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We show that optically pumped semiconductors can exhibit superconductivity. We illustrate
this phenomenon in the case of a two-band semiconductor tunnel-coupled to broad-band reservoirs
and driven by a continuous wave laser. More realistically, we also show that superconductivity
can be induced in a two-band semiconductor interacting with a broad-spectrum light source. We
furthermore discuss the case of a three-band model in which the middle band replaces the broad-
band reservoirs as the source of dissipation. In all three cases, we derive the simple conditions on
the band structure, electron-electron interaction, and hybridization to the reservoirs that enable
superconductivity. We compute the finite superconducting pairing and argue that the mechanism
can be induced through both attractive and repulsive interactions and is robust to high temperatures.

I. INTRODUCTION

Superconductivity is unarguably a fascinating phase of matter with tremendous applications. This low-temperature
instability towards zero-resistivity corresponds to the emergence and the condensation of Cooper pairs of electrons.
In most simple metallic systems, the pairing is achieved by phonon-mediated interactions1 and the superconducting
temperature does not exceed a few Kelvin. The last fifty years have seen some remarkable progress in the understanding
of superconductivity. Cuprates2 and iron pnictides3,4 now offer critical temperatures on the order of a hundred Kelvin.
They were dubbed “high-temperature superconductors” as such temperatures can be easily achieved with liquid
nitrogen. All this allowed superconductivity to become a cornerstone to many modern technological developments1.
The Josephson effect is routinely used in superconducting quantum interference devices (SQUIDs)1, and its inherent
non-linearity is widely used to build qubits5,6. The Meissner effect and the zero resistivity are used to realize powerful
magnets7. However, the search for room-temperature superconductivity is still a very active field of research8.

Pioneering examples of the use of AC microwave fields in condensed matter systems have been to enhance the critical
temperature of regular superconductors by redistributing the quasiparticle density near the Fermi surface1. More
recently, it was established that an AC electric field leads to a renormalization of the lattice hopping parameters9–11.
It has been suggested that in interacting systems such as the Bose-Hubbard model it is thereby possible to induce
a superfluid Mott insulator phase transition12–14. Reversing the signs of the hoppings in a lattice model could be
used to realize frustrated classical spin systems15. In the case of electrons driven by a laser field, many interesting
phenomena have been proposed16,17. These include dynamical band flipping and splitting18, interaction strength
renormalization, changes in the sign of the effective interaction strength leading to s-wave superconductivity with
repulsive bare interactions and negative absolute temperatures for a laser-driven band model.

In this work, we envision a novel route to achieve superconductivity which consists of optically driving a two-band
semiconductor to a suitable non-equilibrium steady state which supports interband pairing between electrons in the
valence and conduction electrons. Importantly, we shall demonstrate the robustness of this mechanism with respect
to temperature, up to room temperature, as long as it is smaller than the semiconducting gap.

We note that the possibility of inducing superconductivity in a two band model has been discussed in narrow, indirect
gap semiconductors.19–23 However the mechanism proposed here is significantly different in that it involves interband
pairing for wide gap semiconductors, instead of intraband pairing for narrow gap semiconductors. Furthermore, in
our mechanism the majority of the pairing occurs around a resonant surface Sω0 (see Section II) which is not directly
related to the band edge. Among the chief consequences of the difference in pairing channel and its k-space location
is the fact that in our mechanism the pairing amplitude does not need to be larger than the semiconducting gap in
order to establish non-equilibrium steady-state superconductivity, therefore making pairing more easily attainable.

In Sect. II, we take a pedagogical route to demonstrate this effect by considering a model of a two-band semi-
conductor in tunneling contact with two reservoirs provided, say, by a metallic plate [see Fig. (1)]. We carefully
show that it is possible to induce superconductivity in this system under favorable conditions involving the electronic
dispersion, the electron-electron interaction, and the hybridizations to the reservoirs as well as the chemical potential.
To support the validity of our analytical results in the steady-state, we perform an exact numerical integration of the
time dynamics. We show in particular that the predicted non-trivial steady state is indeed reached dynamically.

In Sect. III, we argue that the previous case can be reduced to a simpler yet more realistic model of a two-band
semiconductor – not in strong tunneling contact with any engineered external reservoirs – which is optically pumped
by a broad-band light source. In many ways, it is the most relevant model discussed in this manuscript and the reader
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FIG. 1: Energy levels and laser. (a) A continuous wave laser drives transitions between the lower (1) and upper (2) bands.
Both bands are coupled to reservoirs. The chemical potentials of the reservoirs µ is set in the gap. (b) In the rotating frame,
the laser induces an avoided band crossing (with splitting ∼ |Ω|). (c) This creates an effective resonant surface Sω0 consisting
of the set of momenta k0 for which the laser resonantly connects the two bands.

eager to learn about these results can directly jump to Sect. III which is written in a self-contained fashion.
In Sect. IV, we provide an alternative derivation of the previous results by means of a Keldysh formalism approach.

In particular, this allows to justify properly an approximation used to self-consistently compute the superconducting
pairing.

For the sake of completeness, we review in the Appendix the case of a three-band semiconductor in which the extra
band plays the role of the reservoirs in Sect II.

II. LASER-DRIVEN DISSIPATIVE TWO-BAND SEMICONDUCTOR

Let us consider a semiconductor with two relevant electronic bands: the lower band (α = 1) with dispersion E1(k)
and the upper band (α = 2) with dispersion E2(k) are separated by a gap Eg. For the sake of simplicity, let us
assume that the dispersion is symmetric so that Eα (k) = Eα (−k) for both bands α = 1, 2; this will allow for
s-wave superconductivity without any energy mismatches. The semiconductor is driven by a continuous coherent
laser source with frequency ω0. This induces transitions between the bands if there are momenta k0 such that
E2 (k0) = E1 (k0) + ω0. In practice this condition is easily met and the corresponding momenta lie on a finite closed
surface Sω0

of the Brillouin zone. In particular we assume that the level surfaces of E1 (k0) and E2 (k0) have good
overlap (which would happen for say parabolic bands). The laser acts as a source of energy and we provide a heat
sink by coupling each band to an independent reservoir which can exchange particles and energy. Both reservoirs
are kept in equilibrium at temperature T and chemical potential µ. In principle, one can also consider a single
reservoir provided that its density of state is broad enough to overlap with the upper and lower bands. We set the
chemical potential in the gap, exactly halfway between the two bands, µ = [E2 (k0)+E1 (k0)]/2. This ensures that all
quasiparticles have zero energy. In the rotating frame, this will correspond to a zero-energy condition for the electrons
at k0 ∈ Sω0 . Below, we measure energies relative to µ, i.e. we set µ = 0. We shall see later that the ability for the
electronic bands to acquire non-trivial populations is crucial to the occurrence of superconductivity. In the case at
hand, this is favored if the two reservoirs have different density of states or different coupling strength to the bands.
In the Appendix, we shall see that a third band, or alternatively as in Sect. III, other k modes in the same band can
also play this role.

In order to establish that superconductivity can be realized in such a driven-dissipative system, we first solve for its
non-equilibrium steady-state dynamics by means of a Master equation approach. Within a self-consistent mean-field
approach, we then obtain the criteria for superconducting pairing and estimate the size of the superconducting gap.
Finally, we discuss the robustness of our results, in particular against finite temperature.
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A. Mean-field Hamiltonian and Master Equation

We decompose the total model Hamiltonian into a laser-driven semiconductor part (the system), a reservoir part
(the bath), and a system-reservoir coupling part:

H = Hsys +Hbath +Hsys−bath (1)

where

Hsys =
∑
k,α

Eα(k) cαk
† cαk + Ω(t)

∑
k,α,β

cαk
† σxαβ c

β
k (2)

+
i

2
∆
∑
k,α,β

cαk
† σyαβ c

β
−k
† − i

2
∆∗

∑
k,α,β

cαk σ
y
αβ c

β
−k,

Hbath =
∑
k,n,α

ωαn(k) aαk,n
† aαk,n , (3)

and

Hsys−bath =
∑
k,n,α

tα(k)
[
cαk
†aαk,n + aαk,n

† cαk

]
. (4)

cαk and cαk
† are the creation and annihilation operators of electrons with a quasi-momentum k in the α band, α = 1, 2.

