The ordered moments are oriented within the xy plane
(the spatial spin lattice is not specified), and due to the

assumed infinitesimal XY anisotropy, the moments re-
main in the xy plane when the infinitesimal H along the
x axis in Eq. (96) is applied.
The cross product ~µi × ~µh for H > 0 is given from its

definition as

~µi × ~µj = µiµj sinαji⊥̂, (107)

where the angle between ~µj and ~µi in H > 0 is denoted
by αji = αj −αi and αj , αi are the respective azimuthal
angles of ~µj and ~µi with respect to the positive x axis in
H > 0 [see Fig. 8(a)]. The direction of the cross product

is in the direction of ⊥̂ = i × j for αji > 0 and is in the

direction of −⊥̂ for αji < 0. Using Eq. (107) and the
expression in Eq. (6) for Hexch i, one obtains

~µi ×Hexch i = − ⊥̂
g2µ2

B

∑

j

Jijµiµj sinαji. (108)

We now express all angles in terms of the azimuthal
angle φi of the central magnetic moment ~µi in H = 0
and the zero-field angle φji between magnetic moments
~µj and ~µi. Referring to Fig. 8(a), for H = 0 one has

φji ≡ φj − φi. (109)

Similarly, when H > 0 we define

αj = φj + γj , αji ≡ αj − αi,

γji ≡ γj − γi, αji = φji + γji,
(110)

where γj and γi are defined in Fig. 8(a) and expressions
for them are given in Eq. (97), yielding

αji = φji − γmax [sinφi cosφji + cosφi sinφji − sinφi] .
(111a)

Using trig identities, to first order in γmax one then ob-
tains

sinαji = sinφji − γmax(sinφi cosφji (111b)

+ cosφi sinφji − sinφi) cosφji,

cosαji = cosφji + γmax(sinφi cosφji (111c)

+ cosφi sinφji − sinφi) sinφji.

Using Eqs. (68) and (109) and a trig identity one obtains
to first order in H

µiµj = µ2
0 + δmaxµ0H cosφi

+ δmaxµ0H(cosφi cosφji − sinφi sinφji),

(112)

where µ0(T ) is the ordered moment forH = 0 and δmax ≥
0 is a variable to be determined that depends on T but
not on H (see below).
Substituting Eq. (111b) for sinαji and (112) for µiµj

into Eq. (108), to first order in H one obtains
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~µi ×Hexch i = − ⊥̂
g2µ2

B

{

µ2
0

[

∑

j

Jij sinφji − γmax sinφi

∑

j

Jij(cos
2 φji − cosφji)− γmax cosφi

∑

j

Jij sinφji cosφji

]

+ µ0δmaxH

[

cosφi

(

∑

j

Jij sinφji +
∑

j

Jij sinφji cosφji

)

− sinφi

∑

j

Jij sin
2 φji

]

}

. (113)

The second term in Eq. (106) for the torque on ~µi due to
H is, to first order in H ,

~µi ×H = −µ0H sinφi⊥̂. (114)

The net torque on ~µi according to Eq. (106) is the sum
of the two torques in Eqs. (113) and (114).
In order for the equilibrium net torque on ~µi to be zero

for H = 0 and γmax = 0 (since γmax ∝ H , see below)
requires that the first term in Eq. (113) be zero, which
gives

∑

j

Jij sinφji = 0. (115)

This condition for the stability of the AF structure is the
same as already given in Eq. (91). Furthermore, we only
consider AF structures for which

∑

j

Jij sinφji cosφji =
∑

j

Jij sin(2φji) = 0. (116)

This is a weak constraint. Terms in the sum are zero if
φji = 0 (FM alignment of moments ~µi and ~µj) or 180◦

(AF alignment of ~µi and ~µj). Therefore Eq. (116) is satis-
fied identically for collinear AFs. More generally, the sum
is also zero for AF structures with inversion symmetry for
which the AF structure consists of pairs of ordered mo-
ments ~µi and ~µj and ~µi and ~µk with couplings Jij = Jik
and with orientations with respect to the central moment
~µi given by φji = −φki. The latter situation occurs be-
tween moments in neighboring FM-aligned layers along
the axes of helical and cycloidal AF structures within the
J0-Jz1-Jz2 model shown in Fig. 1 of Ref. 10 and Fig. 1
of Ref. 11, respectively. Equation (116) is also satisfied
by some AF structures and exchange models where the
magnetic and structural unit cells are the same.10

Setting
∑

j Jij sinφji =
∑

j Jij sinφji cosφji = 0 in

Eq. (113) according to Eqs. (115) and (116) yields a sim-
ple expression for ~µi ×Hexch i given by

~µi ×Hexch i =
µ2
0γmax sinφi⊥̂

g2µ2
B

∑

j

Jij(cos
2 φji − cosφji)

+
µ0δmaxH sinφi⊥̂

g2µ2
B

∑

j

Jij sin
2 φji. (117)

Inserting Eqs. (114) and (117) into (106) and solving for

γmax gives

γmaxµ0

g2µ2
BH

=
1− δmax

g2µ2

B

∑

j Jij sin
2 φji

∑

j Jij(cos
2 φji − cosφji)

, (118)

which is valid for AF structures and applied magnetic
field directions such that the angles between the or-
dered magnetic moments and the applied field satisfy
〈sin2 φi〉 6= 0 in Eq. (100). As expected, we find that
γmax ∝ H to lowest order in H . The maximum tilt angle
γmax due to H depends in part on the maximum change
δmaxH of the moment magnitude, and hence includes a
component arising from the changes in magnitudes of the
magnetic moments as they rotate in response to the field.
Since δmax depends on temperature (see below), so does
γmax.
In addition to planar noncollinear AF structures,

Eq. (118) also applies to the special case of collinear
AFs for an applied field direction perpendicular to the
ordering axis, because in that case the moment magni-
tudes do not change as a result of a small applied field
and hence δmax = 0. Then substituting cos2 φij = 1
into Eq. (118) for a collinear AF and then substitut-
ing Eq. (118) with 〈sin2 φi〉 = 1 into (100) and using
Eq. (55b) gives the expression χ⊥(T ≤ TN) = χ(TN) al-
ready derived in Eq. (95) for the collinear AF and thus
provides an important consistency check.
Equation (118) contains two unknowns γmax and δmax.

In the following section an independent equation is ob-
tained in these two unknowns, which allows us to solve
for both separately in Sec. VII B 4 and thereby obtain
the in-plane susceptibility of a planar noncollinear AF
structure utilizing Eqs. (100), (103) and (104).

3. Calculation of δmax

Here we obtain an expression for δmax by using the
Brillouin function BS(y) in Eqs. (10) to determine the
response of the magnitudes of the ordered magnetic mo-
ments to the temperature and infinitesimal applied field.
The equilbrium magnetic induction in Eq. (87) seen

by magnetic moment ~µi in the presence of H must be
parallel to the equilibrium ordered magnetic moment ~µi.
Thus one can obtain the component Hexch i of the local
exchange field in the direction of µ̂i by taking the dot
product of the two, yielding Eq. (7) which we reproduce
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here for clarity

Hexch i = − 1

g2µ2
B

∑

j

Jijµj cosαji. (119)

We need an expression for µj cosαji at infinitesimal H >
0 to insert into Eq. (119). From Eqs. (68) and (89), one
has

µj = µ0 + δmaxH(cosφi cosφji − sinφi sinφji). (120)

The expression for cosαji is given in Eq. (111c). Keeping
only terms to first order in γmax and H in the product
µj cosαji that survive the sum in Eq. (119) according to
Eqs. (91) and (116), one obtains

µj cosαji = µ0(cosφji + γmax cosφi sin
2 φji)

+ δmaxH cosφi cos
2 φji

(121)

and therefore Eq. (119) becomes

Hexch i = − 1

g2µ2
B

(

µ0

∑

j

Jij cosφji

+ µ0γmax cosφi

∑

j

Jij sin
2 φji

+ δmaxH cosφi

∑

j

Jij cos
2 φji

)

.

