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Monte Carlo and spin dynamics techniques have been used to perform large-scale simulations of
the dynamic behavior of a nanoscale, classical, Heisenberg antiferromagnet on a simple cubic lattice
with linear sizes L 6 40 at a temperature below the Néel temperature. Nanoparticles are modeled
with completely free boundary conditions, i.e., six free surfaces, and nanofilms are modeled with
two free-surfaces in the spatial z-direction and periodic boundaries parallel to the surfaces in the
xy-direction, which are compared to the “infinite” system with periodic boundary conditions. The
temporal evolutions of spin configurations were determined numerically from coupled equations of
motion for individual spins using a fast spin dynamics algorithm with the 4th-order Suzuki-Trotter
decomposition of exponential operators, with initial spin configurations generated by Monte Carlo
simulations. The local dynamic structure factor S(q, ω) was calculated from the local space- and
time-displaced spin-spin correlation function. Multiple excitation peaks for wave vectors within
the first Brillouin zone appear in the spin-wave spectra of the transverse component of dynamic
structure factor ST (q, ω) in the nanoscale classical Heisenberg antiferromagnet, which are lacking
if periodic boundary conditions are used. With the assumption of q-space spin-wave reflections
with broken momentum conservation due to free-surface confinements, we successfully explained
those spectra quantitatively in the linear dispersion region. Meanwhile, we also observed two novel
quantized spin-wave excitation modes in the spatial z-direction in nanofilms for ST (q, ω). Results
of this study indicate the presence of new forms of spin-wave excitation behavior which have yet to
be observed experimentally but could be directly tested through neutron scattering experiments on
nanoscale RbMnF3 particles or films.

PACS numbers: 75.10.Hk, 75.40.Gb, 75.40.Mg

I. INTRODUCTION

The deterministic time-dependent dynamic
behavior of “infinite”magnetic systems with periodic
boundary conditions has been extensively studied by
experiments1–3 and spin dynamics simulations4–9 with
classical Heisenberg models. Early simulations for the
transverse component of the dynamic structure factor,
ST (q, ω), on isotropic antiferromagnetic body-centered
cubic systems at temperatures below the critical
temperature Tc, show a single spin-wave excitation
peak of finite intensity with finite width, becoming
narrow and increasing in excitation energy frequency
ω as T decreases, which approaches the predictions of
linear spin-wave theory, and a diffusive central peak
increasing in strength with increasing T at ω = 0. Both
are in qualitative agreement with the experiments.2,3

Large-scale computer simulations carried out by Tsai,
Bunker and Landau6 on antiferromagnetic, isotropic,
simple cubic systems below Tc found that by fitting
the line shape of ST (q, ω) to a Lorentzian form,11 in
the [100] direction the dispersion curves that result
are approximately linear in wave vector for small
q within the first Brillouin zone. For increasing T
towards Tc the dispersion curve turns into a power

law, reflecting the crossover from hydrodynamics to
critical behavior with the dynamic critical exponent
estimated to be z = 1.43(0.03). This value is in
agreement with the experimental estimate of the
dynamic critical exponent z = 1.43(0.04).3 With larger
systems, Tsai and Landau8 carried simulations to better
probe the asymptotic critical region in momentum,
and estimated z = 1.49(0.03) in good agreement with
the renormalization-group theory and dynamic scaling
predicted value12–15 of z = 1.5 for an isotropic three-
dimensional Heisenberg antiferromagnet. The dynamic
behavior of the longitudinal component of the dynamic
structure factor, SL(q, ω), has been studied by Bunker
and Landau.16 For both the isotropic and anisotropic
antiferromagnets, both annihilation and creation two-
spin-wave peaks are observed. The splitting of the
longitudinal spin-wave peak into two spin-wave peaks
with the energy separation of twice the energy gap at
the Brillouin zone center is predicted for all anisotropic
antiferromagnets.

