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Abstract

We report a systematic study of nonlinearity in the ferromagnetic resonance of a series of sub-

micron Permalloy ellipses with varying aspect ratios. At high excitation powers, the resonances

are found to shift to higher or lower applied field. We focus here on the sign of the shift and

its dependence on the applied field and shape-induced anisotropy of the ellipses. Using ferromag-

netic resonance force microscopy, we find that the measured nonlinear coefficient changes sign as a

function of anisotropy field and applied field in qualitative agreement with a macro-spin analysis.

This macro-spin analysis also points to origins of the nonlinearity in a combination of hard-axis

in-plane anisotropy and precession ellipticity. In comparison of the macro-spin predictions with

both experimental and micromagnetic modeling results, we measure/model values of the nonlinear

coefficient that are more positive than predicted by the macrospin model. The results are useful

in understanding nonlinear physics in nanomagnets and applications of spin-torque oscillators.
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From the basic phenomena of hysteresis and switching to the development of modern mag-

netic memory chips, the nonlinear behavior of ferromagnetism has been a key property that

makes magnets useful. Even in conceptually simple experiments involving only a magnet,

a static magnetic field, and a relatively small transverse oscillating field to drive dynamics,

there is a long and rich history of nonlinear magnetic phenomena1–3 that includes premature

saturation of magnetic resonance, spin wave instabilities,4 auto-oscillations,5 chaos, solitons,

and even Bose-Einstein condensation of excited magnons.6

Perhaps the simplest nonlinear effect is a dependence of the free oscillation frequency, ω0,

on the oscillation amplitude:

ω0 = ωlin
0 +N |c|2, (1)

were c is a dynamical variable describing the amplitude and phase of the oscillator, ωlin
0 is

the low-amplitude resonance frequency and N is the nonlinear frequency shift coefficient.

This change in resonant frequency with amplitude leads to a foldover phenomenon where the

frequency response of a resonator changes from a symmetric Lorentzian peak at low excita-

tion to an asymmetric peak shape at high excitation, possibly also exhibiting instabilities.

The foldover phenomenon is quite general, and it has been studied in systems ranging from

pendulums to on-chip optical resonators.

In this study, we focus on the sign of the nonlinear coefficient of the ferromagnetic res-

onance in submicron magnetic structures where the strong confinement creates discrete

spectra of standing spin wave modes. The power dependent ferromagnetic resonance is il-

lustrated in Fig. 1 where the resonance response of a submicron ellipse is plotted for several

values of pumping intensity and for two values of pumping frequency. For low excitation

power, both resonance curves are nearly symmetric. However, at higher excitation powers,

the resonance curves “lean” in opposite directions, indicating that the nonlinear coefficient

changes sign. In earlier works, positive7–10 and negative10,11 values for the nonlinear coeffi-

cient have been reported in a variety of experimental configurations. The changing sign of

the nonlinear coefficient has been theoretically explained by Slavin and Tiberkevich using

a classical Hamiltonian approach for the dynamics of a macrospin.12,13 Using a Holstein-

Primakoff transformation and a Bogoluibov transformation, the dynamics of the macrospin

is described by a pair of canonical variables through the Hamiltonian formalism. A key fea-

ture of their result is that the nonlinear coefficient can change sign with increasing applied
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FIG. 1: (Color online) Power dependent resonance spectra measured with a 560 nm × 450 nm

elliptical sample with an aspect ratio of 1.25 and with microwave frequencies of (a) 9 GHz and (b)

12 GHz. The static field is applied in plane along the long axis and the microwave field is in plane,

perpendicular to the static field.

field when the magnetization is directed along an anisotropy hard axis.

In this paper we confirm both via experiment and via micromagnetic modeling that the

nonlinear coefficient changes sign with both the applied field and also the effective shape

anisotropy of the nanostructure. We provide a simple derivation of the nonlinear coefficient,

and we show the nonlinear resonance shift is determined by a combination of the anisotropy

fields and the applied field through the ellipticity of the precession orbit. Finally, we discuss

an additional significant resonance shift due to the non-uniformity of the precession mode

in confined structures.