Ω (t) = Ω cos(ω0t) is the laser drive, and σx,y,z are the usual Pauli matrices acting on the band indices. The last two
terms in Hsys originate from a microscopic electron-electron interaction which we treat at a mean-field level (see also
Sect. II b). ∆ is the complex order parameter which quantifies the superconducting pairing between the bands and
that will be determined self-consistently. The aαk,n’s represent the degrees of freedom of the non-interacting reservoirs
with energy ωαn . Here n is a mode label. We shall assume that the reservoirs have continuous density of states given
by να(ω) and that they are weakly coupled to the system, i.e.

∣∣t2α∣∣ να � E2 −E1
24. In this case, the dynamics of the

reduced density matrix of the system, ρsys, can be described by a Master equation reading25

d

dt
ρsys =− i [Hsys, ρsys] +

∑
k,α

Γα (k)
[
nF (Eα (k))D[cα†k ]ρsys + (1− nF (Eα (k)))D[cαk ]ρsys

]
, (5)

where nF(ε) ≡ [1 + exp(ε/T )]−1 is the Fermi-Dirac distribution function, and the rates Γα(k) ≡ π |tα(k)|2 να
(
Eα(k)

)
are given by Fermi’s golden rule. We note that for some decaying mechanisms such as phonons not considered
here, the rates Γ1 and Γ2 may be temperature dependent. The Lindblad-type dissipators are defined as D[X]ρ ≡(
XρX† −X†Xρ+ h.c.

)
/2. We neglected the Lamb-shift corrections (real part of hybridization self-energy). We may

now write the equations of motion for the populations, coherences and anomalous correlators nαβk ≡ 〈cαk† cβk〉 and

sαβk ≡ 〈cαk† c
β
−k
† 〉 with α, β = 1, 2:

d

dt
n11
k = −iΩ(t)

(
n12
k − n21

k

)
+ i∆ s21

k − i∆∗ s21
k
∗ − 2Γ1(k)

[
n11
k − nF

(
E1(k)

)]
, (6a)

d

dt
n22
k = −iΩ(t)

(
n21
k − n12

k

)
+ i∆ s21

k − i∆∗ s21
k
∗ − 2Γ2(k)

[
n22
k − nF

(
E2(k)

)]
, (6b)

d

dt
n21
k = i[E2(k)− E1(k)

]
n21
k − iΩ(t)

(
n22
k − n11

k

)
− [Γ2(k) + Γ1(k)]n21

k , (6c)

d

dt
s21
k = i[E2(k) + E1(k)] s21

k + i∆∗
(
n11
k + n22

k − 1
)
− [Γ2(k) + Γ1(k)] s21

k , (6d)

in which we made use of the identity tr
(
OD[X]ρ

)
= tr

(
[X†, O]Xρ

)
+ tr

(
X†[O,X]ρ

)
= 〈[X†, O]X〉ρ + 〈X†[O,X]〉ρ

repeatedly. We then perform a rotating wave approximation (RWA) to eliminate the explicit time dependence of
these equations. This consists in rotating all the operators of the theory with the unitary

U ≡ Uc ⊗ Ua , (7)
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where

Uc ≡ exp

[
i

2
ω0t

∑
k

(
c1†k c

1
k − c2†k c2k

)]
and Ua ≡ exp

 i

2
ω0t

∑
k,n

(
a1†
k,na

1
k,n − a2†

k,na
2
k,n

) . (8)

In particular, c1k 7→ c̃1k = c1k e−iω0t/2, c2k 7→ c̃2k = c2k eiω0t/2, and H 7→ H̃ = U [H − i∂t]U
† so that the energies are

shifted to Ẽ1(k) = E1(k) + ω0/2 and Ẽ2(k) = E2(k)− ω0/2. Note that in the rotating frame, ñ11
k = n11

k , ñ22
k = n22

k ,
and s̃12

k = s12
k are invariant, but ñ12

k = n12
k e−iω0t and ñ21

k = n21
k eiω0t. We drop all terms rotating at 2ω0 since they are

not resonant with any transition. We also drop the k-dependence of the decay rates Γ1,2(k)→ Γ1,2, which is justified
by assuming their weak momentum dependence in the small window of momenta around the surface of resonant
condition Sω0 . Altogether, we obtain

d

dt
ñ11
k = − i

2
Ω
(
ñ12
k − ñ21

k

)
+ i∆ s̃21

k − i∆∗ s̃21
k
∗ − 2Γ1

[
ñ11
k − nF

(
E1(k)

)]
, (9a)

d

dt
ñ22
k = − i

2
Ω
(
ñ21
k − ñ12

k

)
+ i∆ s̃21

k − i∆∗ s̃21
k
∗ − 2Γ2

[
ñ22
k − nF

(
E2(k)

)]
, (9b)

d

dt
ñ21
k = (iεk − Γ) ñ21

k −
i

2
Ω
(
ñ22
k − ñ11

k

)
, (9c)

d

dt
s̃21
k = (iEk − Γ) s̃21

k + i∆∗
(
ñ11
k + ñ22

k − 1
)
, (9d)

where we defined Γ ≡ Γ1 + Γ2, εk ≡ Ẽ2(k) − Ẽ1(k), and Ek ≡ Ẽ2(k) + Ẽ1(k). Where we have used the symmetry
between k and −k stemming from Eα (k) = Eα (−k). This reduces all computations to just one wavevector k.

The steady-state values of populations, coherences and anomalous correlators can now be solved by setting the
left-hand side of Eqs. (9) to zero. We find that

s̃21
k = − ∆∗

Ek + iΓ

(
ñ11
k + ñ22

k − 1
)
, (10)

where ñ11
k + ñ22

k − 1 measures the fraction of the total population that can be borrowed from, or shifted to, the
“storage” constituted by the reservoirs or by the other k modes away from resonance. It is given by

ñ11
k + ñ22

k −1≈ γ1 − γ2

Ξ

Ω2

ε2k + Γ2
[nF (E1(k))−nF (E2 (k))] , (11)

where we defined γ1,2 ≡ Γ1,2/Γ,

Ξ ≡ 4γ1γ2 +
4|∆|2

Ek
2 + Γ2

+
Ω2

ε2k + Γ2

[
1 +

4|∆|2
Ek

2 + Γ2

]
, (12)

and we neglected a term proportional to nF (E1(k)) + nF (E2(k)) − 1 since this factor vanishes at zero temperature
and is exponentially suppressed for temperatures smaller than the semiconducting gap Eg. We note that both a large
γ1γ2 and a large |∆| lead to a decrease in ñ11

k + ñ22
k −1.

Anticipating what follows, we shall see that only a non-vanishing value of ñ11
k + ñ22

k − 1, i.e. a finite population
deviation from the equilibrium situation, will amount to superconductivity. It is quite transparent from Eq. (11) that
in order to obtain such non-trivial band populations, one must drive the system (Ω 6= 0) and the decay rates Γ1 and
Γ2 must be different (γ1 6= γ2).