(122)

Then using Hexch i0 from Eq. (8) to replace the first term
in Eq. (122) one obtains

Hexch i = Hexch i0 −
µ0γmax

g2µ2
B

cosφi

∑

j

Jij sin
2 φji

− δmaxH

g2µ2
B

cosφi

∑

j

Jij cos
2 φji.

(123)

Using Eq. (68) and the definition µ̄ ≡ µ/gSµB as in
Eq. (18a) one obtains

µi − µ0 = gSµB(µ̄i − µ̄0) = δmaxH cosφi. (124)

Using the second equality, Eq. (123) becomes

Hexch i = Hexch i0 −
µ0γmax

g2µ2
B

cosφi

∑

j

Jij sin
2 φji

− (µ̄i − µ̄0)S

gµB

∑

j

Jij cos
2 φji.

(125)

The magnitude of the reduced ordered moment µ̄i ≡
µi/µsat = µi/(gSµB) is given by the Brillouin function
BS(y) of the magnetic induction Bi in Eqs. (9) as

µ̄i = BS

[

gµB

kBT
(Hexch i +H‖i)

]

, (126)

where only the components of Hexch i and H that are
parallel to ~µi are relevant here. To first order in H one
has

H‖i = H cosφi. (127)

Inserting Eqs. (125) and (127) into (126) and expanding
BS(y) in a Taylor series about y0 ≡ gµBHexchi i0/kBT to
first order in H (and γmax, which is proportional to H)
gives

µ̄i − µ̄0 = B′
S(y0)

[

− µ0γmax

gµBkBT
cosφi

∑

j

Jij sin
2 φji

− S(µ̄i − µ̄0)

kBT

∑

j

Jij cos
2 φji +

gµB

kBT
H cosφi

]

,

where we used BS(y0) = µ̄0 from Eq. (20). Solving for
µ̄i − µ̄0 gives

µ̄i − µ̄0 =

gµB

S H cosφi − µ0γmax

gµBS cosφi

∑

j Jij sin
2 φji

kBT
B′

S
(y0)S

+
∑

j Jij cos
2 φji

.

(128)
Using Eq. (124) this can be written

µi − µ0 = δmaxH cosφi (129)

=
g2µ2

BH cosφi − µ0γmax cosφi

∑

j Jij sin
2 φji

kBT
B′

S
(y0)S

+
∑

j Jij cos
2 φji

.

Thus, under the condition that 〈cos2 φi〉 6= 0 in Eq. (103),
solving for δmax yields

δmax

g2µ2
B

=
1− µ0γmax

g2µ2

B
H

∑

j Jij sin
2 φji

kBT
B′

S
(y0)S

+
∑

j Jij cos
2 φji

. (130)

Note that γmax in the numerator is proportional to H
according to Eq. (118), and hence H cancels out, leaving
δmax a function of T but not of H . Thus the change in
magnitude of a magnetic moment due to the presence
of the magnetic field depends both on the temperature
and on the change in the angle that the spin makes with
the applied magnetic field direction due to the magnetic
field.
One expects Eq. (130) to be applicable for the mag-

netic field applied along the easy axis of collinear AFs
if one sets γmax = 0, sin2 φji = 0 and cos2 φji = 1, and
Eq. (130) becomes

δmax

g2µ2
B

=
1

kBT
B′

S
(y0)S

+
∑

j Jij
. (131)

Then Eq. (103) with 〈cos2 φi〉 = 1 gives the parallel sus-
ceptibility per spin of a collinear AF as

χ‖ = δmax =
g2µ2

B
kBT

B′
S
(y0)S

+
∑

j Jij
. (132)

Using the expression for θp in Eq. (49b), one sees that
this expression for χ‖ is identical to that for the collinear
AF already derived in Eq. (82a). This is an important
consistency check.
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4. Solving for the In-Plane Susceptibility

The two simultaneous equations (118) and (130) in the
two unknowns γmax and δmax, respectively, allow one to
solve for these two unknowns, yielding

γmaxµ0

g2µ2
BH

=
τ +B −A

(τ +B)(B − E)−A2
(133a)

δmax

g2µ2
B

=
B −A− E

(τ +B)(B − E)−A2
, (133b)

where

τ =
kBT

SB′
S(y0)

(134a)

and

y0 =
3µ̄0

(S + 1)t
, A =

∑

j

Jij sin
2 φji,

B =
∑

j

Jij cos
2 φji, E =

∑

j

Jij cosφji.
(134b)

The in-plane magnetic susceptibility components are
obtained by substituting Eqs. (133) into (104), yielding

χxy

∣

∣

µ

g2µ2
B

=
µ0γmax

g2µ2
BH

〈sin2 φi〉

=
τ +B −A

(τ +B)(B − E)−A2
〈sin2 φi〉,

χxy

∣

∣

µ̂

g2µ2
B

=
δmax

g2µ2
B

〈cos2 φi〉

=
B − E −A

(τ +B)(B − E)−A2
〈cos2 φi〉.

(135)

These expressions are only valid if 〈sin2 φi〉 6= 0 and
〈cos2 φi〉 6= 0, i.e., for planar noncollinear AF structures.
For commensurate planar noncollinear AF structures in
which a hodograph of the ordered moments within a mag-
netic unit cell forms a regular polygon, the averages in
Eqs. (135) over one magnetic unit cell are

〈sin2 φi〉 = 〈cos2 φi〉 =
1

2
. (136)

A magnetic unit cell that is commensurate with the un-
derlying spin lattice is required in order for the averages
in Eq. (136) to be exact. In practice, one can always
consider the magnetic unit cell to be commensurate for
a sufficiently large magnetic unit cell because the exper-
imental resolution in measuring the incommensurability
is finite.
For 0 ≤ T ≤ TN or equivalently 0 ≤ t ≤ 1, substituting

Eqs. (135) and (136) into (104a) gives

χxy

g2µ2
B

=
τ − E + 2B − 2A

2[(τ +B)(B − E)−A2]
. (137)

Using Eqs. (16), (49b) and (134b), one can rewrite A and
E as

A = − 3kBθp
S(S + 1)

−B

E = − 3kBTN

S(S + 1)
.

(138)

By multiplying both sides of Eq. (137) by 3kBTN

S(S+1) and

then multiplying the numerator and denominator of the

right-hand side of Eq. (137) by
[

S(S+1)
3kBTN

]2

, Eq. (137) can

be written as a law of corresponding states for a given
spin S in terms of easily measured quantities, which are
f = θp/TN, t = T/TN and additional reduced variables
τ∗ and B∗, as

χxy(T )TN

C1
=

1 + τ∗ + 2f + 4B∗

2 [(τ∗ + B∗)(1 +B∗)− (f +B∗)2]
, (139)

where

τ∗ =
S(S + 1)τ

3kBTN
=

(S + 1)t

3B′
S(y0)

(140a)

B∗ =
S(S + 1)B

3kBTN
= −

∑

j Jij cos
2 φji

∑

j Jij cosφji
, (140b)

y0 = 3µ̄0/[(S + 1)t] from Eq. (20) and we used Eq. (16)
to obtain the last equality. At T = TN, according to
Eq. (58c) one has τ∗ = 1 and Eq. (139) becomes

χ(TN)TN

C1
=

1

1− f
. (141)

This agrees with the Curie-Weiss law prediction for
χ(TN) in Eq. (82b), an important consistency check.
Using Eqs. (139) and (141), for T ≤ TN one obtains

the ratio

χxy(T )

χ(TN)
=

(1 + τ∗ + 2f + 4B∗)(1− f)

2 [(τ∗ +B∗)(1 +B∗)− (f +B∗)2]
. (142)

Using τ∗(t = 0) = ∞ obtained from Eqs. (10c)
and (140a), Eq. (142) yields

χxy(T = 0)

χ(TN)
=

1− f

2(1 +B∗)
. (143)

Substituting τ∗(t = 1) = 1 at TN from Eq. (58c) into
Eq. (142) gives the identity

χxy(T = TN)

χ(TN)
= 1 (144)

as required, irrespective of the values of f and B∗.