The samples used in this study have a trilayer structure of Ta (5 nm)/Ni80Fe20 (25 nm)/Ta

(5 nm). They are patterned into elliptical shapes using e-beam lithography, e-beam evapo-

ration and a lift-off process. The samples are deposited on a 150 nm thick and 2 µm wide

gold waveguide which generates the microwave-frequency pumping field for the resonance

measurements. The ellipses are made with in-plane length/width aspect ratios (AR) ranging

from 0.5 to 2.0, designed to have areas equivalent to a 500 nm diameter disk.

The spectra are measured using ferromagnetic resonance force microscopy (FMRFM)14–20,

which has a number of advantages for these measurements. First, FMRFM has the ability

to measure single structures. By measuring a single structure, we avoid ensemble averaging

and we avoid inhomogeneous broadening of the resonances, which would obscure the small

resonance shifts. Also, because electrical contacts are not needed, sample fabrication is
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simplified, and our measurement focus is easily moved between structures.

In our FMRFM measurements, samples are magnetized in-plane and a nearby cantilever

with a 200 nm diameter cobalt probe tip21 deflects in response to magnetostatic forces

between the tip and sample. Precession in the sample is excited by an in-plane microwave

driving field via a coplanar waveguide. In the absence of heating, the magnetization vector

magnitude remains unchanged in these experiments, so when the precession is large, tip-

sample forces are reduced as the time-averaged magnetization is slightly diminished. For

maximum cantilever sensitivity, we modulate the microwave power (and therefore also the

tip sample forces) at the mechanical resonance frequency of the cantilever. Unfortunately,

power modulation prevents us from observing bistable foldover effects, but in this work we

focus only on the initial indications of nonlinearity.

Microwave power levels in this paper are given in decibels relative to 1 mW (i.e. in

dBm) measured at the output of our signal generator. The microwave power levels at the

sample are uncalibrated, but transmission to the sample is known to be both lossy and

frequency-dependent.

First we demonstrate the power dependent resonance shift. Fig. 1(a) shows the spectra

measured under various microwave powers with a fixed frequency of 9 GHz. At low powers

(less than 12 dB), the resonance shows a Lorentzian peak at 93.5 mT. As the power increases

the resonance becomes nonlinear: the resonance peak is no longer symmetric and leans to-

wards low-field direction. Furthermore, the resonance field depends on the microwave power.

At 9 GHz, the resonance field shifts toward low-field direction (Hres = 92.7 mT at 14 dB).

Similiar power dependent behaviors are observed at 12 GHz, as shown in Fig. 1(b). Asym-

metric spectra at high powers indicate nonlinear response. However, in contrast to the 9 GHz

spectra, the nonlinear coefficient has a different sign: the resonance field of the 12 GHz spec-

tra increases with power. The power dependent resonance field measurement was repeated

from 7 GHz (Hres = 54.5 mT) to 13 GHz (Hres = 191.5 mT). In the nonlinear regime, we

found that the resonance shifts toward low-field when f ≤9 GHz (Hres ≤ 92.8 mT), while

the resonance shifts toward high-field when f ≥11 GHz (Hres ≥ 139.2 mT).

Consistent with Eq. (1), we define positive values of the nonlinear frequency coefficient

for resonances peaks that “fold over”, leaning toward low fields and negative values for

resonance peaks that lean toward high fields. If this definition seems counter-intuitive, note

that an increased intrinsic resonance frequency will require a lower applied field to be in
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resonance with the driving field. We point out that the field dependence of the nonlinear

coefficient shown in Fig. 1 is true for all the samples measured: the nonlinear coefficient is

positive (negative) at low (high) fields.

The nonlinear coefficient of a macrospin can be obtained via either a classical Hamilto-

nian formalism12,13 or the equation of motion approach. To build in intuition, we derive

the nonlinear coefficient directly from the equation of motion which allows us to easily de-

scribe the mechanisms of the nonlinearity. We begin with a free energy expression for the

macrospin:
E

µ0

= −MzHappl +
H1

2Ms

M2
x +

H2

2Ms

M2
y , (2)

where µ0 is the permeability of vacuum, Happl is the external field applied along the z-

direction. Effective anisotropy fields H1 and H2 include the effects of magnetostatic interac-

tions and exchange. We take the film normal to be parallel to the y-direction, so H2 will be

large and positive, owing to the thin film character of our samples. The in-plane anisotropy,

H1, due to the lithographically defined shapes, will generally be much smaller.