When the drive Ω is large compared to Γ, the ratio Ω2/(ε2k + Γ2) is very large near the resonance (εk = 0). In
this case, and when the temperature is much smaller than the semiconducting gap, the non-equilibrium population
deviation simplifies to

ñ11
k + ñ22

k − 1 ≈ E2
k + Γ2

E2
k + Γ2 + 4|∆|2 (γ1 − γ2) , (13)

which holds in a range of width Ω near the resonance. We note that this approximation is also valid for moderate
Ω when γ1γ2

∼= 0 and ∆ is small. Hence, Ω plays the role of a cut-off, and for energies |εk| < Ω we can use
the approximate expression in the equation above. Notice that one can achieve finite non-equilibrium population
deviations in this range of εk, on the order of γ1 − γ2. Moreover, notice that the sign of this deviation depends on
which of the decay rates Γ1 or Γ2 is larger, see also Fig. (2).
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FIG. 2: Non-equilibrium population deviation due to driving and dissipation. The laser causes an electron in the valance band
to transition into the conduction band. The figure illustrates particular examples when the two rates Γ1,2 differ substantially.
In (A), the rate Γ1 � Γ2, so the reservoirs fill the hole in the valance band much faster than the electron in the conduction band
can relax back; the state is blocked, and one has n11

k + n22
k − 1 ∼ +1. In (B), the rate Γ2 � Γ1, so the reservoirs remove the

electron in the conduction band much faster than it can relax back; one is left with two holes, and one has n11
k + n22

k − 1 ∼ −1
in this example.

In the opposite case in which the decay rate Γ is much larger than the drive Ω, the non-equilibrium population
deviation is (for bath temperatures much smaller than the semiconducting gap)

ñ11
k + ñ22

k − 1 ≈ Ek
2 + Γ2

Ek
2 + Γ2 + |∆|2

γ1γ2

γ1 − γ2

4γ1γ2

Ω2

ε2k + Γ2
. (14)

B. Self-Consistency Equation

We now solve self-consistently for the superconducting gap. The pairing part of the mean-field Hamiltonian orig-
inates from a microscopic Hamiltonian which involves a density-density type of interaction between the electrons in
the semiconductor. The mean-field decoupling for this microscopic interaction of strength V (in a system of volume
V) is given by:

He−e =
1

V
∑
k,k′

V c2k
†
c1−k
†
c1k′ c

2
−k′ (15)

→
∑
k

(
∆ c2k

†
c1−k
†

+ ∆∗ c1k c
2
−k

)
, (16)

with

∆∗ =
1

V
∑
k

V 〈c2k
†
c1−k
†〉 −−−−→
V→∞

ˆ
(dk) V 〈c2k

†
c1−k
†〉 , (17)

where we wrote (dk) ≡ ddk/(2π)d to shorten notations.
Eq. (17) is solved self-consistently by using the anomalous correlator in Eq. (10). The correct self-consistent

condition involves only the real part of Eq. (10); this assertion will be justified in Sect. IV where we properly obtain
the self-consistency relation from a saddle point condition (notice that this is trivially true in the limit Γ→ 0). More
precisely we use the self consistency relation:

∆∗ =

ˆ
(dk) V s̃21

k Re

(
1

Ek + iΓ

)
· (Ek + iΓ) (18)
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We derive this rigorously in Sect. IV. Assuming that Ω� Γ and using Eq. (13) for the populations, the resulting gap
equation reads

1 = −V
ˆ

(dk)
Ek

E2
k + Γ2 + 4 |∆|2

(γ1 − γ2) (19)

= −N0V (γ1 − γ2)

ˆ Ω

−Ω

dε
E(ε)

E2(ε) + 4|∆|2 + Γ2
,

with N0 ≡
´

(dk) δ(εk) the density of states near the resonance.
Below, we study the solutions of the self-consistent equation in a few relevant cases.

1. Bands with opposite velocities at resonance

This is a very favorable case, so let us start with it. On the resonant surface Sω0 , the dispersion relations of both

bands can be Taylor-expanded as Ẽ1,2 = v1,2 q⊥+ κ1,2 q
2
⊥+ . . . , where q⊥ is the momentum perpendicular to Sω0

. So
ε = v− q⊥ + κ− q

2
⊥ + . . . and E = v+ q⊥ + κ+ q

2
⊥ + . . . , where v± ≡ v2 ± v1 and κ± ≡ κ2 ± κ1. If the velocities are

opposite in the two bands, i.e. v+ = 0, one can express E(ε) ≈ (κ+/v
2
−) ε2. Upon using this E(ε) in Eq. (19) and

extending the limits of integration in Eq. (19) to ±∞ (for large Ω), we obtain

1 = − π√
2
N0V

|v−| sgnκ+√
|κ+|

γ1 − γ2

(4|∆|2 + Γ2)1/4
. (20)

We note that to get exact results in Eqs. (10) and (11). Notice that this equation can be satisfied for both attractive
or repulsive interactions depending on the relative signs of γ1 − γ2 and of κ+. Superconductivity is possible if the
sign of V satisfies

sgnV = sgn(γ2 − γ1)× sgnκ+ , (21)

and its magnitude satisfies the threshold condition

|V | ≥ Vc ≡
√

2

π

1

N0

√
|κ+|
|v−|

√
Γ

|γ1 − γ2|
. (22)

This expresses the fact that superconductivity is favored by small and different decay rates.
If the conditions in Eqs. (21) and (22) are met, the superconducting gap is given by

|∆| = Γ

2

√(
V

Vc

)4

− 1 . (23)

For large coupling constant, the gap scales as the square of the interaction strength V . Notice also that the gap does
not vanish in the limit Γ→ 0 because the threshold disappears simultaneously. In this limit,

|∆| −−−→
Γ→0

π2

4
(N0V )

2 v2
−
|κ+|

(γ1 − γ2)2 . (24)

Robustness. Let us examine the domain of validity of our results. Let us first argue that the condition v+ = 0
that we used above can be achieved by a proper choice of the laser frequency ω0. In practice, one may proceed as
follows. The resonance surface Sω0 can be swept as one changes ω0. At k0 ∈ Sω0 , εk0 = 0 by definition. Assume
for simplicity a spherical-symmetric dispersion. As one scans ω0, one should search for the frequency for which Ek0

reaches an extremum, either a minimum or maximum. The extremum would correspond to a zero of v+. Finding the
extremum condition may require using higher and lower bands; we illustrate this for a few examples of band structure
topologies in Fig. (3). By changing the chemical potential, one can make the value of the extremum be zero, i.e.
Ek0 = 0, and therefore E(ε) ∝ ε2.

Additionally, we note that our results are relatively stable in the case of a non-vanishing v+. Indeed, our results
are essentially unchanged as long as

|v+| ≤
√
|κ+| Γ

|V |
Vc

. (25)

Most importantly, our results are robust against finite temperatures of the reservoirs. Indeed, this corresponds to
changes in nF(E1(k)) and nF(E2(k)) which may be neglected for temperatures less then the semiconducting gap Eg.
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FIG. 3: Examples of how to choose optimal conditions. One must seek points in the Brillouin zone where two bands have
opposite velocities. The transitions are depicted by the vertical dashed line, whose length determines the laser frequency ω0.
Notice that the transition of choice does not need to be between two consecutive bands, as is the case depicted in (A). In (B),
the transition of choice is between two consecutive bands. The horizontal dashed line demarcates the position of the chemical
potential, which can be chosen by doping or gating. The topologies of the band structures were sketched to resemble the bands
in Si (A) and in GaAs (B).

2. Weak Rabi frequency

Previously we considered the case in which the laser Rabi frequency Ω was large compared to the decay rate Γ.
This condition is most favorable towards superconducting pairing; however for many systems it is not satisfied. For
lasers with moderate power (say on the order of milliwatts) and semiconductors at room temperatures, the laser Rabi
frequency is several hundred megahertz while the carrier decay rate is several tens of gigahertz. It is therefore relevant
to repeat the previous analysis in the less favorable case in which the Rabi frequency is less than the particle decay
rate.