Recent developments in the field of magnetic material
applications brought much attention to the static and
dynamic properties of confined magnetic elements of
small dimensions.17 Recent experiments18–20 on micron-
scale array elements showed quantized and localized
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spin-wave excitation modes as eigen-excitations by the
selection rules introduced by lateral confined boundary
conditions of the elements. In addition, the intrinsic
broken translational invariance caused by confinement
effects in one or more directions in those small
laterally confined magnetic elements leads to the broken
conservation law of the corresponding momentum for
a spin wave, which brings uncertainty into the wave
vector for a specific spin-wave excitation energy. This
uncertainty is reported to be inversely proportional
to the confinement length.21 Therefore, instead of a
continuous spin-wave spectrum with spin-wave excitation
energy frequency uniquely determined by each wave
vector, quantized spin-wave excitation modes, each of
them observed within a given wave-vector interval, are
obtained from those experiments.
Extensive Monte Carlo simulations for nanoscale

magnetic systems have been performed by Brown et

al
22,23 on the study of thermoinduced magnetization

(TiM), which is predicted to lead to ferromagnetic
properties in antiferromagnetic nanoparticles below the
Néel temperature TN . The Monte Carlo estimates for
the magnetization and susceptibility indicate that TiM is
an intrinsic property of the antiferromagnetic Heisenberg
model below the TN , but do not tell us anything about
the dynamic behavior.
The work presented here followed the previous work

done by Brown et al22,23. In order to gain further
understanding of the dynamic properties of nanoscale
antiferromagnetic systems, we carried out large-scale
spin dynamics simulations of the dynamic behavior
of the nanoscale classical Heisenberg antiferromagnet
on a simple cubic lattice. This study is not
restricted to the nanoscale antiferromagnetic case, but
can also be extended to ferromagnetic systems. We
focus mainly on the spin-wave excitation spectra of
the transverse component of dynamic structure factor
ST (q, ω) confined in the nanoscale isotropic classical
Heisenberg antiferromagnets at a temperature below the
Néel temperature. Sec. II of this paper contains the
definition of the model and introduces the simulation
background. In Sec. III we present and discuss our
simulation results and a summary is given in Sec. IV.

II. MODEL AND METHODS

A. Model

We propose to study the spin dynamics of
antiferromagnetic nanoparticles and nanofilms with
spin interactions described by a classical Heisenberg
Hamiltonian of the form:

H = −JAF

∑

<r,r′>

Sr · Sr′ , (1)

where Sr is a three-dimensional classical spin of unit
length at site r, and < r, r′ > denotes nearest-neighbor

pairs of spins. JAF < 0 is the antiferromagnetic nearest-
neighbor exchange interaction between Sr and Sr′ .

The model nanoparticles consist of L3 spins on a L ×
L×L simple cubic lattice with completely free boundary
conditions with six free surfaces. Our model nanofilms
consist of L2

xyLz spins on a Lxy × Lxy × Lz simple
cubic lattice with partially free boundary conditions with
two free-surfaces in the spatial z-direction and periodic
boundaries parallel to the surfaces in the xy-direction.
Lxy and Lz are the linear dimensions in the xy- and z-
directions, respectively.

B. Local Dynamic Structure Factor S(r0,q, ω)

Fully periodic boundary conditions have been
implemented to preserve the translational invariance
and emulate “infinite”systems. In the modeling of
nanofilms and nanoparticles in this work, we introduced
free boundary conditions either partially in one spatial
direction or completely in all spatial directions. As
one of the consequences of introducing free boundary
conditions, the translational invariance of system is
broken in the directions we introduced free boundary
conditions. Accordingly, to express the broken
translational symmetry, the formalism of the space- and
time-displaced spin-spin correlation function has been
modified from a translational invariant one with a form
of C(r, t) to a localized one with a form of C(r0, r, t),
where the parameter r0 denotes a fixed lattice site
as the starting point for the calculation of the local
correlation. Based on the specific localization performed,
r0 can be chosen to be fixed at the bulk center or the
surface center of nanofilms and nanoparticles, or even the
lattice corner of nanoparticles, i.e., r0 ⇒Bulk Center,
Surface Center, or Lattice Corner.

The definition of the local space- and time-displaced
spin-spin correlation function is defined as

Ck(r0, r, t) = 〈Sk(r0, t0)S
k(r0 + r, t0 + t)〉 −

〈Sk(r0, t0)〉〈Sk(r0 + r, t0 + t)〉, (2)

where r0 and t0 denote the spatial and temporal starting
points for the local correlation function, respectively; r
and t denote the spatial and time intervals, respectively;
〈. . .〉 gives the ensemble average; k = x, y or z; Sk(r0 +
r, t0 + t) stands for the k component of a spin at the
lattice site r+ r0 and the time t0 + t. The displacement
r is in units of the lattice unit cell length a. In the case
of antiferromagnets, the wave-vectors are measured with
respect to the (π, π, π) point which corresponds to the
Brillouin zone center.