We start with the Landau-Lifshitz equations of motion neglecting the damping, dM/dt =

−µ0γM×Heff (γ is the gyromagnetic ratio), and convert it to the spherical coordinates with

Mx = Ms sin θ cosφ, My = Ms sin θ sinφ, and Mz = Ms cos θ, where θ is the polar angle and

φ is the azimuthal angle. In the spherical coordinate system, the equation of motion for the

azimuthal angle is
dφ

dt
=

γ

Ms sin θ

∂E

∂θ
. (3)

To lowest order in the precession cone angle θ,

dφ

dt
= µ0γ(Happl +H1 cos2 φ+H2 sin2 φ)

−µ0γθ
2

2
(H1 cos2 φ+H2 sin2 φ). (4)

In this expression, the second term explicitly describes the nonlinearity that comes from

expansion of E(θ, φ) around the energy minimum to include non-quadratic terms.

The conservation of energy during precession dictates the relationship between θ and φ.

For an energy E = E0 + ∆E slightly above the energy minimum, E0 = −µ0MsHappl,

θ2 =
2∆E

µ0Ms

(Happl +H1 cos2 φ+H2 sin2 φ)−1. (5)
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FIG. 2: (Color online) Calculated precession orbits projected in the x-y plane with an applied

field of (a) Happl/H2 = 0.10 and (b) Happl/H2 = 0.49. For both (a) and (b), H1/H2 = −0.07.

Different trajectories correspond to θx = 1◦, 2◦, 3◦, 4◦, and 5◦, where θx is the polar angle as

the magnetization sweeps through the x-z plane, i.e., θx = sin−1(Mmax
x /Ms). (c) Zero nonlinear

coefficient curves predicted by the macrospin model, Eq. (8, solid line) and thermal nonlinearity,

Eq. (11), dashed line).

The precession period T is found by inverting and integrating (4). Keeping only lowest-

order terms in θ, we get:

T =
1

µ0γ

∫ 2π

0

dφ

Happl +H1 cos2 φ+H2 sin2 φ
(6)

+
∆E

µ2
0γMs

∫ 2π

0

dφ (H1 cos2 φ+H2 sin2 φ)

(Happl +H1 cos2 φ+H2 sin2 φ)3
+ . . . .

The integrals in Eq. (6) can be performed, and after inverting the period we obtain the

angular precession frequency: ω = ω0 + ∆ω where

ω0 = µ0γ
√

(Happl +H1)(Happl +H2) (7)

is the linear frequency for small precession amplitudes, and

∆ω = −µ
3
0γ

4∆E

2Msω3
0

[(H1 +H2)(
ω0

µ0γ
)2 − 3

4
Happl(H1 −H2)2] (8)

is the nonlinear frequency shift. Eq. (8) presents a result consistent with the analysis de-

veloped by Slavin and Tiberkevich.12 We point out that the macro-spin analysis yields a
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general result that only depends on the strength of the anisotropy fields and the applied

field, rather than the particular origins of the anisotropy.

For many thin-film sample shapes, H2 is large and positive, and it would seem from (4)

that the nonlinear term would generally tend to slow precession, i.e. the nonlinear coefficient

should be negative. If both H1 and H2 are positive, as when the magnetization aligns along

easy axis, the right hand side of (4) is positive, so the precession slows down and ∆ω < 0.

However, when the magnetization lies in the in-plane hard axis direction, H1 < 0 and

H2 > 0, and the in-plane and out-of-plane anisotropy terms have oppositely signed contri-

butions to the nonlinearity. Although |H2| > |H1|, the H2 term is not necessarily dominant

because the ellipticity of the precession results in unequal sampling of H1 and H2. At low

fields, the precession orbit is highly elliptical. The precession amplitude in the x direction is

much larger than that in the y direction, thus the H1 term is more important in determining

the nonlinearity and ∆ω > 0. However, at higher fields, the precession orbit becomes more

circular which means H1 and H2 are sampled more equally. The H2 term quickly becomes

dominant and ∆ω < 0.