VIII. THE GENERIC J0-Jz1-Jz2 MODEL FOR

PLANAR HELICAL AND CYCLOIDAL

ANTIFERROMAGNETS

In this section we recast our results for χxy(T ≤ TN)
derived in the previous section in terms of a minimal
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generic J0-Jz1-Jz2 model9 that allows the proper helix
or cycloidal helix AF structures in Fig. 1 of Ref. 10 and
Fig. 1 of Ref. 11, respectively, to be the AF ground states.
In this model, one sums all the exchange interactions of a
given magnetic moment with other moments in the same
ferromagnetically-aligned layer perpendicular to the heli-
cal or cycloidal wave vector kz and calls that sum J0. One
also sums all the exchange interactions of a moment in a
layer with all moments in one of the two nearest-neighbor
layers and calls it Jz1 and similarly for the exchange in-
teractions of the magnetic moment with all the magnetic
moments in one of the two next-nearest-neighbor layers
and calls it Jz2. Third-nearest-neighbor or even further
interlayer interactions are certainly possible but are not
included in this model. These net exchange interactions
are indicated in Fig. 1 of Ref. 10 and Fig. 1 of Ref. 11.
One main purpose of synthesizing this model is to ex-
press the parameter B∗ in Eqs. (140) in terms of physi-
cally measurable quantities. This is the only parameter
in Eq. (142) for χxy(T ≤ TN)/χ(TN) that we have not yet
expressed this way. The second purpose is to synthesize
a model for which the generic J0, Jz1 and Jz2 exchange
interactions can be expressed for specific compounds in
terms of specific exchange interactions between the mag-
netic moments. This is a powerful generic formulation
that applies to large classes of planar noncollinear AFs.

The competing phases in this model are a FM phase,
a helical or cycloidal AF phase, and a collinear AF phase
with propagation vector (0, 0, 12 ) r.l.u. The latter phase is
an A-type AF in which each FM-aligned layer is aligned
AF with respect to its nearest-neighbor layers. The he-
lical and cycloidal phases are equivalent from the point
of view of the theory. For each phase, as in the previ-
ous section, the ordered magnetic moments are confined
to a plane, which we designate as the xy plane. This
xy plane can be assigned to a particular crystal plane in
a particular compound, as appropriate.

Within the J0-Jz1-Jz2 model, the classical energy of
interaction Ei of spin Si with its neighboring spins Sj ,
where all spins have the same value of S, is given by
Eq. (2) with H = 0 as

Ei =
S2

2

[

J0 + 2Jz1 cos(kd) + 2Jz2 cos(2kd)
]

, (145)

where d is the interlayer distance in Fig. 1 of Ref. 10
and Fig. 1 of Ref. 11, k is the magnitude of the wave
vector of the helix or cycloid and φji = kd is the magnetic
moment turn angle between adjacent FM-aligned layers
upon moving along the positive helix or cycloid z axis.
By minimizing Ei with respect to kd one obtains

Jz1 sin(kd) + 4Jz2 sin(kd) cos(kd) = 0. (146)

Two solutions for kd are obtained by setting kd = 0
or π rad, which correspond to FM and A-type AF states,
respectively. The third solution is a helical or cycloidal
AF state with the turn angle kd determined by the ex-

Jz2

Jz1

ferromagnet collinear 

antiferromagnet

helical

antiferromagnet

kd = π/3

π

π/2

2π/3

0

FIG. 9: (Color online) Classical phase diagram in the Jz1-Jz2

plane for the minimal J0-Jz1-Jz2 model. The three regions
are the ferromagnetic region, the collinear AF region with
type-A ordering, and the helical or cycloidal AF region. In
the latter region, the wave vector of the helix or cycloid times
the interlayer distance d is kd, which is the turn angle be-
tween magnetic moments in adjacent layers along the helix
or cycloid axis. In order to obtain a helical or cycloidal mag-
netic structure, the net next-nearest layer interaction must be
antiferromagnetic (Jz2 > 0).

change constants as

cos(kd) = − Jz1
4Jz2

. (147)

Thus in general the helical or cycloidal wave vector is in-
commensurate with the underlying crystallographic spin
lattice. However, as discussed in the preceding section,
one can always consider the wave vector to be commensu-
rate to within experimental resolution with a sufficiently
large magnetic unit cell.
Using Eq. (145) and the above three solutions for kd,

the corresponding classical energies of the three phases
are

EFM =
S2

2
(J0 + 2Jz1 + 2Jz2)

EA typeAF =
S2

2
(J0 − 2Jz1 + 2Jz2)

Ehelix =
S2

2

(

J0 −
J2
z1

4Jz2
− 2Jz2

)

,

(148)

where we used Eq. (147) to obtain the last equality. Note
that the net intralayer exchange coupling J0 has no effect
on the relative energies of the three phases, and hence is
not relevant to the magnetic phase diagram. For the he-
lical or cycloidal phase, the condition −1 ≤ cos(kd) ≤ 1
in Eq. (147) constrains Jz1 and Jz2 to satisfy8,9

Jz2 > 0, 0 ≤ |Jz1|
4Jz2

≤ 1. (149)

The classical T = 0 phase diagram for the J0-Jz1-Jz2
model determined by finding the minimum energy solu-
tions versus Jz1 and Jz2 in Eqs. (148) using Eqs. (149)
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is shown in Fig. 9. For the helical or cycloidal phase, the
nearest-layer interaction Jz1 can be either positive (AF)
or negative (FM), but the next-nearest-neighbor inter-
action Jz2 must be positive (AF) as explicitly noted in
Eqs. (149).
A singular solution for the helical or cycloidal phase

occurs when Jz1 = 0, for which the turn angle between
planes would nominally be kd = π/2 rad from Eq. (147)
and Fig. 9. However, this solution physically corresponds
to the presence of two noninteracting sublattices, each
of which consists of next-nearest-neighbor magnetic mo-
ment layers that are mutually associated with exchange
interaction Jz2. Hence the turn angle between ordered
moments in adjacent layers along the helix or cycloid
axis is undefined for Jz1 = 0.

A. Alternative Expressions for the Variables in the

J0-Jz1-Jz2 Model

The χxy(T )/χ(TN) of the planar noncollinear phase
in Eq. (142) is expressed in terms of the quantities S,
µ̄0 = µ0/µsat, t = T/TN, f ≡ θp/TN and B∗. Usually
one has experimental values of the first four quantities,
whereas B∗ as defined in Eqs. (140) is not known without
knowledge of the exchange constants, which are not di-
rectly measurable, and of the AF structure. In the follow-
ing we derive an expression for B∗ within the J0-Jz1-Jz2
model in terms of the physically measurable quantities
f and kd. To do that, we need explicit expressions for
other variables in terms of the J0-Jz1-Jz2 model that we
now derive.
In this model, Eqs. (49b) and (16) respectively become

kBθp = −S(S + 1)

3
(J0 + 2Jz1 + 2Jz2), (150a)

kBTN = −S(S + 1)

3
(150b)

× [J0 + 2Jz1 cos(kd) + 2Jz2 cos(2kd)].

From these expressions, the definitions

j0 =
J0
Jz2

, j1 =
Jz1
Jz2

, (151a)

and the relation

j1 = −4 cos(kd) (151b)

obtained from Eq. (147), one obtains

f ≡ θp
TN

=
j0 − 8 cos(kd) + 2

j0 − 4 cos2(kd)− 2
. (152)

The parameter B∗ in Eq. (142) is given by Eqs. (140)
as

B∗ = − j0 + 2j1 cos
2(kd) + 2 cos2(2kd)

j0 + 2j1 cos(kd) + 2 cos(2kd)
(153a)

=
2− 8 cos2(kd)[1 + cos(kd)− cos2(kd)] + j0

2 + 4 cos2(kd) − j0
.