The local dynamic structure factor S(r0,q, ω) is the
Fourier transform of the local space- and time-displaced



3

spin-spin correlation function C(r0, r, t), as given by

Sk(r0,q, ω) =
1

Nspin

∑

r

eiq·r

×
∫ +∞

−∞

e−iωtCk(r0, r, t)
dt√
2π

, (3)

where k = x, y or z; Nspin is the total number of spins
in a lattice.
The calculation of the local correlation is performed in

the [100] direction, i.e., in momentum space q = (q, 0, 0).
q is determined for r0 ⇒Bulk Center as

q =







2πnq

L
, nq = 0, 1, 2, . . . , nqmax

≡ L
2

for even L,

2πnq

L
, nq = 0, 1, 2, . . . , nqmax

≡ L−1
2

for odd L.
(4)

C. Simulation background

The Heisenberg model has true dynamics with the real
time evolution of spins governed by the coupled equations
of motion10

d

dt
Sr =

∂H
∂Sr

× Sr, (5)

which can be rewritten as

d

dt
Sr = Heff r × Sr, (6)

where Heff r is the effective field at site r, given by

Hk
eff r = −JAF

∑

<r,r′>

Sk
r′ , k = x, y, z (7)

where the sum is performed over all nearest-neighbor
sites of r. If we denote Sr as

Sr =











Sx
r

Sy
r

Sz
r











, (8)

Eqn.(6) can be rewritten as

d

dt
Sr =











0 −Hz
eff r Hy

eff r

Hz
eff r 0 −Hx

eff r

−Hy
eff r Hx

eff r 0











Sr ≡ RSr, (9)

for which the formal solution is

Sr(t+∆) = eR∆Sr(t), (10)

where ∆ is the time step for the integration of the
equations of motion.

The general recipe of spin dynamics is to generate N
equilibrium spin configurations drawn from a canonical
ensemble at a specific temperature T using a hybrid
Monte Carlo (MC) method, and to use these N
equilibrium spin configurations as starting states for the
integration of the coupled equations of motion using
the spin dynamics (SD) method, with the real SD time
evolving from t = 0 to tmax = ntdt, where nt is the
total number of SD time steps and dt is the SD time
step.24. From those data C(r0, r, t) is calculated for
time displacement t, ranging from 0 to a cutoff time
tcutoff = ncutoffdt, where ncutoff is the number of SD
time steps for cutoff time displacement. We take a set
of N initial conditions for a fixed lattice size and average
their results for C(r0, r, t). If this set of N configurations
is an equilibrium distribution at the temperature T , then
the average over all the C(r0, r, t) will be a result for
the local space-time correlation function at T for a finite
lattice size.

We simulated the behavior of the simple cubic classical
Heisenberg antiferromagnetic nanostructures with the
linear dimension less than 40 at a specific temperature
T = 0.4TN , where TN has been determined to a high
degree of accuracy of TN = 1.442929(77)|J |/kB, by
Chen et al.4 for the isotropic Heisenberg system with
simple cubic lattice geometry. We used the hybrid
MC method, in which for isotropic systems a single
hybrid MC step consists of two Metropolis steps and
eight overrelaxation steps25,26 to generate N equilibrium
distribution of states at T = 0.4TN . Typically, 5000
hybrid MC steps were used to generate each equilibrium
configuration and the coupled equations of motion were
then integrated numerically, using these states as initial
spin configurations. For nanofilms with the same
Lxy = 20, the total number of equilibrium configurations
generated by the hybrid MC is N = 4000 for Lz = 10;
N = 1500 for Lz = 20; N = 1500 for Lz = 30.
For nanofilms with the same Lz = 10, N = 5000 for
Lxy = 10; N = 4000 for Lxy = 20; N = 2600 for
Lxy = 30. For nanoparticles, N = 5000 for L = 10;
N = 5000 for L = 14; N = 4000 for L = 20.

The coupled equations of motion were integrated using
an algorithm based on the fourth-order Suzuki-Trotter
decomposition of the exponential operator, by which the
magnetization will be conserved up to terms of the order
(dt)4(global truncation error).27,28 Typically, numerical
integrations were performed to a maximum time tmax =
1000/|J | with nt = 5000 and SD time step dt = 0.2/|J |.
tcutoff = 800/|J | with ncutoff = 4000 was used as the
cutoff time for the calculation of C(r0, r, t).