The boundary between positive and negative nonlinearity predicted by (8) is plotted in

Fig. 2(c) in terms of the in-plane anisotropy field and applied field. It is clear from this plot

that the nonlinear coefficient is expected to change sign as a function of Happl when H1 is

negative.

So far, we have considered only nonlinear mechanisms that arise from precession dynam-

ics, but thermal mechanisms may also drive nonlinear effects. Here, we briefly consider a

macrospin model for thermal nonlinearity.

Additional microwave power that is absorbed and dissipated at resonance can be expected

to produce a temperature rise δT along with reductions in both the saturation magnetization

δMs = (dMs/dT )δT and also similarly in the exchange stiffness A. To estimate the behavior

of the thermal nonlinearity, we recast (7) in terms of shape anisotropies and exchange fields.

H1 = (Nx −Nz)Ms +Hex (9)

H2 = (Ny −Nz)Ms +Hex (10)

where Nx, Ny and Nz are effective shape demagnetization factors and Hex ∝ 2A/Ms. We

relate thermal changes Hex to changes in Ms, by assuming that the magnetization and

the exchange stiffness follow a scaling relation, A ∝ Mβ
s . Using these assumptions, we find
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FIG. 3: (Color online) Frequency as a function of applied field measured in linear regime for

elliptical samples with various aspect ratios. The microwave power here is typically one order

of magnitude less than in the nonlinear measurements (e.g. fig. 1). The symbols represent

experimental data and the solid lines are the fits using the Kittel equation. The insets are the

AFM images using the same 200 nm probe.

the zero-nonlinearity boundary between thermally-induced magnetization shifts by asserting

that a small change in Ms will produce no shift in the resonant frequency, eq. (7). Taking

the derivative of (7) with respect to Ms and setting the result to zero yields the estimated

boundary between positive and negative frequency shift by a thermal mechanism:

H1

H2

= −
Happl

H2

[
1 + 2(β − 2)Hex

H2

]
+ (β − 2)Hex

H2

2 +
Happl

H2
+ (β − 2)Hex

H2

(11)

Note that if the exchange stiffness scales as the square of the magnetization (β = 2), as

is often assumed, the exchange fields do not play a role. The boundary given by (11) is

plotted for β = 2 as a dashed line in Fig. 2(c). Although the thermal mechanism and the

dynamic mechanisms both exhibit the same overall trend, i.e. changing from positive to

negative with increasing applied field, the zero-crossing condition is quite different for the

two mechanisms.

We now present our measurements of the sign of the nonlinear coefficient as a function

of applied field and anisotropy field. We utilize the shape anisotropy to vary the in-plane

anisotropy field. A series of 7 elliptical samples with the same area but different aspect

ratios (AR) are fabricated for this experiment.
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TABLE I: Measured and modeled values of in-plane anisotropy field, H1, and effective out-of-

plane anisotropy, H2, for the elliptical samples. The values were determined by fitting low power

resonance fields to the Kittel FMR equation, eq. (7). Uncertainties are the standard deviations of

the fit parameters.

Measurement Modeling

Sample µ0H1 (mT) µ0H2 (mT) µ0H1 (mT) µ0H2 (mT)

AR=0.5 -31.3 ± 0.4 853 ± 4 -44.9 ± 0.2 909 ± 2

AR=0.625 -19.6 ± 0.2 877 ± 2 -30.5 ± 0.2 910 ± 2

AR=0.8 -10.2 ± 0.2 870 ± 2 -14.5 ± 0.2 902 ± 1

AR=1 3.2 ± 0.2 867 ± 2 0.3 ± 0.1 908.4 ± 0.6

AR=1.25 14.8 ± 0.3 870 ± 2 15.15 ± 0.06 903.5 ± 0.3

AR=1.6 27.9 ± 0.1 861 ± 1 30.80 ± 0.04 901.3 ± 0.2

AR=2 36.6 ± 0.3 862 ± 2 46.19 ± 0.05 897.5 ± 0.2

In order to characterize the anisotropy fields of these samples, FMR resonances are first

measured at low microwave powers as shown in Fig. 3. For each sample, the FMR curve

is fitted using the Kittel equation, Eq. (7), with two fitting parameters H1, the in-plane

anisotropy field (or the saturation field), and H2, the out of plane anisotropy field. The

best-fit values of H1 and H2 are listed in Table I. The measured in-plane anisotropy field

changes systematically with in-plane AR as expected. For AR<1, the magnetization points

along the hard axis corresponding to a negative H1; while for AR>1, H1 becomes positive.