(153b)

By eliminating j0 in the simultaneous Eqs. (152) and
Eq. (153b), one obtains the very useful result

B∗ = 2(1− f) cos(kd)[1 + cos(kd)]− f, (154)

which only depends on the measurable parameters kd
and f .

B. Reformulation of the In-Plane Magnetic

Susceptibility in Terms of the J0-Jz1-Jz2 Model

Using Eqs. (143) and (154) we obtain the reduced in-
plane T = 0 susceptibility as

χxy(T = 0)

χ(TN)
=

1

2
[

1 + 2 cos(kd) + 2 cos2(kd)
] . (155)

This general result agrees with Yoshimori’s pioneering
calculation of χxy(T = 0)/χ(TN) in his Eq. (50) for
the specific case of the c-axis helix in β-MnO2 with
the rutile structure, assuming a specific set of exchange
constants,8 and using the substitutions θ → kd, cos θ →
− cos θ and A1/(4A2) → − cos(kd) in his Eq. (50).
Interestingly, the reduced T = 0 in-plane susceptibil-

ity in Eq. (155) is expressed solely in terms of the turn
angle kd where k is the magnitude of the helix or cy-
cloid wave vector and d is the distance between adjacent
planes in the helix or cycloid. A plot of this dependence
is shown in Fig. 2(a) of Ref. 10. Lines of constant kd,
and hence of constant normalized zero-temperature sus-
ceptibility, are shown above in Fig. 9. The behavior in
Fig. 2(a) of Ref. 10 is unexpected for two reasons. First,
χxy(0)/χ(TN) varies nonmonotonically with kd. Second,
a peak appears in χxy(0)/χ(TN) at the unexpected wave
vector kd = 2π/3 for which χxy(0)/χ(TN) = 1. The lat-
ter result χxy(0) = χ(TN) suggests that for this wave
vector, χxy is independent of T for T ≤ TN, which is
confirmed below.
When χxy(0)/χ(TN) < 1/2, Fig. 2(a) of Ref. 10 shows

that the turn angle between layers of moments along the
helix or cycloid axis is less than 90◦, which corresponds
to a dominant FM interaction between a moment and the
moments in an adjacent layer. This is because a moment
in one layer has a component in the same direction as the
moment in an adjacent layer. On the other hand, when
χxy(0)/χ(TN) > 1/2, Fig. 2(a) of Ref. 10 shows that the
turn angle between layers of moments along the helix or
cycloid axis is greater than 90◦, which corresponds to
a dominant AF interaction between a moment and the
moments in an adjacent layer.
Using Eq. (154), one can express χxy(T )/χ(TN) in

Eq. (142) completely in terms of the measureable param-
eters S, µ̄0, t, f and now kd. Plots of χxy(T ) versus T/TN

obtained using Eqs. (142) and (154) for spins S = 7/2
(Ref. 10) and 1/2 and various helix turn angles kd and
f ratios are shown in Fig. 2(b) of Ref. 10. The maxi-
mum in χxy(T = 0) versus kd that appears in Fig. 2(a)
of Ref. 10 is confirmed. Furthermore, one sees that χxy
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FIG. 10: (Color online) In-plane magnetic susceptibility
χxy(T ) versus temperature T for the helical or cycloidal mag-
netic structure in the J0-Jz1-Jz2 model with J0 = 0 and the
listed magnitudes of the helical or cycloidal turn angle kd for
spin (a) S = 7/2 and (b) S = 1/2.

is independent of T for a turn angle kd = 2π/3 rad as
suspected above.

Instead of using Eq. (154) for B∗, one can use
Eq. (153a) and set j0 = 0 to obtain an expression for
χxy(T )/χ(TN) that only depends on the parameter kd
as in Eq. (155). Plots of χxy(T )/χ(TN) versus kd for
J0 = 0 are shown in Figs. 10(a) and 10(b) for S = 7/2
and 1/2, respectively. These plots are useful for certain
compounds such as noncollinear linear chain helical or cy-
cloidal AFs where the interchain interactions are negligi-
ble compared to the intrachain ones, and also for higher-
dimensional helical or cycloidal antiferromagnets such as
β-MnO2 with the rutile structure, where J3 = J0/4 ≈ 0
for the c-axis helix has been estimated.8

C. Noncollinear 120◦ Helical or Cycloidal

Antiferromagnets

The turn angle φji = kd = 2π/3 rad is special, since
we found from the above results that

χxy(T ≤ TN)

χ(TN)
= 1 (kd = 2π/3). (156)

To check the generality of this important and unique
result, we go back to the general expression for B∗ in
Eq. (154) and substitute cos(kd = 2π/3) = −1/2, which
gives

B∗ = −f + 1

2
. (157)

Substituting this expression for B∗ into the gen-
eral Eq. (142) for χxy(T )/χ(TN) and simplifying gives
Eq. (156) identically, irrespective of the value of the
spin S.
The perpendicular susceptibility in Eq. (95) also obeys

Eq. (156). Thus we predict that for AFs with a 120◦ he-
lical or cycloidal magnetic structure, the χ(T ≤ TN) is
isotropic and temperature-independent with the value at
TN, irrespective of the value of S. This prediction is
strongly confirmed by experimental data on single crys-
tals of a variety of 120◦ triangular-lattice AFs.10

For the special case of only the six nearest-neighbor
interactions J in a triangular lattice being nonzero, using
φji = kd = 120◦ one obtains from Eqs. (16) and (49b)

TN = −S(S + 1)

3kB

∑

j

Jij cosφji =
S(S + 1)J

kB
,

θp = −S(S + 1)

3kB

∑

j

Jij = −2S(S + 1)J

kB
,

f =
θp
TN

= −2,

TN − θp =
3S(S + 1)J

kB
. (158)

Thus from Eqs (17b), (49a) and (158) one obtains

χ⊥ = χ(TN) =
C1

TN − θp
=

g2µ2
B

9J
, (159)

which is independent of S.
For the classical (S → ∞) isolated triangular layer AF,

one also obtains for the ground state at T = 0 a nontriv-
ial isotropy in χ(T = 0) with the same value of χ(T = 0)
as we just obtained for finite spin by MFT.17,18 In ad-
dition, classical Monte Carlo simulations for the single
triangular layer indicated that χ is isotropic and nearly
independent of T at low T .19 Our MFT results thus sig-
nificantly extend the previous calculations for single clas-
sical triangular lattice layers to finite quantum spins S
and long-range AF ordering that occur in real systems.
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FIG. 11: (Color online) Influence on the generic magnetic
structure due to a high magnetic field applied perpendicular
to the ordering axis of a collinear antiferromagnet (AF) (top
panel) and to the ordering plane of a planar noncollinear AF
(bottom panel). Hodographs of the zero-field magnetic mo-
ment vectors are shown on the left. In high fields as shown on
the right, the AF structures become canted towards the field.
The ordered moments of the collinear AF are now within a
vertical plane, whereas those of the noncollinear AF now lie on
the surface of a cone with the axis of the cone along the mag-
netic field axis as shown. At a sufficiently high field H = Hc⊥

given by Eq. (183), the moments in either case become parallel
to the applied field and each other and a second-order tran-
sition from the canted AF to the paramagnetic (PM) state
occurs at that field.

IX. INTERNAL ENERGY, MAGNETIZATION,

PHASE DIAGRAM AND HEAT CAPACITY OF

COLLINEAR AND PLANAR NONCOLLINEAR

ANTIFERROMAGNETS IN A HIGH

PERPENDICULAR MAGNETIC FIELD

In this section a MFT calculation of the high-field
magnetization and magnetic heat capacity with fields ap-
plied perpendicular to the zero-field ordered moments is
carried out for generic collinear and planar noncollinear
AFs containing identical magnetic moments interacting
by Heisenberg exchange on the same footing. These high-
field calculations are included in the present paper be-
cause as in the previous sections we calculate the thermo-
dynamics without the use of magnetic sublattices and ex-
press the results as laws of corresponding states in terms
of measurable parameters.

