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The theoretical study of topological superfluids and superconductors has so far been carried out
largely as a translation of the theory of noninteracting topological insulators into the superfluid
language, whereby one replaces electrons by Bogoliubov quasiparticles and single-particle band
Hamiltonians by Bogoliubov-de Gennes Hamiltonians. Band insulators and superfluids are, however,
fundamentally different: while the former exist in the absence of inter-particle interactions, the latter
are broken symmetry states that owe their very existence to such interactions. In particular, unlike
the static energy gap of a band insulator, the gap in a superfluid is due to a dynamical order
parameter that is subject to both thermal and quantum fluctuations. In this work, we explore the
consequences of bulk quantum fluctuations of the order parameter in the B phase of superfluid
3He on the topologically protected Majorana surface states. Neglecting the high-energy amplitude
modes, we find that one of the three spin-orbit Goldstone modes in 3He-B couples to the surface
Majorana fermions. This coupling in turn induces an effective short-range two-body interaction
between the Majorana fermions, with coupling constant inversely proportional to the strength of
the nuclear dipole-dipole interaction in bulk 3He. A mean-field theory suggests that the surface
Majorana fermions in 3He-B may be in the vicinity of a quantum phase transition to a metastable
gapped time-reversal-symmetry-breaking phase.

I. INTRODUCTION

The prediction and discovery of time-reversal invari-
ant topological band insulators—band insulators dis-
tinguished from their conventional counterparts by the
existence of a bulk topological invariant and topolog-
ically protected edge or surface states, yet distinct
from the time-reversal symmetry breaking quantum Hall
insulator—is a major breakthrough in condensed mat-
ter physics.1,2 The classification of such insulators re-
quires only single-particle quantum mechanics, where in-
teractions between electrons are ignored. Soon after the
original predictions of the quantum spin Hall insulator
and the three-dimensional (3D) topological insulator, it
was realized that this topological band theory could be
directly applied to the classification of Bogoliubov-de
Gennes (BdG) Hamiltonians, which describe the spec-
trum of fermionic quasiparticles in paired superfluids and
superconductors at the mean-field level. This led to the
prediction of time-reversal invariant topological super-
fluids and superconductors.3–8 Translated in the super-
fluid or superconducting language, the surface states of
topological band insulators become Majorana fermions—
particles that are their own antiparticles, and which con-
tain half the degrees of freedom of an ordinary com-
plex fermion.9 Under certain circumstances Majorana
fermions possess non-Abelian statistics, which may lead
to important applications in quantum information.10,11

While the search for solid-state materials that exhibit
topological superconductivity is still ongoing, a 3D topo-
logical superfluid has in principle already been found: the

B phase of superfluid 3He.12 It was recognized early on by
Salomaa and Volovik13 that the spin-triplet p-wave order
parameter in the Balian-Werthamer (BW) state14,15 that
describes 3He-B corresponds to a topologically nontrivial
texture in momentum space, which in turn should give
rise to protected fermionic zero modes at the boundary
of the sample.16

Although the translation of topological band theory
into the superfluid/superconducting context has led to
remarkable predictions and insights, superfluids and su-
perconductors remain fundamentally distinct from band
insulators. While in the latter inter-particle interactions
can be treated as a perturbation on top of the noninter-
acting band structure, the former are broken symmetry
states that owe their very existence to such interactions.
Unlike the frozen energy gap of a band insulator, the
gap in a superfluid or superconductor originates from a
dynamical order parameter that fluctuates even at zero
temperature.

In this work, we go beyond the pure BdG description
of topological superfluids that has been the focus of much
work in this field to date, and explore the consequences
of bulk order parameter fluctuations in the only known
3D topological superfluid, 3He-B. In particular, we are
interested in the question of how the properties of the
Majorana surface states in 3He-B are affected by such
fluctuations. The fluctuations that are likely to have the
most impact are the gapless Goldstone modes of 3He-B,
while fluctuations in the amplitude of the order parame-
ter have a gap on the order of the bulk energy gap and can
be neglected at the energy scale of the surface states. Re-
lated work by Grover and Vishwanath17 studied the cou-
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pling between Majorana surface states and bulk fluctua-
tions in topological superconductors. However, the bulk
fluctuations they consider are fluctuations of a magnetic
order parameter that is assumed to exist in addition to
the physics of superfluidity, while we are considering fluc-
tuations of the superfluid order parameter itself (which
gives rise to Majorana surface states in the first place). In
other words, the physics we focus on is intrinsic to super-
fluidity in 3He-B and does not require the proximity to a
novel quantum critical point. Other conceptually related
work includes the study of thermal fluctuations of the
order parameter in 3D p-wave superconductors18 and 2D
chiral topological superconductors,19 as well as the study
of proximity-induced topological superconductivity by a
1D superconductor where quantum fluctuations imply al-
gebraically decaying superconducting correlations but no
true long-range order.20

Our main results may be summarized as follows.
Out of the four Goldstone modes in 3He-B—the phase
mode and the three spin-orbit modes—we find that only
one spin-orbit mode couples to the surface Majorana
fermions. Unlike the phase mode, the spin-orbit modes
are in fact not truly gapless: they acquire a small gap due
to the dipole-dipole interaction between the nuclei of the
3He atoms. Nevertheless, the surface Majorana fermions
can exchange quanta of this bulk mode, leading to an
effective short-range four-fermion interaction between
them (Fig. 1) with a coupling constant that is inversely
proportional to the strength of the dipole-dipole interac-
tion. This interaction is perturbatively irrelevant in the
renormalization group sense, but can lead to a quantum
phase transition towards a gapped surface phase with
spontaneously broken time-reversal symmetry. Mean-
field theory predicts that this transition should be first-
order, suggesting the possibility of a metastable gapped
phase. If fluctuation effects (neglected in mean-field
theory) ultimately make the transition continuous, the
corresponding quantum critical point should exhibit an
emergent N = 1 supersymmetry.17,21–23

The strategy we adopt in this paper is as follows. We
begin by reviewing how to solve for the Majorana fermion
surface modes in a static order parameter background
(Sec. II). We then allow for small fluctuations of the or-
der parameter, and determine how these couple to the
fermionic surface modes (Sec. III A). Integrating out the
bulk order parameter fluctuations, we derive an effec-
tive surface interaction between the Majorana fermions
(Sec. III B) — the main result of our work. Finally, we
use mean-field theory to determine possible broken sym-
metry states induced by this interaction (Sec. IV).