The out of plane anisotropy field H2 is dominated by the shape anisotropy of these planar

structures and it is only weakly dependent on aspect ratio.

Next, we measure the nonlinear change in the resonance line shape, as in Fig. 1, for each

sample at various applied fields. Because we do not know the amplitude of precession, it was

only experimentally feasible to determine the sign of the nonlinear coefficient. The spectra

were fit to a modified Lorentzian function,

L(Happl) =
a

[Happl −H0 +N ′L(Happl)]
2 /∆H2 + 1

+c(Happl −H0) + d, (12)
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FIG. 4: (Color online) Measured (a) and modeled (b) sign of nonlinear coefficient as a function of

normalized in-plane anisotropy field (H1/H2) and applied field (Happl/H2). The aspect ratios are

labeled for each sample, corresponding to a given anisotropy obtained from ferromagnetic resonance

measurements. The “near zero” open circles indicate that the fit value of N ′ was smaller than its

standard deviation. The solid lines in (a) and (b) are the condition for zero nonlinearity predicted

by the macro-spin model. The dotted lines are the zero nonlinearity curves from the macro-spin

model including the effect of non-uniform magnetization. (c) Modeled precession amplitude profiles

(|∆Mz|) of the main mode for the cases where the field is parallel (top, AR=2) and perpendicular

(bottom, AR=0.5) to the long axis of the ellipses. The contour lines mark where |∆Mz| is half of

its maximum value.

where the small-amplitude resonance field H0, signal amplitude, a, nonlinear coeffiecient,

N ′, background slope c and background offset d are all fitting parameters. The sign of N ′

is plotted in Fig. 4(a). The horizontal rows of points correspond to measurements made on

single ellipses at different frequencies and resonance fields.

The sign change for the nonlinear coefficient is observed for all 7 samples measured, and

the nonlinear coefficient tends to be positive at lower fields and it becomes negative at high

fields. The nonlinear coefficient is also sensitive to the in-plane anisotropy field. For a

given applied field, the nonlinear coefficient decreases with increasing H1. The trend of field

dependence on the nonlinear coefficient is consistent with the prediction from the macrospin

model previously discussed. However, the measured nonlinear coefficient appears to be more

positive than that predicted. In other words, the measured zero nonlinear coefficients occur

at higher fields than the prediction.

OOMMF22 micromagnetic modeling is also performed to the investigate the nonlinear
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resonance shift. Modeled sample geometries correspond to the designed dimensions of the

experimental samples. Material parameters were chosen to mimic Permalloy: Ms = 800

kA/m and exchange stiffness A = 13 pJ/m, yielding an intrinsic exchange length of 5.69

nm. Cell sizes of both 3 nm x 3 nm x 25 nm and 6 nm x 6 nm x 25 nm were used and

no appreciable differences were encountered in the results. Edge corrections were used to

mitigate the effects of a the square computational grid23. Thermal effects were not modeled.

The computational experiments follow closely the laboratory measurements and anal-

ysis methods. An efficient pulse-response method was used to calculate the low-power

resonances24, which were fit to obtain values of the in-plane and out-of-plane anisotropy

fields, H1 and H2 respectively. Results are listed in Table I. For model particles that ap-

proximate the size and shape of the experimental structures, the model yields a slightly

broader range of H1 values and slightly larger values of H2 than the measurements.

The high-power response was then determined by subjecting the modeling “sample” to an

oscillating microwave field with different combinations of microwave frequency, microwave

power and static applied field. After integrating the equations of motion over 10 ns, a limit

cycle was approached and the magnetization was time-averaged over 5 ns to determine the

quasi-static magnetization reduction. To trace out each simulated FMRFM response curve,

this process was repeated for different applied fields and the results were fit in the same way

as the measured curves.