In our simulations for antiferromagnetic
nanostructures, we applied component-regrouping
on the local dynamic structure factor in the spin space
into a longitudinal component, which is parallel to
the order parameter of the system, i.e., the staggered
magnetization, as

SL(r0,q, ω) = Sz(r0,q, ω), (11)
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and a transverse component, which is perpendicular to
the order parameter of the system, as

ST (r0,q, ω) =
1

2

(

Sx(r0,q, ω) + Sy(r0,q, ω)
)

. (12)

For an antiferromagnet the order parameter, i.e., the
staggered magnetization, is not a constant of motion;
therefore, regrouping components of the spin parallel
(longitudinal component) and perpendicular (transverse
component) to the order parameter is challenging. As
we integrate the equations of motion, the direction of
the staggered magnetization changes slightly because it
is not a conserved quantity. Our approach to overcome
this problem is to rotate the coordinate frame of reference
continually after each integration step so that the z-axis
is to be realigned to the staggered magnetization and
restored the z-axis as the longitudinal direction.

III. RESULTS

A. Spectra for ST (r0,q, ω) for isotropic

antiferromagnetic nanofilms

In this section, we give the results for the transverse
component of the local dynamic structure factor
ST (r0,q, ω) with r0 ⇒ Bulk Center for isotropic,
antiferromagnetic nanofilms on Lxy × Lxy × Lz simple
cubic lattice. The results were obtained in the periodic
boundary directions, denoted as the PBCXY [100]
directions, parallel to the free surfaces, as shown in
Figure 1.

z

x

y
Lxy

Lxy

Lz

PBCXY [100]

r0

FIG. 1: PBCXY [100] directions with r0 ⇒ Bulk Center for
isotropic, antiferromagnetic nanofilms.

Figure 2 shows the spectra for ST (r0,q, ω) with the
same Lxy = 20 and three different thicknesses, i.e., Lz =
10, 20, and 30. For convenience, we labeled the y-axis
of our results with ST (r0, nq, ω) with nq = 0, 1, 2, . . .. In
the figure, we give the spectra for nq = 0, 1, 2, . . . , 5.
The vertical dashed lines in the figure labeled with

ω
PBC

show the single spin-wave excitation locations for
each wave vector of the “infinite”system with periodic
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FIG. 2: The spectra for ST (r0,q, ω) obtained from isotropic,
antiferromagnetic nanofilms with the same Lxy = 20 and
three different thicknesses, i.e., Lz = 10, 20, and 30. The
results were obtained in the PBCXY [100] directions, i.e.,
the directions parallel to the free surfaces, with r0 ⇒
Bulk Center at T = 0.4TN with SD parameters of nt = 5000,
ncutoff = 4000, and dt = 0.2/|J |. We give the spectra
for nq = 0, 1, 2, . . . , 5. N is the total number of initial
configurations.

boundary conditions. Two major observations can be
made pertinent to the above spectra:

1. Multiple excitation peaks for wave vectors within
the first Brillouin zone appear in the spin-wave
spectra for the transverse component of the
local dynamic structure factor ST (r0, nq, ω) in
the classical Heisenberg isotropic antiferromagnetic
nanofilms, which are lacking if periodic boundary
conditions are used;

2. Negative spin-wave excitation peaks originated
from the negative local correlation between
opposite sublattices of antiferromagnetic systems
were observed in spectra for each wave vector.

In addition to the above two major observations, we
also observed that, as the thickness Lz of nanofilms, i.e.,
the distance between the free surfaces, becomes larger,
the main excitation peak for some wave vectors, e.g.,
nq = 1, 2, 3, shifts closer to ω

PBC
. This observation

is reasonable considering the free-surface effects become
weaker as the separation between free surfaces increases,
and thus the dynamics behaves more like that of the
“infinite”system with periodic boundary conditions.
To complete our results, in Figure 3 we present a

further set of spectra ST (r0,q, ω) for nanofilms having
the same thickness Lz = 10 but with three different
horizontal dimensions, i.e., Lxy = 10, 20, and 30.
Note that we did independent runs with the identical
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dimension parameters for the nanofilm shown in the
top panel of Figure 2 and that in the middle panel of
Figure 3, i.e., both are Lxy = 20 and Lz = 10, which
gave consistent results within error bars. The larger
oscillations in Figure 3 are due to larger finite-time cutoff
used in the Fourier transform of the local correlation
function.
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FIG. 3: The spectra for ST (r0,q, ω) obtained from isotropic,
antiferromagnetic nanofilms with the same Lz = 10 and
three different horizontal dimensions, i.e., Lxy = 10, 20,
and 30. The results were obtained in the PBCXY [100]
directions, i.e., the directions parallel to the free surfaces,
with r0 ⇒ Bulk Center at T = 0.4TN with SD parameters
of nt = 5000, ncutoff = 4000, and dt = 0.2/|J |. We give the
spectra for nq = 0, 1, 2, . . . , 5. N is the total number of initial
configurations.