II. MAJORANA SURFACE STATES OF 3He-B

We begin by reviewing the derivation of the Majorana
fermion surface states from the BdG mean-field descrip-
tion of the 3He-B superfluid (see, e.g., Ref. 24 and ref-
erences therein). We denote the annihilation (creation)

FIG. 1. Majorana fermions (magenta spheres) on the surface
of 3He-B with the energy-momentum dispersion of a cone
(magenta cone; the negative-energy part of the spectrum il-
lustrated in white is redundant) can effectively interact by
exchanging quanta of the bulk collective modes (wiggly line).

operator for a neutral 3He fermionic quasiparticle by ckσ
(c†kσ) where σ =↑, ↓ is the spin quantum number and k
is the 3D spatial momentum quantum number, and use
units such that ~ = 1. When the neutral fermions are in
the 3He-B superfluid phase, the system is described by
the time-reversal invariant Hamiltonian,

HB =
∑
k

Ψ†kHBdG(k)Ψk, (1)

where the Nambu spinor Ψk is defined as

Ψk =
(
ck↑ ck↓ c†−k↓ −c

†
−k↑

)T
=

(
ckσ

iσyσσ′c
†
−kσ′

)
, (2)

and the spin-triplet p-wave pairing BdG Hamiltonian
HBdG(k) is defined as

HBdG(k) =

(
εk (∆0/kF )σµRµjkj

(∆0/kF )σµRµjkj −εk

)
,

(3)
corresponding to the BW state.14,15 Here, εk = k2/2m−
EF where EF = k2

F /2m is the Fermi energy in the nor-
mal state of 3He, m is the effective mass of the fermionic
quasiparticles, kF is the Fermi momentum, and ∆0 is the
energy gap (that can be made real by a uniform gauge
transformation). Rµj is a constant SO(3) relative ro-
tation matrix25 that relates the spin coordinate system
indexed by µ = x, y, z and the spatial coordinate system
indexed by j = x, y, z. The corresponding relative SO(3)
rotation group is conventionally denoted by SO(3)L−S .
We denote the usual Pauli matrices by σµ = (σx, σy, σz).
The single-particle excitations in the bulk are the gapped
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Bogoliubov quasiparticles with isotropic energy disper-
sion E(k) =

√
ε2k + ∆2

0.
A generic relative rotation matrix Rµj may be param-

eterized by the rotation axis n̂ and angle of rotation θ,

Rµj(n̂, θ) = (1−cos θ)n̂µn̂j+δµj cos θ−εµjkn̂k sin θ, (4)

where n̂2 = 1. Each relative rotation matrix Rµj(n̂, θ)
represents one member of a family of possible BW states.
If the nuclear spin of the 3He atoms is neglected, these
states are all degenerate in energy. In reality, the dipole-
dipole interaction between the nuclear spins of the 3He
atoms leads to a specific value of θ being energetically fa-
vored, the so-called Leggett angle θL = cos−1

(
− 1

4

)
.26–28

The remaining parameter n̂ remains free in the bulk, but
the dipole-dipole interaction in the presence of a surface
with normal ŝ tends to align n̂ along ŝ in the vicinity
of the surface within the coherence length ξ0 ∼ vF /∆0

29

(which characterizes the extension of a Cooper pair) with
vF = kF /m the Fermi velocity in the normal state of 3He.
For our purposes, the effect of the surface on n̂ may be
treated as a boundary condition on n̂. We consider a
volume of 3He-B superfluid occupying a semi-infinite 3D
region x > 0 with a 2D flat surface corresponding to the
yz plane, and the normal is ŝ = −x̂ (Fig. 1). Given that
n̂ is free in the bulk, without loss of generality we may
choose n̂ = −x̂ as our reference equilibrium state in the

bulk. The corresponding relative rotation matrix R
(0)
µj is

then

R
(0)
µj =

1 0 0
0 cos θL sin θL
0 − sin θL cos θL

 . (5)

A. Majorana surface states

In the presence of a surface, there exist fermionic
modes (Andreev bound states) localized at this surface
with energies within the bulk gap. As explained in the in-
troduction, we will first solve for the wave function and
spectrum of these modes in the static order parameter
background Eq. (5), and then allow for small order pa-
rameter fluctuations above the background. In first quan-
tization, the BdG Hamiltonian (3) becomes

Ĥ =

(
p̂2/2m− EF (∆0/kF )σ · p̂
(∆0/kF )σ · p̂ −p̂2/2m+ EF

)
, (6)

where we use the caret (̂ ) to denote first-quantized op-
erators (p̂ = −i∇). The dependence of the Hamiltonian
on the Leggett angle θL via Eq. (5) has been eliminated
by a rotation of the spatial coordinates relative to the
spin coordinates in the yz plane by the angle θL, so that
ky cos θL + kz sin θL → ky and −ky sin θL + kz cos θL →
kz. The surface states are the solutions of the time-
independent Schrödinger equation for this Hamiltonian,

Eφ(r) = Ĥφ(r), (7)

where r = (x, y, z), and we assume the Dirichlet bound-
ary conditions φ(0, y, z) = 0 and φ(∞, y, z) = 0. Al-
though the details of the wave function of the surface
states will depend on the type of boundary conditions,
the existence of the surface states will not, because of
their topological character.5 We consider an ansatz of
the form

φ(r) = ψk‖,±(r)φ0, (8a)

ψk‖,±(r) = N eik‖·r‖e±ik⊥x χ(x), (8b)

where N is a normalization constant, k‖ = (ky, kz) =

(k1, k2) and r‖ = (y, z), k⊥ =
√
k2
F − |k‖|2, χ(x) is a

scalar function of x, and φ0 is a 4D spinor. In the weak-
pairing limit,30,31

k⊥ � κ ≡ kF
∆0

EF
, (9)

the substitution of the ansatz into Eq. (7) gives

Eχ(x)φ0 =
(
H0(k‖)± Ĥ⊥

)
χ(x)φ0, (10)

where

H0(k‖) =

(
0 (∆0/kF )k|| · σ

(∆0/kF )k|| · σ 0

)
, (11a)

Ĥ⊥ = k⊥

(
(1/m)(−i∂x) (∆0/kF )σx

(∆0/kF )σx −(1/m)(−i∂x)

)
. (11b)

The gapless surface states are eigenstates of the operator
Ĥ⊥ with eigenvalue zero, since then Eq. (10), (11a) and
(11b) imply that E = 0 at k‖ = 0. This condition is
satisfied by choosing two independent spinors φσ0 ,

φ↑0 = e−iπ/4
(
1 0 0 −i

)T
, (12a)

φ↓0 = eiπ/4
(
0 1 −i 0

)T
, (12b)

as well as

χ(x) = e−κx/2, (13)

which manifestly satisfies the Dirichlet boundary condi-
tion at x = ∞. The surface states are labeled by the
surface momentum k‖ and the spin index σ. Considering
Eqs. (8b), (9), and (13), we see that the weak-pairing
limit corresponds to BdG wave functions φ(r) that only
involve momenta near the Fermi surface.

The solution that satisfies the Dirichlet boundary con-
dition at x = 0 is given by a linear superposition of
ψk‖,+(r) and ψk‖,−(r),

φσ(r) = ψk‖(r)φσ0 , (14a)

ψk‖(r) = N eik‖·r‖ sin(k⊥x)θ(x)χ(x), (14b)

where we explicitly include the Heaviside step function
θ(x) to signify that the superfluid occupies the x > 0
half-space.
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The normalization constant N remains to be deter-
mined. This is most easily done by considering a finite
volume V = L2

‖L⊥ of superfluid of length L‖ in the y and

z directions and L⊥ in the x direction. In general, N de-
pends on the magnitude of k‖, but in the weak-pairing

limit (9) and in the limit of large system size L⊥ � κ−1

(such that it is meaningful to have φ vanish at x = ∞
even though the system has a finite extent in the x di-
rection), we find N = L−1

‖
√

2κ, and∫
x>0

d3r |ψk‖(r)|2 = 1. (15)