The influence of magnetocrystalline anisotropy on
χ(T ) for both T > TN and T < TN, on TN itself and
on the high-field M(H,T ) behaviors and H-T phase
diagrams are discussed in Refs. 20 and 21 for collinear
and noncollinear AFs. When a high field is applied par-
allel to the ordering axis of a collinear AF, where an
anisotropy field is present that is sufficiently large to pre-
vent a spin-flop transition from occurring, one must de-
fine separate up and down moment sublattices because
within MFT the thermal-average magnitudes of the up

μiz

H

μi

y

z

x
i

FIG. 12: (Color online) The rotation of a representative mag-
netic moment ~µi out of the xy plane towards the z axis upon
applying a magnetic field H = Hk̂. The orientation of ~µi for
H > 0 is described by spherical coordinates θi and φi, where
θi = θ is the same for all moments. Each moment was orig-
inally in the xy plane for H = 0 with coordinates θ = 90◦

and φ = φi. The azimuthal angle φi is in general different for
different moments.

and down moments are not the same. In the present pa-
per we only consider magnetic structures and behaviors
where the concept of magnetic sublattices is not neces-
sary and hence the discussion is limited to high perpen-
dicular fields.

The generic responses of collinear and planar non-
collinear AF structures to a high perpendicular mag-
netic field are illustrated in Fig. 11. Whereas the tilted
moments of a collinear structure due to the field reside
within a vertical plane including the applied field, a hodo-
graph of the tilted moments of a planar noncollinear
structure lie on the surface of a cone with the magnetic
field direction corresponding to the continuous rotational
axis of the cone. Both cases are treated here within the
same formalism by the use of the spherical coordinates
defined in Fig. 12, where the former AF structure is a
special case of the latter.

A. High-Field Magnetization Perpendicular to the

Ordering Axis or Plane at T = 0

The magnetic field is applied along the polar z axis

H = Hk̂, (160)

as shown in Fig. 12. For H = 0 the ordered magnetic
moments lie in the xy-plane with polar angle θ = π/2.
In the presence of a high perpendicular field, at T = 0
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one has

µsat = gSµB

φji = φj − φi

φj = φi + φji

~µi = µsat

[

sin θ(cosφi î+ sinφi ĵ) + cos θ k̂
]

(161)

~µj = µsat

[

sin θ(cosφj î+ sinφj ĵ) + cos θ k̂
]

= µsat

{

sin θ
[

(cosφi cosφji − sinφi sinφji) î

+ (sinφi cosφji + cosφi sinφji) ĵ
]

+ cos θ k̂
}

,

where φi,j are the azimuthal angles of ordered moments
~µi,j with respect to the positive x-axis, φji = φj−φi and
at T = 0 the magnitude of each magnetic moment is the
saturation magnetic moment µsat = gSµB.
The torque on a particular moment ~µi due to the ex-

change field in Eq. (6) is obtained using Eqs. (161) as

~µi ×Hexch i =
µ2
sat

g2µ2
B

sin θ cos θ(− sinφi î+ cosφi ĵ)

×
∑

j

Jij(1 − cosφji)

(162)

where we have only kept terms that do not contain
∑

j Jij sinφji according to Eq. (91). The torque on ~µi

due to H is

~µi ×H = µsatH sin θ(sinφi î− cosφi ĵ). (163)

In equilibrium, the net torque is

~τ = ~µi ×Hexch i + ~µi ×H = 0, (164)

which contains the two terms in Eqs. (162) and (163).
Setting either the x or y component of the net torque
equal to zero gives

cos θ =
g2µ2

BH

µsat

∑

j Jij(1− cosφji)
. (165)

From Eqs. (49b) and (16), one respectively obtains

∑

j

Jij = − 3kB
S(S + 1)

θp (166a)

∑

j

Jij cosφji = − 3kB
S(S + 1)

TN. (166b)

Then using Eqs. (17b) and (166), Eq. (165) can be writ-
ten

cos θ =
χ(TN)H

µsat
(167)

Referring to Fig. 12, the z-component µz of the in-
duced magnetic moment of each spin is

µz = µsat cos θ. (168)

Inserting Eq. (167) into this expression gives the perpen-
dicular susceptibility as

χ⊥ =
µz

H
= χ(TN) (T = 0, H ≤ Hc⊥). (169)

Thus the induced magnetic moment is proportional to
H until at a critical perpendicular field Hc⊥ one obtains
µz = µsat. This critical field occurs when θ = 0 (cos θ =
1), which Eq. (167) gives simply as

Hc⊥ =
µsat

χ(TN)
(T = 0). (170)

At higher fields, µz cannot increase any further and is
constant at the saturation value µz = µsat = gSµB. Thus
a second-order phase transition occurs at T = 0 with
increasing H at H = Hc⊥ where there is a discontinuity
in the slope of µz versus H [see Fig. 14(a) below].

B. High-Field Magnetization Perpendicular to the

Ordering Axis or Plane at 0 ≤ T ≤ TN

Because the calculation of the magnetization in a high
perpendicular field at finite temperatures 0 ≤ T ≤ TN

within MFT is more involved than the above calcula-
tion at T = 0, we treat it separately in this section. At
each temperature and field, the magnitude µ(T ) of each
ordered moment is the same for all magnetic moments,
because they are all equivalent with respect to the effect
of the applied field. Using Eqs. (6) and (161), the compo-
nent of the exchange field in the direction of the central
magnetic moment ~µi is

Hexch i = − µ̄S

gµB

∑

j

Jij µ̂i · µ̂j

= − µ̄S

gµB

[

cos2 θ
∑

j

Jij + sin2 θ
∑

j

Jij cosφji

]

,

(171)

where we recall that φi, φj and hence φji = φj − φi

are independent of H , with only θ changing with H (see
Fig. 11). Inserting Eqs. (166) into (171) gives

Hexch i =
3µ̄kB

gµB(S + 1)
(θp cos

2 θ + TN sin2 θ)

=
3µ̄kBTN

gµB(S + 1)

[

1− (1− f) cos2 θ
]

, (172)

where we have used f ≡ θp/TN according to Eq. (50).
We define the reduced magnitude of each ordered mo-

ment as

µ̄(T ) ≡ µ(T )

µsat
, (173)

analogous to Eq. (18a) for H = 0. The value of µ̄ of
each magnetic moment versus H and T is governed by
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the Brillouin function BS(y). Substituting Eq. (172) into
Eq. (76) gives

µ̄ = BS

[(

gµB

kBT

)

(Hexch i +H cos θ)

]

(174)

= BS

{

3µ̄

(S + 1)t

[

1− (1 − f) cos2 θ
]

+
h cos θ

t

}

,

where H cos θ is the component of H in the direction of
each of the magnetic moments according to Fig. 12, the
reduced field is h ≡ gµBH/kBTN from Eq. (29) and the
reduced temperature is t ≡ T/TN according to Eq. (18b).
However, there are two unknowns, µ̄ and θ, in

Eq. (174), so we need another equation to solve for both.
For that, we set the net torque ~τ on ~µi to zero according
to Eq. (164). The first term in Eq. (164) is obtained from
Eq. (162) with the substitutions in Eqs. (166) and (173),
yielding

~µi ×Hexch i =
3µ̄2SkB
S + 1

sin θ cos θ(TN − θp)

× (− sinφi î+ cosφi ĵ).