The spectra in Figure 3 are very similar to those
of Figure 2. It should be noted that, the bigger
oscillations of the spectra for nq = 1 in Figure 3 for
Lxy = 20 and 30 are due to the finite time cutoff
ncutoff , which introduces oscillations into the results of
the Fourier transformation. These oscillations, however,
can be smoothed out by convoluting the local correlation
function with a Gaussian resolution function e−

1

2
tδω in

the time Fourier transformation, where δω is a parameter
determining the resolution in frequency and needs to be
chosen properly such that effects of the cutoff in the
evolution time can be neglected.4 The shifting to lower
energy frequency of the main excitation peak in Figure 3
is due to the finite-size effects in the xy-directions with
periodic boundary conditions.
The most significant observation of the spectra for

ST (r0, nq, ω) in isotropic, antiferromagnetic nanofilms
(Figure 2 and Figure 3) is the multiple spin-wave
excitation peaks with the intensity decreasing with
increasing energy. Given that the intensity of these peaks
decreases so significantly with increasing energy, it is
important to demonstrate that they correspond to real

excitations rather than the statistical noise inherent in
the simulations. Figure 4 shows the comparison between
the magnitude of those multiple spin-wave peaks and
the magnitude of the intrinsic noise in our simulations
for nq = 1 of the nanofilm with Lxy = Lz = 20. As
shown in the figure, there is a significant difference in
the magnitude, which makes it clear to draw a conclusion
that those multiple spin-wave excitations do not originate
from noise fluctuations. Note that the noise is ∼ 10−4 as
big as the single spin-wave peak.

Real physics

Noise

~ 87

FIG. 4: High resolution plot of the raw simulation
data of multiple spin-wave excitation peaks illustrating the
differences in the magnitude of the multiple spin-wave peaks
and the intrinsic noise in our simulations for nq = 1 of the
nanofilm with Lxy = Lz = 20. Note that the noise is ∼ 10−4

as big as the single spin-wave peak.

B. Q-Space Spin-Wave Reflection: Quantitative

Explanation of Multiple Spin-Wave Excitations in

the Spectra for ST (r0,q, ω) for isotropic

antiferromagnetic nanofilms

As mentioned in Section I, for small laterally confined
magnetic systems like nanofilms or nanoparticles, there is
intrinsic broken translational invariance caused by free-
surface confinement effects in one or more directions,
which leads to a broken conservation law of the
corresponding spin wave momentum. The broken
conservation law of momentum brings uncertainty into
the wave vector for a specific spin-wave excitation
energy. To explain the multiple spin-wave excitation
peaks, we proposed the assumption of q-space spin-wave
reflection with broken momentum conservation, i.e., in
the linear dispersion region with small momentum q, the
reflected spin-wave energy and momentum should satisfy
a geometric relationship defined by

ωrefl

ωbulk

=
qrefl
qbulk

, (13)
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where qbulk and qrefl are the bulk momentum and
reflected momentum, respectively; ωbulk and ωrefl are
bulk energy frequency and reflected energy frequency,
respectively. Figure 5 gives an illustration of this
assumption.

FIG. 5: An illustration of the assumption of q-space spin-wave
reflection with broken momentum conservation.

With the assumption of q-space spin-wave reflection
with broken momentum conservation, we successfully
explained the multiple spin-wave excitation spectra
quantitatively in the linear dispersion region with small
momentum q. Figure 6 gives the same spectra shown
in Figure 4. The thick red dashed line gives the single
spin-wave excitation location for the wave vector of
nq = 1 of the system with periodic boundary conditions;
the thick black dashed line labeled with ω = ωbulk

gives the bulk excitation location for the wave vector
of nq = 1 of the nanofilm. To locate multiple spin-
wave excitation locations quantitatively, we took the
bulk energy frequency ω = ωbulk and then multiplied
it with all possible ratios of

qrefl

qbulk
, which are illustrated

in Figure 5. The results of those multiplications are
shown by thin black dashed lines with a ratio multiplying
ω labeled on each. The thick black downward arrows
labeled in Figure 6 give the locations of excitation
peaks disturbed by the novel excitation modes in FBCZ

[100] perpendicular directions that will be discussed in
Sec.III E.