As we will be considering interaction effects among the
surface states, it is convenient to describe them in second

quantization. The fermionic field operator ψ̂σ(r) can be
expanded as

ψ̂σ(r) =
∑
k‖

ψk‖(r)ck‖σ + . . . , (16)

where ck‖σ annihilates a fermion with spatial wave func-

tion ψk‖(r) and spin σ =↑, ↓. The extra terms (. . .) are
associated with gapped bulk modes. The field operator
satisfies the usual anticommutation relations,

{ψ̂σ(r), ψ̂†σ′(r
′)} = δσσ′δ(3)(r − r′). (17)

The two orthogonal spinors φ↑0, φ
↓
0 with eigenvalue zero in

Eq. (12a)-(12b) are associated with two gapless fermionic
modes γk‖↑, γk‖↓. Given that the spinor part of the

Hilbert space on which Ĥ⊥ in Eq. (11b) acts is four-
dimensional, there are two other orthogonal spinors with
nonzero eigenvalue that correspond to gapped modes
γ̄k‖↑, γ̄k‖↓. The microscopic 3He quasiparticle operators
ck‖↑, ck‖↓ are linear combinations of both gapless and
gapped modes,

ck||↑ =
1√
2

(
eiπ/4γk||↑ + e−iπ/4γ̄k||↑

)
, (18a)

ck||↓ =
1√
2

(
e−iπ/4γk||↓ + eiπ/4γ̄k||↓

)
, (18b)

while γk‖σ itself is a linear combination of ck‖σ and c†k‖σ
,

γk‖↑ =
e−iπ/4√

2

(
ck‖↑ + ic†−k‖↑

)
, (19a)

γk‖↓ =
eiπ/4√

2

(
ck‖↓ − ic

†
−k‖↓

)
. (19b)

The gapless modes γk‖σ are known as Majorana fermion
operators because they satisfy the reality condition

γ†k‖σ
= γ−k‖σ, (20)

or, equivalently, the Clifford algebra

{γk‖σ, γ−k′
‖σ

′} = δ
(2)
k‖,k

′
‖
δσ,σ′ . (21)

In the low-energy limit, we can neglect the gapped modes
γ̄k‖σ and approximate the full field operator by

ψ̂σ(r) ≈ 1√
2

∑
k‖σ′

eiπσ
z
σσ′/4ψk‖(r)γk‖σ′ . (22)

We can now write down a second-quantized Hamiltonian
for the noninteracting Majorana surface states. Given
that H0(k‖) in Eq. (11a) is effectively a Hamiltonian ma-
trix for the surface states, we have

H0 =
∆0

2kF

∑
k‖

γT−k‖
(k‖ · σ̃)γk‖ , (23)

where it is convenient to define rotated Pauli matrices σ̃µ

due to the phase factors in Eq. (22),

σ̃y = σ̃1 = σz, (24a)

σ̃z = σ̃2 = σx. (24b)

The Hamiltonian (23) has a cone-like linear dispersion

E(k‖) = ∆0

|k‖|
kF

. (25)

We ignore negative eigenenergies that do not correspond
to physical states but simply arise from the particle-hole
redundancy of the BdG description.

III. SURFACE INTERACTIONS MEDIATED BY
BULK GOLDSTONE MODES

The derivation of the surface states in the previous
section assumed a static bulk order parameter with con-
stant and uniform pairing amplitude ∆0 and relative ro-

tation matrix R
(0)
µj [Eq. (5)]. In a real helium sample

however, the order parameter is a dynamical field that
fluctuates even at zero temperature due to quantum zero-
point motion. The quanta of this dynamical field can be
absorbed and emitted by the surface Majorana fermions,
and can thus mediate interactions between the Majorana
fermions. The purpose of this section is to derive the
form of these interactions. In a first stage, we determine
the form of the coupling between the Majorana surface
states and the fluctuations of the bulk order parameter,
i.e., the bulk collective modes. In a second stage, we inte-
grate out these bulk collective modes to derive the form
of the intra-surface interactions. Although we will focus
on a semi-infinite geometry with a single surface that is
a good approximation for a thick helium sample, a sim-
ilar calculation could be performed in a slab geometry
that would describe helium thin films—although the film
should not be so thin that the A phase is favored over the
B phase.32 In this case there would also be inter-surface
interactions where a bulk order parameter fluctuation is
emitted by a Majorana fermion on the (say) top surface,
propagates through the bulk to the bottom surface, and
is absorbed by a Majorana fermion on that surface.
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There are numerous collective modes in the B phase
of 3He. This phase spontaneously breaks the SO(3)L ×
SO(3)S × U(1)N symmetry of the parent Fermi liquid
state to SO(3)L+S , where SO(3)L and SO(3)S corre-
spond to spatial and spin rotations, respectively, U(1)N
describes particle number conservation, and SO(3)L+S

describes simultaneous rotations in real space and spin
space.25 If we ignore the dipole-dipole interaction, the as-
sociated Goldstone manifold is SO(3)L−S × U(1)N , cor-
responding to relative rotations in real space and spin
space as well as phase rotations. As a result there are
four gapless Goldstone modes in 3He-B: three spin-orbit
modes28 and one phase mode. As we will see however, the
dipole-dipole interaction generates a small gap for some
of the gapless spin-orbit modes. Furthermore, there are
also gapped amplitude modes,33 but these have energies
of the order of the bulk gap and can be ignored in a first
approximation.

A. Surface-bulk coupling

In Sec. II, the equilibrium value of the bulk p-wave
pairing order parameter was chosen to be

∆(k) =
∆0

kF
σµiσyR

(0)
µj kj . (26)

As done in our derivation of the Majorana surface states,
we can rotate the spatial coordinates on the surface plane
so that the Leggett angle is eliminated, and the order
parameter becomes

∆(k) =
∆0

kF
σµiσyδµjkj . (27)

We now include the effect of the gapless fluctuations
of the order parameter, i.e., the bulk Goldstone modes.
These correspond to small variations of the relative rota-
tion matrix Rµj(R) and the real phase ϕ(R),

∆(k;R) ' ∆0

kF
(1 + iϕ(R))σµiσyRµj(R)kj , (28)

where k is the relative momentum of the fermion pair,
the position vector R is the center of mass (CM) of the
pair, and we consider small fluctuations ϕ(R)� 2π (i.e.,
we only consider vortex-free field configurations). The
fluctuations occur on a length scale much larger than
k−1
F , while the magnitude of the relative momentum k of

the pair is of order kF . The relative rotation matrix can
be expanded in terms of the three independent generators
of SO(3)L−S ,

S(α)
µν = −iεαµν , (29)

where εαµν is the Levi-Civita antisymmetric tensor and
α, µ, ν = x, y, z. The spin-orbit fluctuations are parame-
terized by three real bosonic fields θα(R), hence we have

Rµj(R) '
(
δµν + iθα(R)S(α)

µν

)
δνj , (30)

where θα(R)� 2π here also.
The coupling of the order parameter with the Bogoli-

ubov quasiparticles can be obtained from the bulk BdG
Hamiltonian (1), generalized to include CM degrees of
freedom,

Hcoupling =
1

2V

∑
k,Q

c†k+Q/2,σc
†
−k+Q/2,σ′∆σσ′(k;Q)+H.c.,

(31)
whereQ is the CM momentum obtained by Fourier trans-
forming with respect toR, and the fermion operators ckσ
are the Fourier transforms of the field operators ψ̂σ(r) in
Eq. (22),

ckσ =
1

V 1/2

∫
d3r e−ik·rψ̂σ(r)

= ψ(kx)ck‖σ + . . . , (32)

where

ψ(kx) =

√
2κ

L⊥

∫ ∞
0

dx e−ikxx sin(k⊥x)χ(x)

=

√
2κ

L⊥

k⊥
k2
⊥ − (kx − iκ/2)2

(33)

is an envelope function that describes the finite penetra-
tion depth ∝ κ−1 ∼ ξ0 of the Majorana surface states
into the bulk.