(175)

The second term in Eq. (164) is obtained from Eq. (163)
with the substitution µsat → µ = µ̄gµBS, yielding

~µi ×H = µ̄gµBSH sin θ(sinφi î− cosφi ĵ). (176)

Substituting Eqs. (175) and (176) into (164) gives

3µ̄kB
S + 1

(TN − θp) cos θ = gµBH. (177)

Dividing each side by kBTN gives

3µ̄ cos2 θ

(S + 1)t
(1− f) =

h cos θ

t
. (178)

Substituting the left-hand side of Eq. (178) for h cos θ/t
into Eq. (174) yields

µ̄ = BS

[

3µ̄

(S + 1)t

]

. (179)

This expression is identical to Eq. (20) for determining
µ̄0(t) for H = 0. In other words, a perpendicular ap-
plied field has no influence on the magnitude of the T -
dependent ordered moment, as long as the z-component
of the moment is less than that magnitude at that T .
This general result from MFT is of course also valid for
the special case of collinear AFs in a perpendicular mag-
netic field.
From Eq. (177), one obtains

cos θ =
g2µ2

BS(S + 1)H

3µkB(TN − θp)
=

C1H

µ(TN − θp)
, (180)

where we have used C1 from Eq. (17b) and µ̄ = µ/(gµBS)
from Eq. (173). Then from Fig. 12 one obtains

µz = µ cos θ =
g2µ2

BS(S + 1)H

3kB(TN − θp)

=
C1H

TN − θp
= χ(TN)H,

(181)

where we have used χ(TN) from Eq. (55a). Thus for
H ≤ Hc⊥(T ) in MFT, the perpendicular susceptibility is

χ⊥(T ) =
µz

H
= χ(TN) (T ≤ TN, H ≤ Hc⊥), (182)

analogous to Eq. (169) for T = 0. The χ⊥ remains con-
stant with increasingH at fixed T until the induced mag-
netic moment µz becomes equal to the ordered moment
at the particular temperature at the perpendicular criti-
cal field Hc⊥, where

Hc⊥(T ) =
µ0(T )

χ(TN)
, (183)

which is analogous to the zero-temperature result in
Eq. (170). Above this field, the system is in the PM
state with each induced moment aligned parallel to H.
This generic behavior of the magnetization versus trans-
verse magnetic field is of course also found for special
cases such as for the simple Néel antiferromagnet with
only nearest-neighbor interactions where θp = −TN and
f = −1.

C. Magnetic Phase Diagram and Magnetization

versus Field Isotherms for Magnetic Fields Applied

Perpendicular to the Ordering Axis or Plane

In the previous section we saw that a perpendicular
field does not affect the magnitude of the reduced ordered
moment µ̄ for H ≤ Hc⊥ and thus µ̄ = µ̄0 where the latter
is the value in H = 0 in Eq. (20). The critical field Hc⊥

is the field at which the induced magnetic moment µ̄z

equals µ̄ at that temperature. At that field the ordered
moment is pointing in the direction ofH. From Eq. (181),
on the critical field curve with µ̄z = µ̄0 one obtains

µ̄0 =
(S + 1)

3(TN − θp)

gµBHc⊥

kB
=

(S + 1)

3(1− f)

gµBHc⊥

kBTN

=
(S + 1)hc⊥

3(1− f)
,

(184)

where we have used the definition of µ̄0 = µ0/(gµBS) in
Eq. (18a), of f in Eq. (50) and of h in Eq. (29). Thus
the reduced critical field is given from Eq. (184) as

hc⊥(t) ≡
gµBHc⊥(t)

kBTN
=

3(1− f)

S + 1
µ̄0(t), (185)

which demonstrates the important property that
hc⊥(t) ∝ µ̄0(t). Since µ̄0(t = 0) = 1, one obtains

Hc⊥(t)

Hc⊥(0)
= µ̄0(t). (186)

The critical field divides the H-T plane into a (canted)
AF state and the PM state, as shown in Fig. 13 for S = 5.
One can invert the axes in Fig. 13 to obtain the field
dependence of the Néel temperature.
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FIG. 13: (Color online) Phase diagram in the magnetic field-
temperature H-T plane for magnetic fields applied perpen-
dicular to the ordering axis (collinear AF) or plane (planar
noncollinear AF) of a Heisenberg AF with spin S = 5. The
phase boundary between the AF and PM states is the critical
field Hc⊥(T ) that was calculated using Eqs. (20) and (186).

On the critical field curve with h = hc⊥, the ordered
moment has the value µ̄z = µ̄0 given in the PM state by
Eqs. (67) and (185) as

µ̄z = BS

[

3µ̄zf

(S + 1)t
+

hc⊥

t

]

(187a)

= BS

[

3µ̄z

(S + 1)t

]

(h = hc⊥). (187b)

A comparison of Eq. (187b) with Eq. (179) shows ex-
plicitly that µz is continuous on crossing the critical line
from the canted AF state into the PM state and hence
the phase transition is second order.
To summarize, the reduced z-axis magnetic moment

µ̄z versus reduced magnetic field h in the z direction is
given for h ≤ hc⊥ by Eq. (184) with µ̄0 replaced by µ̄z

and hc⊥ replaced by h, and for h ≥ hc⊥ by Eq. (67), i.e.,

µ̄z =
S + 1

3(1− f)
h (h ≤ hc⊥), (188a)

µ̄z = BS

[

3fµ̄z

(S + 1)t
+

h

t

]

(h ≥ hc⊥), (188b)

where BS(y) is given in Eq. (10a), µ̄z(t, h) is calculated
by solving Eqs. (188) in the relevant field range and
hc⊥(t) is given in Eq. (185).
The derivative (dµ̄z/dt)h for h ≥ hc⊥ which we will

need later is calculated by taking the total derivative of
Eq. (188b) with respect to t at fixed field and solving for

(dµ̄z/dt)h, yielding

(

dµ̄z

dt

)

h

= −
µ̄z +

(S+1)h
3f

t
[

(S+1)t
3fB′

S
(y) − 1

] (h ≥ hc⊥), (189a)

where

y =
3fµ̄z

(S + 1)t
+

h

t
(189b)

and B′
S(y) is given in Eq. (11).

Equation (188b) is applicable to the entire PM re-
gion of the (h, t) phase diagram in Fig. 13, including
the part where T > TN (t > 1), where here TN refers
to TN(H = 0), and also the part where h ≥ hc⊥ and
T < TN (t < 1). Several µ̄z versus h isotherms calculated
from Eqs. (188) are plotted in Fig. 14(a) for 0 ≤ t ≤ 1.
The respective differential susceptibilities dµ̄z/dh are cal-
culated from Eqs. (188) and (189) and plotted versus h
in Fig. 14(b). A discontinuous change in dµ̄z/dh versus h
occurs on crossing the critical curve in Fig. 13, as empha-
sized in Fig. 14(b), because µ̄z ∝ h for h < hc⊥ but µ̄z(h)
exhibits negative curvature for h > hc⊥ and hence µ̄z(H)
is nonanalytic at h = hc⊥. This discontinuity in slope is
most apparent for T ≪ TN(H = 0). Theoretical curves
similar to those in Fig. 14(a) were plotted previously as
derived from MFT,22 although the equations used were
not given.

D. Magnetic Internal Energy and Heat Capacity in

the PM Phase and in the AF Phase with Magnetic

Fields Perpendicular to the Ordering Axis or Plane

Here we calculate Cmag(T ) for the perpendicular field
orientation and study the evolution of Cmag(T ) with in-
creasing field. We expect strong effects because the TN

can be driven to zero with sufficiently high fields as illus-
trated in Fig. 13. From Figs. 13 and 14(b), the discon-
tinuity in slope of µz versus t decreases with increasing
field, so we expect the discontinuity in Cmag at TN(H) to
also decrease with increasing field. Moreover, the PM
phase at T > TN(H) must have a nonzero contribu-
tion to Cmag because the induced moment is nonzero
for T > TN(H), in contrast to the MFT prediction
Cmag(T ≥ TN) = 0 for H = 0 (zero induced moment)
in Eq. (26) and Fig. 11 of Ref. 12. In the following two
Secs. IXD1 and IXD2 we derive the magnetic heat ca-
pacity in the AF and PM regimes separately, and then
in Sec. IXD3 combine the results to obtain Cmag(T ) at
fixed H including both the AF and PM regimes.