For completeness, in Figure 7 we show the
spectra for the longitudinal component of the local
dynamic structure factor, i.e., SL(r0,q, ω), for isotropic,
antiferromagnetic nanofilm with the same lattice size,
i.e., Lxy = Lz = 20. We labeled the y-axis of our
results with SL(r0, nq, ω) for the wave vector of nq = 1.
The excitation peaks labeled with thin black dashed
lines are the peaks “contaminated”by the transverse
component of the local multiple spin-wave excitations
shown in Figure 6. Note that the “contamination”of the
spin-wave excitations is caused by imperfect regrouping
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0.05

0.1
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FIG. 6: Determination of multiple spin-wave excitation
locations with the assumption of q-space spin-wave reflection
with broken momentum conservation in the linear dispersion
region with small momentum of nq = 1 for an isotropic,
antiferromagnetic nanofilm with a lattice size of Lxy =
Lz = 20. The results were obtained in the PBCXY [100]
directions, i.e., the directions parallel to the free surfaces,
with r0 ⇒ Bulk Center at T = 0.4TN with SD parameters
of nt = 5000, ncutoff = 4000, and dt = 0.2/|J |. The
thick red dashed line gives the single spin-wave excitation
location for the wave vector of nq = 1 of the system with
periodic boundary conditions; the thick black dashed line
labeled with ω = ωbulk gives the bulk excitation location
for the wave vector of nq = 1 of the nanofilm; the thick
black downward arrows labeled in figure give the locations
of excitation peaks disturbed by the novel excitation modes
in FBCZ [100] perpendicular directions that will be discussed
in Sec.III E.

of longitudinal and transverse components of spin-wave
excitations to the antiferromagnetic order parameter, as
we discussed in Section II C.
Similarly, Figure 8 shows that the multiple spin-wave

excitation locations with nq = 2 are also determined
quantitatively.
Comparing the results in Figure 6 and Figure 8, we

observed that, with our assumption of q-space spin-
wave reflection, the proportion of successfully explained
multiple excitations with nq = 1 is larger than that
with nq = 2, which means our assumption works better
with nq = 1 than nq = 2, i.e., works better with a
smaller momentum. This is reasonable considering that
the linear dispersion region with small momentum q is
the region for the assumption to be correctly applied.

C. Spectra for ST (r0,q, ω) for isotropic

antiferromagnetic nanoparticles

In this section, we give the results for the transverse
component of the local dynamic structure factor
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FIG. 7: The spectra for SL(r0,q, ω) obtained from isotropic,
antiferromagnetic nanofilm with a lattice size of Lxy = Lz =
20. The results were obtained in the PBCXY [100] directions,
i.e., the directions parallel to the free surfaces, with r0 ⇒
Bulk Center at T = 0.4TN with SD parameters of nt = 5000,
ncutoff = 4000, and dt = 0.2/|J |. We give the spectra for
the wave vector of nq = 1 . The excitation peaks labeled
with thin black dashed lines are the peaks “contaminated”by
the transverse component of the local multiple spin-wave
excitations shown in Figure 6.

ST (r0,q, ω) with r0 ⇒ Bulk Center for isotropic,
antiferromagnetic nanoparticles on L×L×L simple cubic
lattice. The results were obtained in six symmetric [100]
directions, as shown in Figure 9.

Figure 10 shows the spectra for ST (r0,q, ω), obtained
from isotropic, antiferromagnetic nanoparticles with L =
10, 14, and 20. For the convenience of labeling, we
labeled the y-axis of our results with ST (r0, nq, ω) with
nq = 0, 1, 2, . . . (defined in Eqn.(4)). In the figure, we
give the spectra for ST (r0, nq, ω) with nq = 1, 2, . . . , 5.

Multiple excitation peaks for wave vectors within the
first Brillouin zone appear in the spin-wave spectra for
the transverse component of the local dynamic structure
factor ST (r0, nq, ω) in the classical Heisenberg isotropic
antiferromagnetic nanoparticles, which are lacking if
periodic boundary conditions are used.