Inserting into Eq. (31) the order parameter given in
Eq. (28) and Eq. (30), and discarding the gapped modes
γ̄k‖σ, we obtain

Hcoupling =
∆0

2V

∑
Q

[
−iϕ(−Q)δµj

(
Jµj (Q)− Jµj (−Q)†

)
+iθα(−Q)S

(α)
µj

(
Jµj (Q) + Jµj (−Q)†

)]
,

(34)

where the quantities Jµj (Q) are defined as

Jµj (Q) =
1

2kF

∑
k

kjψ(−kx +Qx/2)ψ(kx +Qx/2)

×γT−k‖+Q‖
(−iσyeiπσz/4σµeiπσz/4)γk‖+Q‖ .

(35)

Taking the Hermitian conjugate of Jµj (Q), we find that

Jxj (R) is anti-Hermitian while Jyj (R) and Jzj (R) are Her-
mitian,

Jxj (Q)† = −Jxj (−Q), (36a)

Jyj (Q)† = Jyj (−Q), (36b)

Jzj (Q)† = Jzj (−Q). (36c)

The summand in Eq. (35) for j = x is odd under kx →
−kx, thus in fact Jµx (Q) vanishes identically for all µ.
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From Eq. (34), we see that the phase fluctuation ϕ(R)
couples linearly to a Hermitian operator Oϕ(R) with
Fourier transform

Oϕ(Q) = −i
(
Jµµ (Q)− Jµµ (−Q)†

)
, (37)

which vanishes identically because Jxx (Q) = 0 and be-
cause of Eq. (36b)-(36c). Therefore there is no coupling
between surface Majorana fermions and phase fluctua-
tions. Likewise, the spin-orbit fluctuations θα(R) cou-
ple linearly to Hermitian operators Oθα(R) with Fourier
transform

Oθα(Q) = εαµj
(
Jµj (Q) + Jµj (−Q)†

)
. (38)

Since εαµj is antisymmetric under j ↔ µ and Jµx (Q) = 0
for all µ, the only possibility is that θx(−Q) couples to
Jyz (Q) and Jzy (Q).

We therefore obtain the coupling between bulk Gold-
stone modes and surface Majorana fermions γk‖σ as

Hcoupling =
∆0

V

∑
Q

θx(−Q)ρ(Q), (39)

where we define the Majorana bilinear

ρ(Q) = Jyz (Q)− Jzy (Q)

=
∑
kx

ψ(−kx +Qx/2)ψ(kx +Qx/2)ρ(Q‖), (40)

where

ρ(Q‖) =
1

2kF

∑
k‖

γT−k‖+Q‖/2
[x̂ · (k‖ × σ̃)]γk‖+Q‖/2.

(41)

Performing the summation over kx in Eq. (40), we obtain∑
kx

ψ(−kx +Qx/2)ψ(kx +Qx/2) =
1

1 + i(Qx/κ)
, (42)

in the weak-pairing limit (9) and assuming that the CM
momentum Qx is small compared to k⊥.

We note that the coupling (39) between the Goldstone
mode θx and the Majorana bilinear ρ does not vanish at
Q = 0. In the bulk of a superfluid, or any ordered state
with a spontaneously broken continuous global symme-
try, the coupling of a Goldstone mode with other degrees
of freedom such as fermionic quasiparticles typically van-
ishes at the ordering wave vector (here Q = 0), a gen-
eral result first obtained by Adler.34 Interactions between
Goldstone modes and other degrees of freedom can only
occur through derivative couplings, to preserve the in-
variance of the low-energy effective action under uniform
rotations within the Goldstone manifold. Here the cou-
pling (39) does not vanish at Q = 0 because the Majo-
rana fermions, being localized in real space at the sample
surface, are a linear superposition of all bulk momentum
eigenstates. Scattering of a surface Majorana fermion

by a bulk Goldstone boson generally involves large bulk
momentum transfers, a consequence of the explicit break-
ing of translation symmetry by the sample surface, and
Adler’s principle does not apply. A more straightforward
way to see why the coupling between θx(Q = 0) and the
Majorana fermions does not vanish is to note that a cou-
pling of this type can be generated by a uniform global
rotation in spin space around the x axis (surface normal)
by an infinitesimal angle θx, i.e., σ̃i → σ̃i + θxεij σ̃j .

In summary, the only fluctuation of the bulk order pa-
rameter that couples to the surface Majorana fermions
is the spin-orbit mode θx. That θy and θz do not cou-
ple at all reflects the anisotropy of the spin susceptibil-
ity characteristic of the surface Majorana fermions.30,31

The absence of coupling to the phase fluctuation ϕ can
be understood from the charge neutrality of Majorana
fermions.

B. Effective surface interactions

Effective interactions between the surface Majorana
fermions can be derived by integrating out the bulk Gold-
stone modes. One might be concerned that interac-
tions with the gapless Majorana fermions could induce
possibly long-range interactions between the Goldstone
modes, which would invalidate the procedure of integrat-
ing out these Goldstone modes, or at least renormal-
ize their properties such as stiffness and velocity, which
would complicate the choice of parameters in the Gold-
stone mode Lagrangian. These effects, however, cannot
happen because the stiffness and velocity are properties
of the (3+1)D bulk while the Majorana fermions live in
2+1 dimensions. Deep in the ordered (superfluid) phase,
the Goldstone modes interact weakly and are described
by free massless bosons in 3+1 dimensions. The proce-
dure of integrating out these free massless modes can thus
be carried out exactly. A similar situation arises in the
study of gauge field fluctuations in 3D topological Mott
insulators35 and phonons in 3D topological insulators.36

In the imaginary-time formalism, the action for the
bosonic Goldstone fields θα is

SB =

∫ β

0

dτ

∫
d3RLB +

∫ β

0

dτHcoupling, (43)

where

LB = L0(∂τθα) + Lbend(∂iθα) + Ldipole(θx), (44a)

L0 =
1

2
K0(∂τθj)

2, (44b)

Lbend =
1

4
(KT +KL)(∂jθk)2 +

1

4
(KT −KL)∂jθk∂kθj ,

(44c)

Ldipole =
1

2
gD θ

2
x, (44d)

where β is the inverse temperature. The Lagrangian den-
sity LB is composed of three distinct contributions. L0
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contains the conjugate momenta for θα, Lbend is the en-
ergy cost for having gradients of the bosonic fields,37 and
Ldipole is the energy cost due to the nuclear dipole in-
teraction between 3He quasiparticles.28 θx can be un-
derstood as the deviation of θ in Eq. (4) from its equi-
librium value given by the Leggett angle θL. KT and
KL = 3KT are the transverse and longitudinal stiffness,
respectively, where KT = (2/5)NF ξ

2
0∆2

0 in weak-coupling
theory38 and NF = mkF /π

2 is the density of states at
the Fermi energy. The constant gD is given by

gD = 3λDNF∆2
0, (45)

where λD ≈ 5 × 10−7 is an approximately pressure-
independent dimensionless constant.25 The dipole inter-
action produces a small energy gap ∝

√
gD/K0 for the θx

fluctuations that acts as an infrared cutoff. The bending
energy can be written in a more physical way,37

Lbend =
1

4
KL(∇ ·Rµ)2 +

1

4
KT (∇×Rµ)2, (46)

where we represented the rotation matrix Rµj in Eq. (30)
as a vector Rµ for each µ.