1. Magnetic Internal Energy and Heat Capacity of the

AF-Ordered Phase

The Cmag(H,T ) in a perpendicular field is calculated
in MFT from the internal energy per moment Ei, which
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FIG. 14: (Color online) (a) Reduced induced perpendicular
magnetic moment µ̄z = µz/µsat versus reduced perpendicular
magnetic field h = gµBH/(kBTN) at different reduced temper-
atures t = T/TN as indicated, where TN refers to TN(H = 0)
and µsat = gSµB. The ordered moments at H = 0 are in
the xy plane and a perpendicular field H is applied along the
z axis as shown in Fig. 11. The spin is arbitrarily chosen to be
S = 5 and the ratio of the Weiss temperature to the Néel tem-
perature is assumed to be f ≡ θp/TN = −1. The curves were
calculated using Eqs. (188). The field region preceding the
sharp change in slope is the AF region, and the higher field
region is the PM region at each T . The second-order phase
transition between these two regimes defines the Néel temper-
ature TN(H). (b) Differential susceptibility dµ̄z/dh versus h
calculated from Eqs. (188) and (189).

is the same for each ordered and/or field-induced mo-
ment ~µi for this field configuration because they are all
equivalent with respect to the field as shown in Fig. 11.
In Sec. IXB we determined that µ̄i is independent of
field within the AF-ordered phase and is therefore equal
to the zero-field value µ̄0. Furthermore, from Eq. (172)
we found that for a given value of θ in Fig. 12, Eexch i is
independent of H . Then with the applied field given in

Eq. (160) with the axis notation in Fig. 12, one obtains

Ei = Eexch i + EH , (190a)

where

Eexch i = −1

2
µ0Hexch i

= −1

2
gSµBµ̄0Hexch i, (190b)

EH = −µ0H cos θ = −µzH, (190c)

µ0 = gSµBµ̄0 from Eq. (18a), µz = µ0 cos θ, we use the
fact that the magnitude µ0 of the ordered moment is the
same for each ~µi, and have defined Hexch i as the compo-

nent of Hexch i in the direction of ~µi as in Eq. (7). The
factor of 1/2 in Eq. (190b) arises because the exchange
energy is equally shared between each pair of interacting
moments, whereas the exchange field seen by a given mo-
ment is assumed to be due only to the neighbors of the
moment that interact with the moment with no contri-
bution from the moment itself.
From Figs. 7 and 11, all ordered moments have the

same angle θ with respect to the applied field, so for the
general case of a planar noncollinear AF, which of course
includes the collinear case, Hexch i is given by Eq. (172).
Inserting Eq. (172) with µ̄ = µ̄0 into (190b) yields

Eexch i = −3Sµ̄2
0kBTN

2(S + 1)

[

1− (1− f) cos2 θ
]

. (191)

We normalize the energy by the thermal energy kBTN,
yielding the reduced exchange energy

εexch i ≡
Eexch i

kBTN
= − 3Sµ̄2

0

2(S + 1)

[

1− (1− f) cos2 θ
]

. (192)

One can write Eq. (180) for cos θ with µ → µ0 as

cos θ =
(S + 1)h

3µ̄0(1− f)
, (193)

where f = θp/TN and h ≡ gµBH/(kBTN) is the re-
duced magnetic field in Eq. (29). Substituting Eq. (193)
into (192) gives

εexch i = − 3Sµ̄2
0

2(S + 1)
+

S(S + 1)h2

6(1− f)
. (194)

Using Eq. (160) for H, the expression for ~µi in
Eqs. (161) and the definition of h, the expression µz =
µ̄0gµBS cos θ and Eq. (193) for cos θ, the contribution of
the external field to the internal energy per moment is

EH = −µzH = −S(S + 1)kBTNh
2

3(1− f)
, (195a)

ǫH ≡ EH

kBTN
= −S(S + 1)h2

3(1− f)
. (195b)
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The total reduced internal energy per moment in the AF
state with a perpendicular magnetic field applied is ob-
tained from Eqs. (190a), (194) and (195b) as

εi ≡
Ei

kBTN
= − 3Sµ̄2

0

2(S + 1)
− S(S + 1)h2

6(1− f)
(h ≤ hc⊥),

(196)
where the reduced critical field hc⊥ is given in Eq. (185),
which defines the field boundary between the AF and PM
phases.
The magnetic heat capacity per magnetic moment

Cmag versus temperature at constant perpendicular field
is obtained from Eq. (196) using t ≡ T/TN from Eq. (18b)
as

Cmag

kB
=

(

dεi(t)

dt

)

h

= − 3S

(S + 1)
µ̄0(t)

dµ̄0(t)

dt
(h ≤ hc⊥).

(197a)
Substituting Eq. (21) for dµ̄0(t)/dt into (197a) gives Cmag

in the (canted) AF phase as

Cmag

kB
=

3Sµ̄2
0(t)

(S + 1)t
[

(S+1)t
3B′

S
(y0)

− 1
] (h ≤ hc⊥), (197b)

Here µ̄0(t) is calculated by numerically solving Eq. (20),
derivative B′

S(y) is given in Eq. (11) and hc⊥ is given
in Eq. (185). Equation (197b) is identical to Eq. (26)
for H = 0, except that we have now shown that it
is also valid for perpendicular magnetic fields less than
the t-dependent hc⊥. Equation (197b) is valid in the
magnetically-ordered state of any collinear or planar non-
collinear Heisenberg AF containing identical crystallo-
graphically equivalent spins. At higher fields h ≥ hc⊥,
the Cmag in the PM state derived in the following sec-
tion must be used in place of Eq. (197b).

2. Magnetic Internal Energy and Heat Capacity of the

Paramagnetic Phase

In the PM state all magnetic moments µz are field-
induced, have the same magnitude and are all in the same
(perpendicular) direction of the applied field H. Equa-
tion (48) gives the exchange field seen by each induced
moment in the PM state as

Hexch i = −Sµ̄z(t)

gµB

∑

j

Jij , (198a)

where we used the definition µ̄z ≡ µz/µsat = µz/(gSµB)
as in Eq. (18a). Inserting the expression for the sum
given in Eq. (166a) yields

Hexch i =
3µ̄z(t)kBθp
gµB(S + 1)

. (198b)

Then using Eq. (190b) with µ̄0 → µ̄z one obtains the
exchange energy as

Eexch i = −3Sµ̄2
z(t)kBθp

2(S + 1)
. (199a)

From the definition of the reduced exchange energy as in
Eq. (192) one obtains

εexch i = −3µ̄2
z(t)fS

2(S + 1)
, (199b)

where we used the definition f ≡ θp/TN from Eq. (50).
The part of the internal magnetic energy per moment
due to the applied magnetic field is given by Eq. (190c),
which we write in terms of reduced variables as

εH = −Shµ̄z(t). (200)

The total reduced internal magnetic energy per spin in
the PM phase from Eqs. (199b) and (200) is

εi = − 3fS

S + 1

[

µ̄2
z(t)

2
+

(S + 1)hµ̄z(t)

3f

]

. (201)

The Cmag per spin at fixed field is then given by the first
equality in Eq. (197a) as

Cmag

kB
= − 3fS

S + 1

[

µ̄z(t)+
(S + 1)h

3f

]

dµ̄z(t)

dt

∣

∣

∣

h
(h ≥ hc⊥).

(202a)
Substituting dµ̄z/dt from Eq. (189a) into (202a) yields
the Cmag per spin in the PM phase as

Cmag

kB
=

3fS
[

µ̄z(t) +
(S+1)h

3f

]2

(S + 1)t
[

(S+1)t
3fB′

S
(y) − 1

] (h ≥ hc⊥), (202b)

where y is given in Eq. (189b), B′
S(y) is given in Eq. (11),

µ̄z(t) is obtained by numerically solving Eq. (67) and hc⊥

is given in Eq. (185).