As noted previously, the bigger oscillations of the
spectra for nq = 1 in Figure 10 for L = 20 are due to the
finite time cutoff ncutoff , which introduces oscillations
can be smoothed out by convoluting the local correlation
function with a Gaussian resolution function in the time
Fourier transformation; and the shifting to lower energy
frequency of the main excitation peak in the figure is due
to the finite-size effects.
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FIG. 8: Determination of multiple spin-wave excitation
locations with the assumption of q-space spin-wave reflection
with broken momentum conservation in the linear dispersion
region with small momentum of nq = 2 for an isotropic,
antiferromagnetic nanofilm with a lattice size of Lxy =
Lz = 20. The results were obtained in the PBCXY [100]
directions, i.e., the directions parallel to the free surfaces,
with r0 ⇒ Bulk Center at T = 0.4TN with SD parameters
of nt = 5000, ncutoff = 4000, and dt = 0.2/|J |. The
thick green dashed line gives the single spin-wave excitation
location for the wave vector of nq = 2 of the system with
periodic boundary conditions; the thick black dashed line
labeled with ω = ωbulk gives the bulk excitation location
for the wave vector of nq = 2 of the nanofilm; the thick
black downward arrows labeled in figure give the locations
of excitation peaks disturbed by the novel excitation modes
in FBCZ [100] perpendicular directions that will be discussed
in Sec.III E.
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FIG. 9: [100] directions with r0 ⇒ Bulk Center for isotropic,
antiferromagnetic nanoparticles.
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FIG. 10: The spectra for ST (r0,q, ω) obtained from isotropic,
antiferromagnetic nanoparticles with L = 10, 14, and 20.
The results were obtained in the [100] directions with r0 ⇒
Bulk Center at T = 0.4TN with SD parameters of nt = 5000,
ncutoff = 4000, and dt = 0.2/|J |. We give the spectra for
nq = 1, 2, . . . , 5.

D. Quantitative Explanation of Multiple

Spin-Wave Excitations in the Spectra for ST (r0,q, ω)
for isotropic antiferromagnetic nanoparticles with

the Assumption of Q-Space Spin-Wave Reflection

As shown in Figure 10, the spectra for isotropic,
antiferromagnetic nanoparticles are even more
complicated than the spectra for isotropic,
antiferromagnetic nanofilms given in Figure 2 and
Figure 3. Not only are there many more multiple
spin-wave excitations for each wave vector, but also the
excitation patterns themselves become more intricate.
Those observations are due to the fact that the
completely laterally confined nanoparticles have much
stronger free-surface effects on the dynamics than those
of nanofilms. However, in the linear dispersion region
with the assumption of q-space spin-wave reflection, we
can still determine the locations of those excitations
quantitatively.

Figure 11 gives the spectra for nq = 1 of the
nanoparticle with a lattice size of L = 10. The thick
red dashed line gives the single spin-wave excitation
location for the wave vector of nq = 1 of the system
with periodic boundary conditions; the thick black
dashed line labeled with ω = ωbulk gives the bulk
excitation location for the wave vector of nq = 1 of
the nanoparticle; the determination of multiple spin-wave
excitation locations are shown by thin black dashed lines
with a ratio multiplying ω labeled on each; the thick black
downward arrows labeled in figure give the locations of
excitation peaks disturbed by the novel excitation modes
in FBCZ [100] perpendicular directions to be discussed

in Sec.III E.
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FIG. 11: Determination of multiple spin-wave excitation
locations with the assumption of q-space spin-wave reflection
with broken momentum conservation in the linear dispersion
region with small momentum of nq = 1 for an isotropic,
antiferromagnetic nanoparticle with a lattice size of L = 10.
The results were obtained in the [100] directions with r0 ⇒
Bulk Center at T = 0.4TN with SD parameters of nt = 5000,
ncutoff = 4000, and dt = 0.2/|J |. The thick red dashed
line gives the single spin-wave excitation location for the
wave vector of nq = 1 of the system with periodic boundary
conditions; the thick black dashed line labeled with ω = ωbulk

gives the bulk excitation location for the wave vector of nq = 1
of the nanoparticle; the thick black downward arrows labeled
in figure give the locations of excitation peaks disturbed
by the novel excitation modes in FBCZ [100] perpendicular
directions that will be discussed in Sec.III E.