The model results are shown in Fig. 4(b). In the measured and modeled results, a few of

the points appear to be missing. These points correspond to situations where more complex

line shapes were observed, presumably due to nonlinear excitation of multiple modes. In

agreement with the experimental results, the modeling yields a similar dependence of H1

and Happl. More importantly, we point out that the micromagnetic modeling also exhibits

an offset in the nonlinear coefficient compared to the macrospin result. With a given H1, the

modeled applied field for zero nonlinearity is higher than that predicted by the macrospin

theory, Eq. (8).

We now propose a possible origin of the difference between the macro-spin prediction

of the zero nonlinearity condition and the experimental and micromagnetic results. The

offset in the measured nonlinear coefficient can be understood as a nonlinear magnetostatic

mechanism arising from the non-uniformity of the precession in the excited mode. FMR pre-

cession modes in the confined structures are highly non-uniform, as exemplified in Fig. 4(c).
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Thus, the time-average static magnetization, 〈Mz〉, is also non-uniform. For example, the

dark regions at the edges in Fig. 4(c) represent zero precession where 〈Mz〉 ≈Ms and in the

bright regions near the structure center the precession amplitude reaches maximum with

reduced 〈Mz〉 < Ms.

As a consequence, the spatial variation of 〈Mz〉 results in an additional demagnetizing

field, ∆Hd, with a component parallel to the applied field and a spatial dependence that

is related to the precession pattern of the excited mode. This additional demagnetizing

field is the change in the demagnetizing field due to the precession-induced change in the

quasi-static magnetization, ∆Mz(~r′):

∆Hd(~r) = − 1

4π

∫
d3~r′

d

dz′
〈∆Mz(~r′)〉

~r − ~r′

|~r − ~r′|3
(13)

With zero precession amplitude, 〈∆Mz〉 is zero and hence ∆Hd = 0, but ∆Hd grows with

increasing precession amplitude. Since ∆Hd is roughly aligned with Happl, a lower applied

field is required to reach the resonance at a higher microwave power. This explains why

the resonance field tends to “fold over” toward low field direction for our nanostructures,

or equivalently, the nonlinear coefficient measured in the nanostructures tends to be more

positive than that predicted by the macrospin.

In eq. (13), we have related a dynamics-induced change in the magnetization to a change

in the magnetostatic field. We therefore define a nonlinear, mode dependent shift in the

demagnetization parameter,

∆Nz = −
∫
d~r ∆Hd(~r)∫
d~r 〈∆Mz(~r)〉

. (14)

For nonlinear effects, the nonuniformity essentially shifts the in-plane anisotropy field H1 by

∆H1 = −∆NzMs, or, since H2 � H1,

∆H1

H2

≈ −∆Nz. (15)

We use the modeled precession mode profile of AR = 0.5 sample in Fig. 4(c) (bottom) to

calculate ∆Hd, and we compute ∆H1/H2 ≈ 0.04. The dotted lines in Fig. 4 include the

estimation of magnetization non-uniformity effect. They show good agreement with the

experimental and micromagnetic results.

In a separate study, the influence of the shape confinement on the nonlinear coefficient

is also investigated in the perpendicular geometry. de Loubens and colleagues have ex-

perimentally studied the out-of-plane magnetized disks, and they found the non-uniform
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magnetization also significantly enhances the nonlinear coefficient in that configuration.25

At much higher driving fields where the nonlinear frequency shifts are on the order of 1 GHz,

hybridization of the normal modes has been observed with qualitative changes in the mode

profiles.26

In conclusion, we have shown the nonlinear resonance shift in patterned nanostructures.

The measured nonlinear coefficient can be either positive or negative depending on the

applied field and the anisotropy fields. A classical macro-spin approach has been used

to demonstrate the sign of the nonlinear coefficient is determined by the field configuration

(Happl and H1), through the details of precession orbits. The nonlinear coefficients measured

from a set of elliptical samples are consistent with the results from the macro-spin analysis

and micromagnetic modeling. However, both the measurements and the modeling of the

confined structures indicate nonlinear coefficients that are more positive than the macro-spin

analysis. We explain that this substantial offset in the nonlinear coefficient is due to the

non-uniform precession mode in the confined structures via a magnetostatic mechanism.
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