3. Magnetic Heat Capacity and Entropy of the Combined

Antiferromagnetic and Paramagnetic Phases

Plots of Cmag versus T for f = −1 and spin S = 7/2 ob-
tained for the AF and PM temperature and field regions
using Eqs. (197b) and (202b), respectively, are shown in
Fig. 15(a) for values of h given by h/hc⊥(t = 0) = 0, 0.5,
0.75, 0.9 and 1, where

hc⊥(t = 0) =
3(1− f)

S + 1
(203)

using Eq. (185) with µ̄0(t = 0) = 1. One sees that
a jump in Cmag(t) is present at each tN(h) as given
above in Fig. 13, but the size of the jump decreases
as TN(H)/TN(H = 0) decreases and disappears when
h = hc⊥(t = 0). This behavior of the heat capacity jump
with field is reflected in the variation in the discontinuity
in slope at T = TN(H) in plots of µ̄z versus h for various t
in Fig. 14.
Plots of Cmag/t versus t obtained from the data in

Fig. 15(a) are shown in Fig. 15(b). The magnetic entropy
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FIG. 15: (Color online) (a) Magnetic heat capacity Cmag, (b)
Cmag/T and (c) magnetic entropy Smag versus temperature T
for a spin S = 7/2 Heisenberg antiferromagnet with f = −1
for various magnetic fields H normalized by the critical field
Hc⊥(T = 0). The discontinuities in the respective figures ver-
sus temperature separate the low-T and/or low-H AF regime
from the high-T and/or high-H PM regime. The curves in
(a) and (b) were obtained using Eq. (197b) for the AF regime
and Eq. (202b) for the PM regime and the curves in (c) were
obtained using Eq. (204).

Smag(t) is obtained by integrating the data in Fig. 15(b)
versus t according to

Smag(t)

kB
=

∫ t

0

Cmag(t)

kBt
dt, (204)

and the results are shown in Fig. 15(c). Interestingly,
the Smag versus t plots at different h are similar in shape

to the µz versus h plots in Fig. 14(a) at different t. In
the limit of high t the entropy for fixed spin S and all
values of h must be the same value Smag(T → ∞) =
kB ln(2S+1) = kB ln(8), as indicated in Fig. 15(c). How-
ever, the approach to this asymptotic value with increas-
ing t is very slow in the PM phase, especially when H
is large, because the field tends to align the moments in
the direction of H that reduces the magnetic entropy,
which competes with temperature-induced disorder. For
example, when h is sufficiently high to destroy the AF
state completely at h = hc⊥(t = 0) in Fig. 15(c), the
integral in Eq. (204) must be extended for spin S = 7/2
and f = −1 up to t ≡ T/TN ≈ 20 in order for Smag to
reach 99.5% of its high-T asymptotic value per moment
of kB ln(8). Because the PM part of Cmag grows strongly
with increasing h for temperatures T > TN(H) and is
distributed over a large T range, it may be difficult to
experimentally separate this PM contribution from the
phonon contribution in heat capacity measurements of
AF materials.

X. DISCUSSION

In a system of noninteracting spins-S with
z-component of the magnetic moment µz = −gmSµB,

an applied magnetic field H = Hk̂ lifts the degeneracy
of the 2S+1 Zeeman levels labeled by the spin magnetic
quantum number mS = −S, −S + 1, . . . , S and splits
them in energy according to E = −µzH = gmSµBH ,
where the mS = −S state lies lowest in energy. Within
the Weiss MFT, the molecular field (exchange field
Hexch) in the ordered state of a system of interacting

spins in zero applied field is assumed to act like a uniform
applied field in a FM or a staggered field in an AF. This
exchange field therefore results in the same splitting of
the Zeeman levels of a magnetic moment in a FM or AF
as happens due to a uniform field applied to a system of
noninteracting spins. Thus in the ordered state of a FM
or AF there is an energy gap between the ground state
and the first excited state given by Egap = gµBHexch

even in zero applied field. According to Eq. (17a), the
exchange field is proportional to the ordered moment,
the T dependence of which is shown in Fig. 3. This
energy gap grows monotonically with decreasing T
and approaches a constant value for T → 0. Thus all
thermodynamic properties of the system approach their
T = 0 values exponentially with decreasing temperature,
including Cmag and χ along the easy axis (collinear AFs)
or plane (planar noncollinear AFs).
However, many spin systems do not show such acti-

vated behaviors in the ordered state for T → 0, and this
is a failure of the MFT. Instead, FMs and AFs often
show power-law behaviors in these properties at low T .
The reason for this failure is that MFT does not take
into account magnetic excitations associated with tilt-
ing of the individual magnetic moment directions. These
excitations are propagating spin waves with a linear dis-
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persion relation ω = vk for AFs where v is the spin-
wave velocity, ω is the spin-wave angular frequency and
k is the magnitude of the wave vector, or ω = Ak2 for
FMs where A is a constant. These dispersion relations
give rise to T 3/2 and T 3 contributions to Cmag at tem-
peratures low compared to the transition temperature of
three-dimensional (3D) ferromagnets and antiferromag-
nets, respectively.7,23–25 On the other hand, MFT can
predict Cmag over the entire T range below the mag-
netic ordering temperature, in contrast to spin-wave the-
ory that is useful only at temperatures much lower than
the ordering temperature.
Whereas spin-wave theory can produce more accu-

rate predictions for the magnetic and thermal proper-
ties of Heisenberg spin systems than MFT for temper-
atures much lower than the magnetic ordering temper-
ature, quantum mechanical high-temperature series ex-
pansions (HTSEs) of χ and Cmag of Heisenberg AFs in
powers of 1/T yield predictions more accurate than MFT
in the high-T region above the magnetic ordering tem-
perature. For example, the first two terms in the HTSE
for χ give the Curie-Weiss law. Subsequent terms give
corrections to this behavior that become more impor-
tant as T decreases. The minimum T at which accurate
descriptions of the magnetic and thermal properties are
obtained using HTSEs decreases with increasing number
of terms in the HTSE. Depending on the spin lattice,
the spin-lattice dimensionality and the value of S, such
HTSEs typically contain ∼ 10–20 terms.
The MFT prediction in Eq. (16) for the magnetic tran-

sition temperature does not take into account quantum
fluctuations associated with a low dimensionality of the
spin lattice, because the same formula applies to all spin
lattices irrespective of their dimensionality. The Mermin-
Wagner theorem states that long-range magnetic order

connot occur at a finite temperature in 1D or 2D Heisen-
berg spin lattices.27 Perhaps surprisingly, this theorem
does not rule out long-range AF order at T = 0 in 2D,
which is actually predicted to occur in the 2D S = 1/2
square lattice Heisenberg AF.26 Of course, from theory
and experiment such long-range ordering does occur in
3D spin lattices. This suppression of magnetic order-
ing in low-dimensional spin lattices arising from quantum
fluctuations is related to the reduction in the number of
nearest neighbors of a given spin as the dimensionality
of the spin lattice decreases.

The Weiss MFT predicts that the ordered moment at
T = 0 in the magnetically ordered state of a FM or AF in
H = 0 is equal to the saturation moment: µ0(T = 0) =
gSµB. Another manifestation of quantum fluctuations is
a reduction in this T = 0 ordered moment that becomes
increasingly pronounced as the effective dimensionality of
the spin lattice and/or the spin S decrease. For example,
in La2CuO4 containing spins-1/2 on a square lattice, the
ordered moment at T → 0 is found experimentally and
theoretically to be suppressed by about 30% compared
to the MFT prediction µ0(T = 0) = 1 µB/Cu assuming
a spectroscopic splitting factor g = 2.26
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