It remains to specify boundary conditions on the sam-
ple surface for the Goldstone field θx to be integrated
out. (The θy and θz fields can be formally integrated out
as well, but do not generate effective surface interactions
for the Majorana fermions since they do not couple to
the latter.) The spin supercurrent density39 is defined in
terms of the Lagrangian Eq. (44a) by

jαsp,i ∝
∂LB

∂(∂iθα)
, (47)

and corresponds to the supercurrent of the α component
of spin flowing along direction i. The derivative with re-
spect to ∂xθx gives a term proportional to ∂xθx. Assum-
ing that no spin supercurrent can escape from the 3He
surface into the surrounding vacuum by flowing perpen-
dicular to this surface, we impose the Neumann boundary
condition ∂xθx(x, y, z)|x=0 = 0. With this boundary con-
dition, θx(Q) is even in Qx and thus couples in Eq. (39)
only to the part of ρ(Q) that is even in Qx. After drop-
ping the part that is odd in Qx, the Majorana bilinear
ρ(Q) in Eq. (40) becomes

ρ(Q) = f(Qx)ρ(Q‖), f(Qx) =
1

1 + (Qx/κ)2
. (48)

The procedure of integrating out θx is best carried out
in a frequency-momentum representation. We define the
Fourier transform of θx(τ,R) by

θx(νn,Q) =

∫ β

0

dτ

∫
d3R e−iνnτeiQ·Rθx(τ,R),

θx(τ,R) =
1

βV

∑
νn,Q

eiνnτe−iQ·Rθx(νn,Q), (49)

where νn = 2πn/β, n ∈ Z is a bosonic Matsubara fre-
quency. Likewise, we define

ρ(νn,Q) =

∫ β

0

dτ

∫
d3R e−iνnτeiQ·Rρ(τ,R),

ρ(τ,R) =
1

βV

∑
νn,Q

eiνnτe−iQ·Rρ(νn,Q), (50)

for the Majorana bilinear. Performing the Gaussian path
integral over θx,∫

Dθx e−SB [θx,ρ] ∝ e−SI [ρ], (51)

we obtain the action SI for an effective interaction be-
tween the surface Majorana fermions,

SI = − ∆2
0

2βV

∑
Q

ρ(−Q)Gxx(Q)ρ(Q), (52)

where we denoted the bulk (3+1)D frequency-momentum
vector by Q = (νn,Q), and Gxx(Q) is the Green’s func-
tion for θx,

Gxx(Q)−1 = KTQ
2
x + Ḡ(Q‖)

−1,

Ḡ(Q‖)
−1 = KSQ

2
‖ +K0ν

2
n + gD, (53)

where KS = (KL + KT )/2, and we denoted the surface
(2+1)D frequency-momentum vector by Q‖ = (νn,Q‖).
Since ρ(τ,Q‖) does not depend on Qx, the summation
over Qx can be performed. If the thickness of the helium
sample L⊥ is large enough (we will comment shortly on
the validity of this assumption), we can approximate the
sum by an integral. We obtain

SI = − ∆2
0

2βV

∑
Q‖

ρ(−Q‖)G‖(Q‖)ρ(Q‖), (54)

where

G‖(Q‖) ≡
∑
Qx

f(Qx)2Gxx(Q)

= Ḡ(Q‖)
κL⊥

8

1 + 2κ(KT Ḡ(Q‖))
1/2[

1 + κ(KT Ḡ(Q‖))1/2
]2 . (55)

The term in Eq. (54) that is most relevant in the renor-
malization group sense is obtained by setting Q‖ = 0 in
the propagator G‖(Q‖),

G‖(0) = g′0L⊥, g′0 =
κ

gD

1

8

1 + 2κξD
(1 + κξD)2

, (56)

where we defined the length scale ξD =
√
KT /gD that

may be called a “dipole coherence length”.25 It is the
finite correlation length associated with the gapped mode
θx.

Approximating the sum over Qx by an integral as we
have done in Eq. (55) is valid if L⊥ is much larger than all
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other length scales in the problem. Because we have set
Q‖ = 0, the only other length scales are the superfluid co-

herence length ξ0 ∼ κ−1 and the dipole coherence length
ξD. Using the weak-coupling expressions and a critical
temperature of Tc ≈ 2.6 mK at melting pressure,25 one
obtains ξ0 ≈ 12 nm and ξD ≈ 6.2 µm. Since ξD � ξ0
already we only require that L⊥ � ξD, i.e., the thickness
of the helium sample should be much larger than a few
microns. This is certainly the case in some experiments
(e.g., Ref. 40). In the case of thin films of 3He with L⊥
on the order of a few microns (see, e.g., Ref. 41 and refer-
ences therein), one should perform the sum over discrete
values of Qx and also consider interactions induced by
the Goldstone mode θx between Majorana fermions on
opposite surfaces. For thicknesses comparable to the co-
herence length ξ0, which is also the penetration depth
of the surface states into the bulk, the surface states on
opposite surfaces can trivially hybridize and open a gap
without breaking any symmetries.

Assuming L⊥ � ξD, the effective interaction Hamilto-
nian HI corresponding to SI is

HI = −g0

2

∑
Q‖

ρ(−Q‖)ρ(Q‖), (57)

where

g0 = g′0
∆2

0

L2
‖

=
κ

NFL2
‖

1

24λD

1 + 2κξD
(1 + κξD)2

. (58)

Equation (57), the main result of our work, shows that
the bulk Goldstone modes of 3He can induce effective
short-range interactions between the surface Majorana
fermions. Using the numerical values of parameters
quoted above, we have κξD ∼ ξD/ξ0 � 1 and the cou-
pling constant g0 (with units of energy) simplifies to

g0 ≈
∆2

0

4L2
‖ξDgD

. (59)

What is the effect of these interactions on the physical
properties of the surface Majorana fermions? The short-
range interaction (57) is perturbatively irrelevant at the
free Majorana fermion fixed point Eq. (23), hence the sur-
face states are stable against this interaction if g0 is suffi-
ciently small.5 The Majorana surface states may however
become unstable if g0 is sufficiently large. One exotic
possibility is that the surface may undergo a transition
to a state with non-Abelian topological order,42,43 which
preserves the symmetries of the free Majorana fermion
state. The other, more conventional possibility is that
the surface may spontaneously break some symmetries
of the free Majorana fermion state. In the remainder of
the paper we will focus on this possibility. For simplic-
ity we will drop the subscript ‖ on 2D spatial momenta,
e.g., k‖ → k and Q‖ → Q, given that the bulk has been
integrated away and we are working with an effective 2D
theory.

IV. BROKEN-SYMMETRY STATES

In this section we study possible broken-symmetry
states of surface Majorana fermions by using zero-
temperature mean-field theory. We begin by identifying
the possible order parameters. Restricting ourselves to
translationally invariant Majorana fermion bilinears up
to linear order in momentum, there are only three possi-
bilities: a T -breaking mass order parameterM, a vector
order parameter V that breaks T and rotational symme-
try, and a nematic order parameter Qab that breaks rota-
tional symmetry. We find that an interaction of the form
(57) can lead to a first-order transition to a T -breaking
state with 〈M〉 6= 0.