E. Observation of Two novel quantized spin-wave

excitation modes for ST (r0,q, ω) for isotropic

antiferromagnetic nanofilms

In this section, we give the results for the transverse
component of the local dynamic structure factor
ST (r0,q, ω) with r0 ⇒ Bulk Center for isotropic,
antiferromagnetic nanofilms on Lxy × Lxy × Lz simple
cubic lattice. The results were obtained in the
free boundary directions, denoted as the FBCZ [100]
directions, perpendicular to the free surfaces, as shown
in Figure 12.
Figure 13 shows the spectra for ST (r0,q, ω) with

Lxy = Lz = 20. In the figure, we give the spectra
for nq = 0, 1, 2, . . . , 4. As shown in the figure,
we observed two novel quantized spin-wave excitation
modes for ST (r0, nq, ω), i.e., “Excitation Mode I”and
“Excitation Mode II”, in the spatial z-direction in
isotropic, antiferromagnetic nanofilms. This is a new
form of spin-wave excitation behavior which needs
further study, but at least our results indicate that those
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FIG. 12: FBCZ [100] directions with r0 ⇒ Bulk Center for
isotropic, antiferromagnetic nanofilms.

novel quantized excitation modes could be potentially
caused by, but not limited to the free-surface confinement
effects.
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FIG. 13: The spectra for ST (r0,q, ω) obtained from isotropic,
antiferromagnetic nanofilms with Lxy = Lz = 20. The results
were obtained in the FBCZ [100] directions, i.e., the directions
perpendicular to the free surfaces, with r0 ⇒ Bulk Center at
T = 0.4TN with SD parameters of nt = 5000, ncutoff = 4000,
and dt = 0.2/|J |. We give the spectra for nq = 0, 1, 2, . . . , 4.
N is the total number of initial configurations.

IV. CONCLUSION

With large scale Monte Carlo and spin dynamics
simulations, we have investigated the dynamic behavior
of antiferromagnetic nanostructures on a simple cubic
lattice geometry, using an isotropic, classical Heisenberg
model of classical spins with unit length and with the
nearest-neighbor exchange interactions. Nanoparticles

are modeled with completely free boundary conditions,
and nanofilms are modeled with partially free boundary
conditions i.e., two free-surfaces in the spatial z-direction
and periodic boundaries parallel to the surfaces in the x-,
y-directions. Hybrid Monte Carlo methods are used to
obtain the static properties of modeled nanostructures.
The Monte Carlo methods are also used to generate
equilibrium spin configurations as initial states of the
coupled differential equations of motion. A fast spin
dynamics algorithm based on the fourth-order Suzuki-
Trotter decomposition of exponential operators has been
applied to integrate the equations of motion. Our spin
dynamics simulations are performed at a low temperature
T = 0.4TN . The integrations are carried to ncutoff =
4000 with an SD time step dt = 0.2/|J |.
With the time evolution of the spin configurations,

the local space- and time-displaced spin-spin correlation
function C(r0, r, t) is calculated, where r0 denotes the
starting point from which the correlation function is
calculated and can be chosen to be fixed at the
bulk center or the surface center of nanoparticles
and nanofilms, or the lattice corner of nanoparticles
in the simulations. The local dynamic structure
factor S(r0,q, ω) is the Fourier transformation of
C(r0, r, t), which can be observed in inelastic magnetic
neutron scattering. For the temperature T = 0.4TN ,
compared to the single spin-wave excitation spectra
for the “infinite”system with fully periodic boundary
conditions, much more complicated excitation spectra
for the transverse component of the local dynamic
structure factor ST (r0,q, ω) appear in the nanoscale
classical Heisenberg antiferromagnets. The spectra for
ST (r0,q, ω) have multiple excitation peaks for wave
vectors within the first Brillouin zone, which are
lacking if periodic boundary conditions are used. We
were able to simulate these systems with sufficiently
high accuracy such that multiple excitation peaks
distinguish themselves from the intrinsic simulation
noise by showing a significant difference in magnitude
between the two signals. With the assumption of
q-space spin-wave reflection with broken momentum
conservation due to lateral free-surface confinements,
we successfully explained the locations of those
excitations quantitatively for isotropic, antiferromagnetic
nanostructures in the linear dispersion region with small
wave vectors.
Results of this study indicate the presence of new

forms of spin-wave excitation behavior which have yet to
be observed experimentally but could be directly tested
through neutron scattering experiments on nanoscale
RbMnF3 films or particles.
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