Following the steps of Sect. II B 1, but using here the non-equilibrium population deviation given in Eq. (14), the
superconducting self-consistency equation now reads

1 =− π

4
√

2
N0V

|v−| sgnκ+

√
|κ+|

v2
−
√
|∆|2 + γ1γ2Γ2 +

√
γ1γ2Γ2|κ+|

× 1

(γ1γ2)1/4

γ1 − γ2

(|∆|2 + γ1γ2Γ2)
1/4

Ω2 . (26)

We recover the previous condition on the sign of the electron-electron interaction, namely

sgnV = sgn(γ2 − γ1)× sgnκ+ , (27)

and the threshold condition now reads

|V | ≥ V ′c ≡
4
√

2

π

1

N0

v2
− + |κ+|Γ
|v−|

√
|κ+|

γ1γ2 Γ3/2

|γ1 − γ2|
1

Ω2
, (28)

Compared to the case Ω � Γ [see Eq. (22)], the threshold condition has changed by a factor 4γ1γ2(Γ2/Ω2) ×
[|κ+|Γ/(|v−|2 + Γ |κ+|)]. We note that, while in this case both factors Γ2/Ω2 and |κ+|Γ/(|v−|2 + Γ |κ+|) increase the
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threshold, this could be compensated if the two bands have rather different decay rates, in which case the factor γ1γ2

can be small. If both conditions in Eqs. (27) and (28) are met and |v−|2 � |κ+|Γ, the gap is then given by

|∆| = Γ
√
γ1γ2

√( |V |
V ′c

)4/3

− 1 . (29)

Note that for large electronic interactions |V |, the gap is linear in the decay rate Γ.
Vanishing decay rates. One particularly interesting case is when the Rabi frequency is small but the two decay

rates Γ1 and Γ2 are very different so that γ1γ2 ≈ 0. Repeating the previous steps, the superconducting self-consistency
equation reads

1 =
π√
2
N0V (γ2 − γ1) Ω

× |v−| sgnκ+[
Ω2 |κ+|2 Γ2(4|∆|2 + Ω2)

]1/4
+ 2 |v−| |∆|

(30)

yielding the condition

sgnV = sgn(γ2 − γ1)× sgnκ+ , (31)

and the threshold

|V | ≥ V ′′c ≡
√

2

π

1

N0

√
|κ+|
|v−|

Γ

|γ1 − γ2|
. (32)

We note that this is the same threshold as in Eq. (22) where we considered the case of a large Rabi frequency Ω� Γ.
Whenever this threshold is satisfied in the case of a large |v−|, the superconducting order parameter reads

|∆| = Ω

2

√
Γ|κ+|
|v−|

( |V |
V ′′c
− 1

)
. (33)

C. Dynamics of the order parameter

We now confirm our analytic predictions by numeric integration of the equations of motion, see Eqs. (9a), (9b),
(9c) and (9d). We start by briefly describing our numerical simulation procedure. For simplicity we consider the case
when the Eα (k) are spherically symmetric. Furthermore by focusing on the region near the resonant surface Sω0

we may ignore variations in the density of states. In this case, within mean field, we may reduce the dynamics of
the 3-d model to the dynamics of an equivalent one dimensional model where for simplicity we can mathematically

shift the surface Sω0
to the wavevector k0 = 0. Furthermore we will assume that Ẽ1,2 = v1,2 k + κ1,2 k

2 (with
no higher order corrections). We will assume that κ− = v+ = 0 and the density of states is set to N0 = 1/2π.
We also scale all units such that all quantities become dimensionless. We consider an initial state (t = 0) where the
populations and coherences are initialized at their zero-temperature equilibrium values ñ21

k = 0, ñ11
k = nF (E1(k)) and

ñ22
k = nF (E2(k)). The superconducting correlations are initialized at a very small but non-zero value s̃21

k = 0.02·s̃21
k,Eq

where s̃21
k,Eq is the steady state anomalous correlator as computed in Sect. II (we also considered random initial

conditions and obtained similar results). We then time evolve the equations (9a), (9b), (9c) and (9d) until we reach a
steady state. We have used the self-consistency relation in Eq. (18). In Fig. 4, we present our numeric simulations for
three representative coupling constants (where Ω � Γ and γ1 � γ2). In Fig. 4(a), we plot the superconducting gap
as a function of time: it converges to the order parameter theoretically predicted in Eq. (23). To get good matching
we have calculated the correction to Eq. (23) due to the finite cutoff in k-space |kmax| = 0.2 used in the numerical
simulations. In Fig. 4(b) we plot the theoretically predicted values of the anomalous correlator s̃21

k as a function of
k. We generate s̃21

k in two different ways: one using the theoretical predictions for the steady state given in Eqs. (10)
and (11) and using the value of |∆| from the simulations and also using the final values of the anomalous correlators
s̃21
k as computed from the numerical integrations. The agreement is excellent.
To show that our theory is able to predict superconducting pairing even when our approximations for ñ11

k + ñ22
k −1

and hence s̃21
k are not accurate, see Eq. (13), we have chosen parameters outside the approximations of Sect. II B. One

way to make these approximations inaccurate is to consider a value of γ1, γ2 � Ω2

Γ2+|v−|2Γ/κ+
see the discussion below
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FIG. 4: (a) Time evolution of the order parameter ∆ for three representative values of the coupling constant: V = 5 > Vc = 2.14,
V = 2.3 ∼ Vc and V = 1 < Vc. The straight lines correspond to the analytic expressions in Eq. (23). Here Vc is computed
using Eq. (22) (corrected to account for cutoff effects). (b) Perfect matching between the steady-state anomalous correlator
s̃21k as given by Eq. (10) (straight lines) and the anomalous correlator s̃21k obtained numerically after the time dynamics have
converged (circles). The color coding is the same as in (a). (κ+ = −50, v− = 10, Ω = 0.5, Γ = 10−2 and γ2 = 10−3).

 0

5x10-3

10-2

0 5x103 104

|
|

t

(a)
1=0.8, 2=0.2

 0

 0.05

 0.1

-0.2 -0.1  0  0.1  0.2

|s
21

|

k

(b)

FIG. 5: (a) Time evolution of the superconducting pairing ∆ for a scenario where γ1 ∼ γ2. The straight line corresponds to the
steady-state value computed with Eq. (23). The discrepancy between analytics and numerics is because the parameters for the
numeric integration are outside the limits of the approximations used in Sect. II B. (b) Perfect matching between the steady-
state anomalous correlator s̃21k as given by Eq. (10) (straight lines) and the anomalous correlator s̃21k obtained numerically after
the time dynamics have converged (circles). (κ+ = −50, v− = 10, Ω = 0.5, Γ = 10−2, γ1 = 0.8 and V = 5).

Eq. (13). In Fig. 5 (a), we have plotted the value of |∆| as a function of time, we see that despite the failure of Eq. (13)
we still obtain a relatively strong superconducting paring within a factor of three of the analytical one. We also have
compared the In Fig. 5 (b) we plot the theoretically predicted values of the anomalous correlator s̃21

k as a function of
k. We generate s̃21

k in two different ways: one using the theoretical predictions for the steady state given in Eqs. (10)
and (11) and the value of |∆| from the simulations and also using the final values of the anomalous correlators s̃21

k as
computed from the numerical integrations. The agreement is excellent. We conclude that the system also reaches a
non-trivial steady state for parameter ranges outside the validity of the approximations used in Sect. II B.