A. Order parameters

The simplest types of order parameters that can be
constructed from Majorana fermions are fermion bilin-
ears. We restrict ourselves to translationally-invariant
order parameters,

O =
∑
k

γT−kO(k)γk, (60)

whereO(k) is a Hermitian 2×2 matrix that obeysO(k) =
−O(−k)T due to Fermi statistics. For simplicity we will
only consider terms of zeroth or first order in k.

Order parameters can be organized into representa-
tions of the symmetry group of the Hamiltonian

H = H0 +HI

=
v

2

∑
k

γT−k(k · σ̃)γk −
g0

2

∑
Q

ρ(−Q)ρ(Q), (61)

where v ≡ ∆0/kF is the Majorana fermion velocity, hence
one first needs to determine the symmetries ofH. Besides
translation invariance, H is invariant under time-reversal
symmetry defined by

T γkσT −1 = iσyσσ′γ−kσ′ , (62)

and under SO(2) rotations by an angle θ ∈ [0, 2π) about
the surface normal x̂, defined by

R(θ)γkσR(θ)−1 = R(θ/2)σσ′γR(−θ)kσ′ , (63)

where the 2×2 orthogonal representation matrix R(θ) is

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
. (64)

The same representation matrix that acts on the spatial
label k also acts on the spinor label σ, but with half the
angle. This is simply the statement that the Majorana
field γ forms a spinor representation of SO(2), i.e., a
representation of the double cover Spin(2). Because R(θ)
is real, the reality condition Eq. (20) is preserved under
rotations.
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We now enumerate the possible order parameters. To
zeroth order in k we can only have O(k) ∝ σy,

M =
1

2

∑
k

γT−kσ
yγk. (65)

The Majorana mass term6 M is odd under T but is in-
variant under SO(2) rotations, since R(θ/2) = e−iθσ

y/2

commutes with σy. To linear order in k, we have the six
possibilities O(k) ∈ {ky, kz, kyσx, kzσx, kyσz, kzσz}. By
taking appropriate linear combinations, these six order
parameters can be organized according to their transfor-
mation properties under SO(2) into two scalars, one vec-
tor, and one symmetric traceless tensor. The two scalars
are∑

k

γT−kkaσ̃
aγk ∝ H0,

∑
k

γT−kεabkaσ̃
bγk ∝ ρ(0),

(66)

with a, b = 1, 2. These terms do not break T either, and a
nonzero expectation value for them only leads to a finite
renormalization of the surface state velocity (accompa-
nied by a rotation of the spatial coordinate system). We
can thus ignore them. The vector order parameter

V =
1

2kF

∑
k

γT−kkγk, (67)

transforms under rotations as R(θ)VaR(θ)−1 =
R(θ)aa′Va′ and is odd under T . From the point of view
of symmetries, it can be interpreted as an in-plane ferro-
magnetic order parameter. Finally, the symmetric trace-
less tensor order parameter

Qab =
1

2kF

∑
k

γT−k(kaσ̃
b + kbσ̃

a − δabk · σ̃)γk, (68)

transforms under rotations as R(θ)QabR(θ)−1 =
R(θ)aa′R(θ)bb′Qa′b′ and is even under T . It is a ne-
matic order parameter44 with two independent compo-
nents Q11 = −Q22, Q12 = Q21 forming a headless vector
that is invariant under rotations by π,

R(π)

(
Q11

Q12

)
R(π)−1 = R(2π)

(
Q11

Q12

)
=

(
Q11

Q12

)
.

(69)

B. Mean-field theory

Zero-temperature mean-field theory is based on the
variational principle of quantum mechanics E0 ≤ EMF(λ)
where E0 is the energy of the true ground state and
EMF(λ) = 〈Φ0(λ)|H|Φ0(λ)〉 is the expectation value of
the full Hamiltonian H in a family of trial ground states
|Φ0(λ)〉 parameterized by a variational parameter λ. The
optimal variational ground state is determined by min-
imizing EMF(λ) with respect to λ, i.e., finding the so-
lutions of ∂λEMF(λ) = 0. The trial states |Φ0(λ)〉 can

FIG. 2. Dimensionless variational energy (A22) as a function
of the dimensionless T -breaking mass δ = M/vΛ and the
dimensionless coupling constant α = gL2

‖Λ
3/48πv. There is a

first-order transition at α = αc = (1 +
√

2)2.

be constructed as the ground states of a family of trial
Hamiltonians HMF(λ). Applied to our problem, for each
order parameter O in turn we define the trial Hamilto-
nian as

HMF(λ) = H0 + λO, (70)

which is quadratic in the Majorana fermions γ, hence can
be solved exactly for |Φ0(λ)〉. The variational parameter
λ is the Legendre transform of the operator O, and is pro-
portional to 〈O〉 — hence it is often also called the order
parameter. In what follows we use Latin letters M , V ,
Qab to denote the corresponding variational parameters
M ∼ 〈M〉, V ∼ 〈V〉, Qab ∼ 〈Qab〉. In this section we
only outline the main steps of the mean-field calculations;
technical details can be found in Appendix A.

In principle, one should consider all order parameters
simultaneously,

HMF(M,V,Qab) = H0 +MM+ V · V +QabQab, (71)

and minimize EMF(M,V,Qab) with respect to the 5D
parameter space {M,V,Qab}. Here we will consider the
simpler approach of studying each order parameter in
turn. Our conclusion will be that the only relevant insta-
bility is the T -breaking mass instability; thus, the issue
of phase coexistence is irrelevant to our discussion.

To investigate the instability towards spontaneously
generating a Majorana mass, we consider the mean-field
Hamiltonian

HMF(M) = H0 +MM, (72)

for which the variational energy EMF(M) is given in
Eq. (A21). Defining g ≡ g0/k

2
F where g0 is the cou-

pling constant in the surface state Hamiltonian (61), we
find a first-order transition (Fig. 2) at a critical value of
g given by

gc =
48(1 +

√
2)2πv

L2
‖Λ

3
, (73)
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FIG. 3. Dimensionless variational energy (A37) as a function
of the dimensionless nematic order parameter δ = Q/vkF
and the dimensionless coupling constant α = gL2

‖Λ
3/96π2v.

There is a continuous transition at α = αc = − 3
2
.

below which 〈M〉 = 0 and above which 〈M〉 6= 0. Right
at the phase transition, the mass order parameter 〈M〉
jumps to the value Mc = vΛ and the surface excitation
spectrum becomes gapped,

EM (k) =
√
v2k2 +M2

c . (74)

For the vector order parameter, we consider the mean-
field Hamiltonian

HMF(V ) = H0 + V · V . (75)

The term V ·V is equivalent to the Doppler shift induced
on the surface by a bulk superflow with velocity vs =
V /kF .45 To see this explicitly, suppose that the fluid is
flowing with the superfluid velocity vs = (vys , v

z
s ) with

respect to the wall. The BdG Hamiltonian in the rest
frame H ′BdG is obtained from a Galilean transformation
εK → εK+mvs on Eq. (1) where K = (kx,k) denotes the
3D momentum,

H ′BdG = HBdG +
1

2

∑
K

(vs · k)Ψ†KΨK . (76)

The vs-dependent term does not affect the spinor struc-
ture of the Majorana fermion operator, and we may con-
tinue to use the approximate form of the field operator
Eq. (22). The vs-dependent term then reduces to V · V
with V = kFvs. Therefore, a nonzero vector order pa-
rameter V must be accompanied by a bulk phase gradi-
ent and does not correspond to an instability occurring
only on the surface. We will discard it in the remainder
of our analysis.

Finally, for nematic order we consider the mean-field
Hamiltonian

HMF(Qab) = H0 +QabQab, (77)

for which the variational energy EMF(Qab) is given in
Eq. (A36). We find a continuous transition (Fig. 3) at a
critical value of g given by

gc = −144π2v

L2
‖Λ

3
, (78)

such that 〈Qab〉 6= 0 for g < gc and 〈Qab〉 = 0 for g > gc.
However, gc is negative while the coupling constant (59)
is positive. Therefore, according to this calculation the
surface of 3He-B is necessarily in the isotropic phase.

V. DISCUSSION AND CONCLUSIONS

The gap of the topological superfluid 3He-B is due to
a dynamical field in stark contrast to the static gap of
topological insulators. We showed that one of the four
gapless bulk collective modes (one phase and three spin-
orbit) naturally couples to the topologically protected
surface Majorana fermions (31). In the low-energy ef-
fective description, this coupling induces a short-ranged
interaction (57) among the Majorana fermions, which is
the main result of our work.

We further investigated the consequences of this inter-
action within the mean-field approximation. Our calcu-
lation predicts that the massless Majorana fermions at
the surface of 3He-B could spontaneously develop a T -
breaking mass as the coupling constant for the effective
surface interaction (57) increases as a function of external
parameters (pressure, for example). Interestingly, this
quantum phase transition is predicted to be first-order.
Given that mean-field theory is typically unreliable for
accurately predicting the values of critical coupling con-
stants (and the value of the order parameter) in a first-
order transition, we should not take seriously the fact
that the experimental coupling g0 in Eq. (59) is found to
be larger than the critical coupling gc in Eq. (73) when
we take the Majorana fermion momentum cutoff Λ = kF .
However, this does raise the possibility that the surface
Majorana fermions in 3He-B may be in the vicinity of
a quantum phase transition (g0 . gc) to a T -breaking
phase as a result of their coupling to the spin-orbit collec-
tive mode. If this were the case, Fig. 2 suggests that the
T -breaking phase of the surface state may be metastable.

At this point, all experimental results indicate that
the surface state remains massless and T -preserving
in 3He-B. Surface Andreev bound states in this sys-
tem have been studied by various means over the
past ten years or so.24 Transverse acoustic impedance
measurements40,46–51 are consistent with the existence
of surface states with energies within the bulk super-
fluid gap. Specific heat measurements52 and transverse
sound attenuation measurements53 independently sup-
port this conclusion. More specifically, the growth of a
low-frequency peak in the transverse acoustic impedance
with increasing specularity of the 3He-B surface was in-
terpreted in Ref. 51 as a signature of the linear energy
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dependence of the density of states of massless surface
Majorana fermions, based on qualitative agreement with
theoretical calculations. However, there has not been
any experimental results on the metastability of the T -
breaking mass gap on the surface of 3He-B. Detection
of this metastability would be a signature indicating the
limitation of the free Majorana fermion picture of the
3He-B surface state.

Lastly, we note that quantum fluctuation effects, which
a mean-field theory cannot account for, can play an im-
portant role in phase transitions. Further work is needed
to determine whether the role of fluctuations at the T -
breaking phase transition is merely quantitative and con-
fined to reducing the discontinuity in the order parame-
ter and changing the value of critical coupling constants,
or whether it makes the phase transition continuous. If
the latter happens, recent work17,21–23 has shown that
this transition should exhibit an emergent N = 1 super-
symmetry (SUSY). Ref. 23 outlines an interesting pro-
posal to induce a T -breaking transition on the surface
of 3He-B by applying a magnetic field perpendicular to
the surface.54 Our work suggests that 3He-B may already
be close to a T -breaking transition due to the coupling
between surface Majorana fermions and bulk spin-orbit
collective modes. This would suggest the alternate sce-
nario of reaching such a transition by tuning bulk pa-
rameters, such as pressure, to vary the coupling constant
g0 in Eq. (59) without breaking T explicitly. In either
scenario, one would need experimental probes able to de-
tect the breaking of T on the surface of 3He-B, such as
perhaps the Magnus force technique used in Ref. 55. We
hope that our work, as well as the tantalizing prospect
of discovering SUSY in a condensed matter system, will
stimulate further experimental studies of surface states
in 3He-B.
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Appendix A: Details of the mean-field calculation

1. Mass instability

The mean-field Hamiltonian is

HMF(M) = H0 +M
∑
k

1
2γ

T
−kσ

yγk

= 1
2

∑
k

γT−k

(
vky vkz − iM

vkz + iM −vky

)
γk, (A1)

where M is a single variational parameter. The spectrum
is EM (k) =

√
v2k2 +M2. The Hamiltonian matrix has

the structure (
cos 2θ e−iϕ sin 2θ

eiϕ sin 2θ − cos 2θ

)
, (A2)

with eigenvalues ±1, and eigenvectors

|+〉 =

(
cos θ

eiϕ sin θ

)
=

(
u
v

)
, (A3)

|−〉 =

(
e−iϕ sin θ
− cos θ

)
=

(
v∗

−u

)
. (A4)

We have the identifications

vky = EM (k) cos 2θk = EM (k)(u2
k − |vk|2),

vkz + iM = EM (k)eiϕk sin 2θk = EM (k) (2ukvk),

where we define uk = cos θk and vk = eiϕk sin θk with

tanϕk =
M

vkz
, cos 2θk =

vky
EM (k)

. (A5)

We also define the Hermitian and unitary matrix

U(k) =

(
uk v∗k
vk −uk

)
= U†(k) = U−1(k), (A6)

in terms of which the mean-field Hamiltonian becomes

HMF(M) = 1
2

∑
k

γT−kU
†(k)

(
EM (k) 0

0 −EM (k)

)
U(k)γk

= 1
2

∑
k

η†k

(
EM (k) 0

0 −EM (k)

)
ηk

= 1
2

∑
k

(
EM (k)η†k↑ηk↑ − EM (k)η†k↓ηk↓

)
,

(A7)

where in the last line ↑, ↓ do not denote spin but a band
index. We define the eigenoperators

ηk =

(
ηk↑
ηk↓

)
= U(k)γk, (A8)

which satisfy the canonical anticommutation relations

{ηkα, η†k′α′} = δk+k′,0δαα′ , {ηkα, ηk′α′} = 0. (A9)
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The Majorana fermion operators are given in terms of
the ηk as

γk = U†(k)ηk = U(k)ηk, γ−k = U∗(k)(η†k)T . (A10)

The variational ground state |Φ0(M)〉 of HMF(M) is de-

fined by ηk↑|Φ0(M)〉 = η†k↓|Φ0(M)〉 = 0, for all k. The

total variational energy EMF(M) is given by the sum of
the noninteracting energy 〈Φ0(M)|H0|Φ0(M)〉 and the
interaction energy 〈Φ0(M)|V |Φ0(M)〉. The noninteract-
ing variational energy is