We have also numerically verified that it is possible to obtain superconductivity for the case when Ω < Γ. We have
numerically integrated the time evolution of the order parameter for two such values of Ω and Γ. We chose γ1γ2 ∼ 0
in order to have a non-zero order parameter (see the discussion in Sect. II B 2). We see that the order parameter
develops but the time evolution is highly oscillatory and the time scale for convergence is increased by ∼ 100. This
is because one of the decay rates, Γ2, is very small so it takes a long time for the oscillations to decay.
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FIG. 7: Optical pumping. The upper band (1) of a two-band semiconductor is populated with a single broad band optical
pump. The chemical potential µ is tuned halfway between the two bands.

III. OPTICAL PUMPING OF A TWO-BAND SEMICONDUCTOR

Let us now turn to an alternate scenario, which may be more easily realized in the lab. Let us consider a two-band
semiconductor model whose population of the bottom band is optically pumped into the upper band via a broad band
light source and whose interband relaxation is slow, e.g. negligible optical phonon coupling. The lower band (α = 1)
with dispersion E1(k) and the upper band (α = 2) with dispersion E2(k) are separated by a gap Eg.

In order to reach a non-trivial steady state, the coupling to a thermal reservoir is necessary to drain the energy
which is continuously injected in the system. However, unlike the previous case, the reservoir does not need to play the
role of an extra “storage” of particles (or holes) and a single weakly-coupled reservoir is enough. We set the chemical
potential µ in the gap, see Fig. (7), such that there are momenta k0 lying on a closed surface S of the Brillouin zone
where the condition E1 (k0) + E2 (−k0) = 0 is satisfied. Here, µ corresponds to the field produced by the external
voltages (say set by external gates). We do not assume that Eα (k0) = const. We shall also assume the the optical
pumping laser (or broadband source) is not on resonance with these momenta k0.

Neglecting superconductivity temporarily, the main effect of the optical pumping is to modify the population of
the lower and upper bands to some non-trivial distribution. Since the pumping and the interband relaxation is weak,
the populations of the two bands relax to a separate quasi-thermal equilibrium within each band. Therefore, the
bands can effectively be seen as having two different chemical potentials µ1 and µ2

26. We note that µ1 and µ2 are
not directly related to the energy levels of the Hamiltonian describing the semiconductor. They can be seen as the
Lagrange multipliers enforcing the average number of particles in the two bands and depend on the balance between
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the strength of the drive and the inter-band relaxation. Once the system is quasi-equilibrated, we may write

n11
k = nF (E1 (k) , µ1) ,

n22
−k = nF (E2 (−k) , µ2) , (34)

n12
k = 0 .

Here, nF (ε, µ) ≡ [1 + exp ((ε− µ) /T )]−1 is the Fermi-Dirac distribution and T is the temperature of the underlying
crystal. The equations of motion for the populations and anomalous correlators which are consistent with the steady
state given in Eqs. (34) read:

d

dt
n11
k =i∆s21

k − i∆∗s21∗
k − 2Γ1 (k) ñ1

k

d

dt
n22
−k =i∆s21

k − i∆∗s21∗
k − 2Γ2 (k) ñ2

−k (35)

d

dt
s21
k =i (Ek (k)− iΓ21 (k)) s21

k + i∆∗
(
n11
k + n22

−k − 1
)

Here, Ek ≡ E1 (k) + E2 (k) and ñαk ≡ [nααk − nF (Eα (k) , µα)]. Γα are the relaxation rates for the two bands and
Γ12 is the superconducting decay rate. In principle, these can be obtained by linearizing the Boltzmann equation
(collision integral) close to equilibrium. Typically, Γ12 ∝ Γ1 + Γ2

26. We also drop the k dependence of Γ since we are
only considering a small portion of the Brillouin zone near the surface S. The steady-state solution of these equations
reads

s21
k = − ∆∗

Ek + iΓ12

(
n11
k + n22

−k − 1
)

(36)

and

n11
k + n22

−k − 1 =
1

Ξ′
4γ1γ2 (Γ/Γ12)

2
(37)

× [nF (E1(k), µ1) + nF (E2(−k), µ2)− 1] ,

where we defined

Ξ′ ≡ 4γ1γ2 (Γ/Γ12)2 +
4|∆|2

Ek
2 + Γ2

12

. (38)

Other pumping schemes If other bands are present, other pumping schemes can be considered. For instance, a
third band can be used to either populate or depopulate the two other bands, see Fig. (8). We note that with these
pumping schemes we can choose the sign of the population deviation n11

k −n22
−k−1. Also, our method is likely to work

with carrier injection pumping27. The conclusions presented in this Section apply just as well for these generalized
scenarios.

A. Self-consistency equation

We now solve self-consistently for the superconducting gap. The pairing part of the mean-field Hamiltonian orig-
inates from a microscopic Hamiltonian which involves a density-density type of interaction between the electrons in
the semiconductor. The mean-field decoupling for this microscopic interaction of strength V (in a system of volume
V) is given by:

He−e =
1

V
∑
k,k′

V c2k
†
c1−k
†
c1k′ c

2
−k′ (39)

→
∑
k

(
∆ c2k

†
c1−k
†

+ ∆∗ c1k c
2
−k

)
,

with

∆∗ =
1

V
∑
k

V 〈c2k
†
c1−k
†〉 −−−−→
V→∞

ˆ
(dk)V 〈c2k

†
c1−k
†〉 , (40)
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FIG. 8: Different available optical pumping mechanisms in a three band semiconductor. (a) Deplete the population of the
bottom band into a third reservoir band. (b) Populate the top band from a third band.

where we wrote (dk) ≡ ddk/(2π)d to shorten notations.
We solve for the self-consistent condition Eq. (40) using the anomalous correlator in Eq. (36). The correct self-

consistent condition involves only the real part of Eq. (36); this assertion will be justified in Sect IV where we properly
obtain the self-consistency relation from a saddle point condition (notice that this is trivially true in the limit Γ→ 0).
The resulting gap equation is

1 = −V
ˆ

(dk)
γ1γ2 (Γ/Γ12)

2
Ek

γ1γ2 (Γ/Γ12)
2

(E2
k + Γ2

12) + |∆|2
× [nF (E1(k), µ1) + nF (E2(−k), µ2)− 1] . (41)

Let us now study the solutions of the self-consistent equation (41) by first focusing on the very favorable case in
which the two bands have opposite velocities. On the resonant surface S, where E1(k) +E2 (−k) = 0, the dispersion

relations can be Taylor-expanded as Ẽ1,2 = v1,2 q⊥ + κ1,2 q
2
⊥ + . . . , where q⊥ is the momentum perpendicular to the

resonant surface S. So E = v+ q⊥ + κ+ q
2
⊥ + . . . , where v± = v2 ± v1 and κ± = κ2 ± κ1. When the velocities are

opposite in the two bands, i.e. v+ = 0, one can express E(ε) ≈ (κ+/v
2
−) ε2. Upon using this E(ε) in Eq. (41) and

extending the limits of integration to ±∞, we obtain:

1 =− π√
2
N0V

|v−| sgnκ+√
|κ+|

(γ1γ2)
1/4

(Γ/Γ12)
1/2

× [nF (E1(k), µ1) + nF (E2(−k), µ2)− 1]

(|∆|2 + γ1γ2Γ2)1/4
. (42)

Here N0 is the density of states at S. We note that in the case where κ+ is not uniform over the surface S we can

replace
√
|κ+| in the equation above by its average to obtain the correct results for this case. We will not consider this

extension further. Notice that this equation can be satisfied for both attractive or repulsive interactions depending on
the relative signs of nF (E1(k), µ1) + nF (E2(−k), µ1) − 1 and of κ+. Superconductivity is possible if the sign of V
satisfies

sgnV =−sgnκ+ (43)

× sgn [nF ((E1(k), µ1) + nF (E2(−k), µ2)− 1] ,

and if its magnitude satisfies the threshold condition

|V | ≥ V ′′′c ≡
√

2

π

1

N0

√
|κ+|

N|v−|
√

Γ12 . (44)

Here N ≡ nF (E1(k), µ1) + nF (E2(−k), µ2) − 1. The condition in Eq. (44) is very similar to the one obtained in
Eq. (22). This expresses the fact that superconductivity is favored by small decay rates, e.g. weak coupling to
longitudinal phonons and impurities.
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If the conditions in Eqs. (43) and (44) are met, the superconducting gap is given by

|∆| = √γ1γ2 Γ

√(
V

V ′′′c

)4

− 1 . (45)

This corresponds to a robust gap that scales linearly with the decay rate Γ, and, for large coupling constant, scales
as the square of the interaction strength V .
Robustness. Let us examine the domain of validity of the results we presented in this Section. First, we remark

that they are relatively stable in the case v+ is non-vanishing. Indeed, the results are essentially unchanged as long
as

|v+| ≤
√
|κ+|Γ

|V |
V ′′′c

. (46)

Therefore, the condition v+ = 0 that we used above does not have to be perfectly tuned.
Most importantly, the results of these Section are stable to changes of temperature in the semiconductor. Indeed

those would correspond to changes in nF(E1(k)) and nF(E2(k)) which may be neglected for temperatures less then
the semiconducting gap Eg. We note that in realistic setups, Γ may be temperature dependent.

IV. KELDYSH APPROACH

In this Section, we revisit the self-consistent mean-field condition for superconductivity that we used multiple times
in the previous Sections. Starting from a particle conserving theory, we justify the approximation that we used to

obtain Eqs. (19) and (41) which consisted in considering only the part of the anomalous correlator s†21
k in phase with

∆∗. For the sake of simplicity, we concentrate on the case described in Sect. II. We derive a Keldysh mean-field
theory for the laser-driven semiconductor system and solve for the symmetry-breaking order-parameter corresponding
to the superconducting pairing. The full Keldysh action reads

SK = Se−e + Sother (47a)

with

Se−e =

ˆ
Υ

dt

ˆ
ddr V Φ̄ (r, t) Φ (r, t) , (47b)

where Φ(r, t) ≡ c1(r, t) c2(r, t), Φ̄(r, t) = c2†(r, t)c1†(r, t), V is the coupling strength and Sother is the quadratic
action corresponding to all the other terms in the Hamiltonian (1) such as c1k, c2k, a1

k,n and a2
k,n. Υ is the Keldysh

contour which goes forward from time minus infinity to plus infinity and then backward. We now perform a Hubbard-
Stratonovich transformation in Se−e so as to obtain

exp

[
i

ˆ
Υ

dt

ˆ
ddr V Φ̄ (r, t) Φ (r, t)

]
=

ˆ
D[∆] ei

´
Υ

dt
´

ddr [− 1
V |∆(r,t)|2+∆(r,t) Φ̄(r,t)+∆∗(r,t) Φ(r,t)] . (48)

Integrating out all the fields in SK except for ∆, we obtain an effective action for ∆ (r, t) and the zero-source generating
functional reads

Z =

ˆ
D[∆+,∆−] eiSeff [∆

+,∆−] , (49)

with the effective action expressed in terms of the fields ∆+ and ∆− which correspond to the order-parameter in the
forward and backward branch of the Keldysh contour

Seff [∆+,∆−] ≡S̃[∆+,∆−] (50)

− 1

V

ˆ
dtddr

(
|∆+(r, t)|2 − |∆−(r, t)|2

)
.

S̃[∆+,∆−] can be computed through a series of Feynman diagrams as represented in Fig. (9). The propagators for
these diagrams are those that make for the action Sother. Given that Sother is Gaussian, we use Wick’s theorem to
calculate those Feynman diagrams.



14

We solve for the saddle point of the effective action by focusing on the solutions that are homogeneous in time and
space. We write ∆± = ∆± δ, and note that the effective action vanishes for δ = 0 for any ∆. This is a general result
that stems from the fact that for classical field configurations, the action on the backward branch is canceled exactly
by that of the forward branch. Thus, the variation of the effective action with respect to ∆ vanish for fixed δ = 0.
The condition that determines ∆ at the saddle, is obtained by varying the action with respect to δ: expanding the
action in powers of δ, the saddle point condition is that the terms linear in δ vanish. These terms can be collected in
perturbation theory.

Expanding Seff [∆, δ], we observe that all the terms contain δ∆∗, δ∗∆, and powers of |∆|2. The action is invariant
under simultaneous phase rotations of δ and ∆. So we can fix the phase of δ to be zero, i.e. make δ real (this is,
of course, a gauge choice for the fermionic description of the problem). All terms linear in δ are multiplying the
combination (∆ + ∆∗) and powers of |∆|2. Factoring out this combination δ(∆ + ∆∗) in the expansion of Seff [∆, δ]
leads to an equation that depends only on |∆|. This equation determines the saddle point value for |∆|. We choose ∆
to be real as well, and then simplify the saddle point search by considering both δ and ∆ in phase and real. The net
effect of this procedure is to neglect the relative phase fluctuations of ∆+ and ∆− – which are assumed to be small
for a physical solution. The saddle point equation in this case becomes

0 = ∂δ

[
−4δ∆

V
+ L̃ [∆, δ]

]
δ=0

. (51)

We compute ∂δL̃ [∆, δ]
∣∣
δ=0

by summing over the Feynman diagrams in Fig. (9) and obtain

∂δL̃ [∆, δ]
∣∣
δ=0

= (52)

∞∑
n=1

∣∣∣∣∆2
∣∣∣∣2n−1̂

(dk)

ˆ
dω

2π
Tr

{(
0 11
11 0

)[(
GR(k, ω) GK(k, ω)

0 GA(k, ω)

)(
iσyGA(k,−ω)iσy iσyGK(k,−ω)iσy

0 iσyGR(k,−ω)iσy

)]n}

+

∞∑
n=1

∣∣∣∣∆2
∣∣∣∣2n−1̂

(dk)

ˆ
dω

2π
Tr

{(
0 11
11 0

)[(
iσyGA(k,−ω)iσy iσyGK(k,−ω)iσy

0 iσyGR(k,−ω)iσy

)(
GR(k, ω) GK(k, ω)

0 GA(k, ω)

)]n}
.

Here GA/R/K stand for the advanced, retarded and Keldysh components of the electronic Green’s functions for the
bands 1 and 2, with respect to the action Sother, and σy is the usual Pauli matrix which acts on the space spanned
by the two bands α = 1, 2. (Notice that GA/R/K are 2 × 2 matrices because of the two bands.) The Pauli matrix
σy and the negative frequencies −ω in some of the Green’s functions come about because some of the propagators
shown in Fig. (9) originate from the same vertex (or, equivalently, there are particle and hole propagators). We now
observe that this series can be resumed and the trace can be greatly simplified:

∂δL̃ [∆, δ]
∣∣
δ=0

=
|∆|
4π

ˆ
(dk)

ˆ
dω Tr

(1− |∆|
2

4
GR (k, ω) iσyG

A (k,−ω) iσy

)−1

×
(
GR (k, ω) iσyG

K (k,−ω) iσy +GK (k, ω) iσyG
R (k,−ω) iσy

)
×

1 +

(
1− |∆|

2

4
GA (k, ω) iσyG

R (k,−ω) iσy

)−1
|∆|2

4
GA (k, ω) iσyG

R (k,−ω) iσy


+
|∆|
4π

ˆ
(dk)

ˆ
dω Tr

(1− |∆|
2

4
iσyG

A (k,−ω) iσyG
R (k, ω)

)−1

×
(
iσyG

K (k,−ω) iσyG
A (k, ω) + iσyG

A (k,−ω) iσyG
K (k, ω)

)
×

1 +

(
1− |∆|

2

4
iσyG

R (k,−ω) iσyG
A (k, ω)

)−1
|∆|2

4
iσyG

R (k,−ω) iσyG
A (k, ω)

 . (53)
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FIG. 9: Feynman diagrams. Series of ring diagrams that contribute to the action S̃[∆]. Each line corresponds to a propagator

GA/R/K . The terms 1/n are symmetry factors for the diagrams.

In case the superconducting field |∆| is small, this expression Eq. (53) may be further simplified:

≈|∆|
2

ˆ
(dk)

ˆ
dω

2π
Tr
[
iσyG

K (k,−ω) iσyG
A (k, ω) + iσyG

A (k,−ω) iσyG
K (k, ω)

+GR (k, ω) iσyG
K (k,−ω) iσy +GK (k, ω) iσyG

R (k,−ω) iσy
]

+
|∆|3
8

ˆ
(dk)

ˆ
dω

2π
Tr
[(

iσyG
K (k,−ω) iσyG

A (k, ω) + iσyG
A (k,−ω) iσyG

K (k, ω)
)

×
(
iσyG

A (k,−ω) iσyG
R (k, ω) + iσyG

R (k,−ω) iσyG
A (k, ω)

)]
+
|∆|3
8

ˆ
(dk)

ˆ
dω

2π
Tr
[(
GR (k, ω) iσyG

K (k,−ω) iσy +GK (k, ω) iσyG
R (k,−ω) iσy

)
×
(
GR (k, ω) iσyG

A (k,−ω) iσy +GA (k, ω) iσyG
R (k,−ω) iσy

)]
. (54)

Using the quantum regression theorem28, one can compute the various Green’s functions GR(k, ω) = (ω − H(k) +

iΓ̂)−1, GA(k, ω) = (ω − H(k) − iΓ̂)−1 and GK(k, ω) = GR(k, ω) (1− 2f(k)) − (1 − 2f(k))GA(k, ω). Here H(k) ≡(
Ẽ1(k) Ω/2

Ω/2 Ẽ2(k)

)
, Γ̂ ≡

(
Γ1 0
0 Γ2

)
and f (k) ≡

(
n11
k n21

k

n12
k n22

k

)
. We may now perform the various traces and integrals

over ω in Eq. (54) above. With this, we solve for the stationary conditions on the field ∆, coming from Eq. (51), and
obtain

0 =
|∆|
V

+ |∆|
ˆ

(dk) Re

{
1

Ek + iΓ

}
(1− n11

k − n22
k )− 4 |∆|3

ˆ
(dk) Re

{
1

Ek + iΓ

}
1− n11

k − n22
k

E2
k + Γ2

. (55)

The part involving Re
{

1
Ek+iΓ

}
is exact and comes about because the Keldysh action must be real. In the third

term of Eq. (55), we have also made the assumption that Ω � Γ. Using the non-equilibrium population deviation
1 − n11

k − n22
k given in Eq. (13) for small |∆| we see that this agrees to leading order for small |∆| with Eq. (19); a

computation of the exact trace in Eq. (53) would presumably reproduce Eq. (19) to all orders.

V. CONCLUSIONS

We have demonstrated that superconductivity can be achieved in a laser-driven two-band semiconductor interacting
with reservoir – either in the form of a tunneling contact to a metal, or in the form of other modes in the band, or
in the form of a third band (see appendix). The superconductivity is robust to changes in temperature, and under
optimal conditions, the size of the superconducting gap scales with the decay rate Γ. We found that depending on the
sign of the band curvatures, it is possible to obtain superconducting pairing s21

k with both repulsive and attractive
interactions. We can estimate how stringent is the condition given in Eq. (22) for the threshold for producing
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superconductivity with two bands and reservoirs. To do so we compare our results to regular BCS theory. At zero
temperature, the BCS gap equation may be written as V ρ (kF) ln

(
ωD

∆

)
= 1. Here ρ (kF) is the density of states at

Fermi energy and ωD is the Debye frequency. Using the experimentally relevant parameters ωD ∼ 100K and ∆ ∼ 1K
we obtain V ρ (kF) ∼ 0.2. We note that V is the effective electron-electron interaction which includes the effects
of phonons and screening. For the superconductivity proposed in this manuscript we have obtained the threshold

equation |V |N0|v−|
|κ|1/2Γ1/2

> 1. Using κ ∼
(
106eV

)−1
c2, Γ ∼ 10−3eV , |v−| ∼ 10−2c this condition simplifies to 0.2×102.5 > 1

which is easily satisfied. We note that for the case of repulsive interactions |V | N0 can be larger. These numbers are
relevant for room temperature superconductivity. We note that the same threshold condition shows up in the case of
an optically pumped two-band semiconductor considered in Sect. III and in the case where the laser Rabi frequency
is small but the two decay rates are very different, see Eqs. (32) and (44). Eq. (46) establishes that all our results are
unaffected by mismatches in the Fermi velocities of the upper and lower band as long as these mismatches are only
roughly ten percent of the Fermi velocity. The present results are also insensitive to imprecision in tuning the right
µ on the order of 0.01 eV. We note that imperfections in finding the right µ do not effect the results presented in
Sect. III as the condition E1 (k) + E2 (−k) = 0 is automatically selected. Even though Tc (critical temperature for
superconductivity) does not scale with the gap for our setup, as in the case of a regular superconductor, we note that
under optimal conditions it is possible to achieve a gap that is several hundred Kelvins.

We unveiled a new route to induce superconductivity, not simply by lowering the temperature of the sample but
by shining light. In a semiconductor, such photo-induced superconductivity is possible at temperatures smaller than
the band gap, which itself is a very high temperature. Hence, the mechanism may enable dissipationless current
transport for frequencies smaller than that set by the superconducting gap at room temperature. In many ways the

ultimate limit on our setup is the temperature dependence of the rate Γ. Tc is set by the relationship |V |N0|v−|
|κ|1/2Γ1/2(Tc)

= 1.

Additionally, one can imagine applications where the superconductivity is induced for short periods of time by laser
pulses and is allowed to decay when the laser is turned off. This opens the door for superconducting switches. We
intend to perform a DMFT analysis of the phenomena to study the effects of strong correlations and strong laser
driving. We shall also study the optical response of the proposed superconductor as well as investigate the possibility
of a Josephson effect.
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Appendix A: Three-band semi-conductor

Let us consider superconductivity in an optically pumped three-band semiconductor. The lower (1), middle (3)
and upper (2) bands have dispersion relations Eα(k) with α = 1, 2, 3. The third band can be seen as a replacement
for the reservoirs that were required in the case considered in Sect. II. We assume that the dispersion is symmetric
so that Eα (k) = Eα (−k), for α = 1, 2 – this will allow for s-wave superconductivity without any energy mismatch.
The upper and lower bands are resonantly driven by a single laser with frequency ω0, i.e. E2 (k0) = E1 (k0) + ω0 for
some wave vectors k0. In our scheme, the middle band 3 (reservoir) is not coupled to any laser but will simply ensure
that there is less then one electron per k value in the upper and lower bands combined, n11

k +n22
k < 1. This inequality

satisfies the condition that the population of the two bands involved in the pairing deviates from unity, which was the
requisite for superconductivity in Sect. II. We set the chemical potential µ in between the lower and middle band, i.e.
E2 > E3 > µ > E1 for all wave vectors k, see Fig. (10). More precisely, we set µ = [E2(k0 + E1(k0)]/2; this ensures
that all quasiparticles have zero energy. In the rotating frame, this will correspond to a zero energy condition for the
electrons at k0.

To favor superconductivity, we assume that the level sets of E1 (k0) and E2 (k0) have a good overlap and that the
electron velocities of the lower and upper bands are opposite at the wave vector k0. Under such conditions, we find
that depending on the curvature of the lower and upper bands at k0 it is possible to induce superconductivity with
either repulsive or attractive interactions, in particular to obtain a non-vanishing anomalous correlator

〈
c2kc

1
−k
〉
≡ s21

k .
The analysis presented in this Appendix is highly similar to the one done in the body of the manuscript and will be
presented briefly.
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FIG. 10: Energy levels and laser. The upper band of a three-band semiconductor is populated with a single laser drive pumping
from the lower band. The chemical potential µ is set between the lower and middle (reservoir) bands.

1. Mean-field Hamiltonian

The mean-field Hamiltonian relevant to our three-band system can be written as:

HMF = HBand +HLaser +HSuper , (A1)

with

HBand =
∑
k,α

Eα (k) cα†k cαk , (A2)

HLaser =
∑
k

Ω (t) c2†k c
1
k + h.c. , (A3)

HSuper =
∑
k

∆c2†k c
1†
−k + h.c. . (A4)

Ω (t) ≡ Ω cos (ω0t) is the laser drive and ∆ is the mean-field superconducting gap. The relevant equation of motions
read

i
d

dt
c2k =∆c1†−k + E2c

2
k + Ω (t) c1k ,

i
d

dt
c3k =E3c

3
k ,

i
d

dt
c1k =−∆c2†−k + E1c

1
k + Ω∗ (t) c2k . (A5)

We eliminate all explicit time dependence by a means of rotating wave approximation. This consists in rotating all
the operators of the theory with the unitary

U ≡ Uc ⊗ Ua , (A6)

where

Uc ≡ exp

[
i

2
ω0t

∑
k

(
c1†k c

1
k − c2†k c2k

)]
, (A7)

Ua ≡ exp

 i

2
ω0t

∑
k,n

(
a1†
k,na

1
k,n − a2†

k,na
2
k,n

) . (A8)

In particular, c1k 7→ c̃1k = c1k e−iω0t/2, c2k 7→ c̃2k = c2k eiω0t/2, and H 7→ H̃ = U [H − i∂t]U
† so that the energies are

shifted to Ẽ1(k) = E1(k) + ω0/2 and Ẽ2(k) = E2(k) − ω0/2. We drop all terms rotating at 2ω0 since they are not
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resonant with any transition. By adding dissipative mechanisms and considering fermion bilinears we may study the
non-equilibrium steady state properties of this model. Note that in the rotating frame, ñ11

k = n11
k , ñ22

k = n22
k , and

s̃12
k = s12

k are invariant, but ñ12
k = n12

k e−iω0t and ñ21
k = n21

k eiω0t. The steady-state equation of the order-parameter
s̃21
k =

〈
c̃2kc̃

1
−k
〉

reads

0 = i
d

dt
s̃†21
k = −∆∗(1− ñ11

k − ñ22
k )− (Ẽk − iΓ12)s̃†21

k , (A9)

where we introduced the notation Ẽk ≡ Ẽ1(k) + Ẽ2(k) and Γ12 is a phenomenological decay rate associated with the
damping of the order parameter. This simplifies to

s̃21
k =

∆∗

Ẽk + iΓ12

(
ñ11
k + ñ22

k − 1
)
. (A10)

This equation is identical to Eq. (10) and seems to be an ubiquitous condition for superconductivity. This expresses
that to ensure superconductivity, we once again need to have a nonzero ñ11

k + ñ22
k −1 6= 0. This is the rationale behind

the presence of the third band – which does not interact with the other two bands but merely acts as “storage” for
electrons. To find the steady-state value of ñ11

k and ñ22
k , we write the steady-state equations for the rest of the fermion

bilinears. From now on, we shall work in the weak pairing field limit ∆ � Ω. The steady-state equations for the
populations and coherences read

0 =
d

dt
ñ22
k =i

Ω

2

(
ñ12
k − ñ21

k

)
− (Γ1 + Γ2) ñ22

k ,

0 =
d

dt
ñ33
k =Γ1n

22
k − Γ3n

33
k ,

0 =
d

dt
ñ11
k =− i

Ω

2

(
ñ12
k − n21

k

)
+ Γ2ñ

22
k + Γ3ñ

33
k ,

0 =
d

dt
ñ21
k =(iεk − τ−1)ñ21

k + i
Ω

2

(
ñ11
k − ñ22

k

)
. (A11)

We have introduced three spontaneous decay rates Γ1, Γ2, Γ3 and a dephasing time τ . For many semiconductors
τ−1 � Γ1,2,3 because it is hard to exchange populations between the bands, by including say Coulomb interactions,
but rather easy to have energy fluctuations which lead to dephasing. In the case the semiconductor has a strong
coupling to optical phonons, this inequality may be violated as all the decay rates may become comparable. Notice
that the previous equations ensure the conservation of particle number, i.e. ñ11

k + ñ22
k + ñ33

k = 1. Using Eq. (A10),
we obtain

s†21
k = − ∆∗

Ẽk + iΓ12

|Ω|2Γ1

2τ(ε2k+τ−2)

Γ3 (Γ1 + Γ2) + |Ω|2(Γ1+2Γ3)

2τ(ε2k+τ−2)

, (A12)

with εk ≡ Ẽ2(k)− Ẽ1(k).

Note that s†21
k vanishes when Γ1 = 0 but Γ3 6= 0. In this case there is no population in the the middle band, i.e.

ñ33
k = 0. However, one would not expect that s†21

k = 0 if we simultaneously tune Γ1,Γ3 ↓ 0 as some population will
be trapped in band 3 (reservoir) if both decay rates go down to zero with the same rate, which can be seen from the
analysis of Eq. (A12).

2. Self-Consistency Equation

We now solve self-consistently for the superconducting gap. The pairing part of the mean-field Hamiltonian in
Eq. (A1) originates from a microscopic Hamiltonian which involves a density-density type of interaction between
the electrons in the semiconductor. The corresponding mean-field decoupling is given in Eq. (39). To obtain most
favorable conditions for superconductivity, we shall once again assume that the electron velocities of the lower and
upper bands are opposite at the wave vector k0. At the resonant surface Sω0 , the dispersion relation can be Taylor-

expanded as Ẽ1,2 = v1,2 q⊥+κ1,2 q
2
⊥+ . . . , where q⊥ is the momentum perpendicular to the resonant surface Sω0

and
v1 + v2 = 0. So ε = v− q⊥ + κ− q

2
⊥ + . . . and E = κ+ q

2
⊥ + . . . , where v− ≡ v2 − v1 and κ± = κ2 ± κ1. Substituting

these energies into the gap equation, we obtain the condition
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∆∗ ≤ −V N0 |v−|
´

dq⊥
∆∗κ+q

2
⊥

κ2
+q

4
⊥+Γ2

12

|Ω|2Γ1

2τ((v−q⊥)2+τ−2)
Γ3(Γ1+Γ2)+

|Ω|2(Γ1+2Γ3)

2τ((v−q⊥)2+τ−2)

. (A13)

N0 is the density of states at k0. We note that

sgnV = sgnκ+ (A14)

is needed to satisfy the condition, which means that by tuning band curvatures it is possible to have superconductivity
with both attractive and repulsive interactions. Furthermore, we note that in the case in which the Rabi frequency is
large, the integral in Eq. (A13) greatly simplifies and the threshold condition for superconductivity becomes

|V | ≥ Vc ≡
√

2

π

1

N0

√
|κ+|
|v−|

√
Γ12 (1 + 2Γ3/Γ1) . (A15)

In the small damping limit (i.e. small Γ12), the inequality is easily satisfied. This condition is highly similar to the
condition obtained for superconducting threshold in Eq. (22). We note that for the case γ2 − γ1 ∼ 1, Γ12 ∼ Γ, and
Γ1 � Γ3 the two equations become equivalent.
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