〈Φ0(M)|H0|Φ0(M)〉

= 1
2v
∑
k

[U(k)k · σ̃U†(k)]↓↓〈Φ0(M)|η†k↓ηk↓|Φ0(M)〉

= − 1
2

∑
k

v2k2

EM (k)
. (A11)

Denoting the 2×2 matrix k× σ̃ by w(k), the interaction
is

V = −g
8

∑
kk′q

γT
−k+

1
2q
w(k)γ

k+
1
2q
γT
−k′− 1

2q
w(k′)γ

k′− 1
2q
,

(A12)

where we have defined g = g0/k
2
F for simplicity. The

interaction variational energy is

〈Φ0(M)|V |Φ0(M) = −g
8

∑
kk′q

wαβ(k)wα′β′(k′)

× Γ
(M)
αβα′β′(k,k

′, q), (A13)

where we define the four-point function

Γ
(M)
αβα′β′(k,k

′, q) =

〈Φ0(M)|γ
−k+

1
2q,α

γ
k+

1
2q,β

γ
−k′− 1

2q,α′γk′− 1
2q,β′ |Φ0(M)〉.

(A14)

Applying Wick’s theorem to Eq. (A14) yields contribu-
tions in the three interaction channels q = 0, k−k′ = 0,
and k + k′ = 0. In the q = 0 channel, we have

Γ
(M)
αβα′β′(k,k

′, 0) = 〈Φ0(M)|γ−k,αγk,βγ−k′,α′γk′,β′ |Φ0(M)〉

= U↓α(k)Uβ↓(k)U↓α′(k′)Uβ′↓(k
′)〈Φ0(M)|η†k↓ηk↓η

†
k′↓ηk′↓|Φ0(M)〉 = U↓α(k)Uβ↓(k)U↓α′(k′)Uβ′↓(k

′).

(A15)

In the k − k′ = 0 channel, we have

Γ
(M)
αβα′β′(k,k, q) = 〈Φ0(M)|γ

−(k− 1
2q),α

γ
k+

1
2q,β

γ
−(k+

1
2q),α′γk− 1

2q,β′ |Φ0(M)〉

= U↓α(k − 1
2q)U↓β(−k − 1

2q)Uα′↓(−k − 1
2q)Uβ′↓(k − 1

2q)〈Φ0(M)|η†
k− 1

2q↓
η
k− 1

2q↓
η†
−(k+

1
2q)↓

η
−(k+

1
2q)↓
|Φ0(M)〉

+ δα′β′δq,0U↓α(k)Uβ↓(k)〈Φ0(M)|η†k↓ηk↓|Φ0(M)〉 − δββ′δk,0U↓α(− 1
2q)Uα′↓(− 1

2q)〈Φ0(M)|η†
− 1

2q↓
η
− 1

2q↓
|Φ0(M)〉

= U↓α(k − 1
2q)U↓β(−k − 1

2q)Uα′↓(−k − 1
2q)Uβ′↓(k − 1

2q) + δα′β′δq,0U↓α(k)Uβ↓(k)− δββ′δk,0U↓α(− 1
2q)Uα′↓(− 1

2q).
(A16)

Finally, in the k + k′ = 0 channel we have

Γ
(M)
αβα′β′(k,−k, q) = 〈Φ0(M)|γ

−(k− 1
2q),α

γ
k+

1
2q,β

γ
k− 1

2q,α′γ−(k+
1
2q),β′ |Φ0(M)〉

= −U↓α(k − 1
2q)Uα′↓(k − 1

2q)U↓β(−k − 1
2q)Uβ′↓(−k − 1

2q)〈Φ0(M)|η†
k− 1

2q↓
η
k− 1

2q↓
η†
−(k+

1
2q)↓

η
−(k+

1
2q)↓
|Φ0(M)〉

+ δβα′δk,0U↓α(− 1
2q)Uβ′↓(− 1

2q)〈Φ0(M)|η†
− 1

2q↓
η
− 1

2q↓
|Φ0(M)〉

= −U↓α(k − 1
2q)U↓β(−k − 1

2q)Uα′↓(k − 1
2q)Uβ′↓(−k − 1

2q) + δβα′δk,0U↓α(− 1
2q)Uβ′↓(− 1

2q). (A17)

Ignoring terms independent of the order parameter M ,
we obtain

〈Φ0(M)|V |Φ0(M)〉 = − g

16

(∑
p

EM (p)

)(∑
p

p2

EM (p)

)
.

(A18)

Converting momentum sums to integrals in the limit of
large L‖, we have

∑
p

EM (p) =
L2
‖

2π

∫ Λ

0

dp p
√
v2p2 +M2

=
vL2
‖Λ

3

6π

[
(1 + δ2)3/2 − |δ|3

]
, (A19)
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and

∑
p

p2

EM (p)
=
L2
‖

2π

∫ Λ

0

dp p3√
v2p2 +M2

=
L2
‖Λ

3

6πv

[
(1− 2δ2)(1 + δ2)1/2 + 2|δ|3

]
,

(A20)

where we have introduced a large-momentum cutoff Λ
and we define the dimensionless order parameter δ ≡
M/vΛ. Adding the noninteracting (A11) and interaction
(A18) contributions, the total variational energy is given
by

EMF(M) =
vL2
‖Λ

3

12π
EM (δ, α), (A21)

where the dimensionless function EM (δ, α) is defined as

EM (δ, α) =−
(

(1− 2δ2)(1 + δ2)1/2 + 2|δ|3
)

×
[
1 + α

(
(1 + δ2)3/2 − |δ|3

)]
, (A22)

with α ≡ gL2
‖Λ

3/48πv a dimensionless coupling constant.

Minimizing EMF(M) with respect toM is equivalent to
minimizing EM (δ, α) with respect to δ. We find two local
minima, one at δ = 0 corresponding to the disordered,
T -invariant phase and one at δ 6= 0 corresponding to
the ordered, T -breaking phase. There is a first-order
transition at a critical value of α given by αc = (1+

√
2)2

at which δ = δc = 1. For α < αc, δ = 0 is the lowest-
energy solution while for α > αc, δ 6= 0 has lowest energy
(Fig. 2). This corresponds to a critical coupling constant

gc =
48(1 +

√
2)2πv

L2
‖Λ

3
, (A23)

below which M = 0 and above which M 6= 0.

2. Nematic instability

The mean-field Hamiltonian is HMF(Qab) = H0 +
QabQab. We can use rotational invariance to set Qab =
(Q11, Q12) = (Q, 0) for the purposes of computing the
variational energy. We have

HMF(Q) = H0 +
Q

kF

∑
k

1
2γ

T
−k(kyσ

z − kzσx)γk

= 1
2

∑
k

γT−k

(v + Q
kF

)
kz

(
v − Q

kF

)
kx(

v − Q
kF

)
kx −

(
v + Q

kF

)
kz

 γk,

(A24)

where Q is a single variational parameter. The spectrum

is EQ(k) = v
√
α2k2

y + β2k2
z where we define α = 1 + δ,

β = 1− δ and δ ≡ Q/vkF . The Hamiltonian matrix has
the structure (

cos 2θ sin 2θ
sin 2θ − cos 2θ

)
, (A25)

with eigenvalues ±1, and eigenvectors

|+〉 =

(
cos θ
sin θ

)
=

(
u
v

)
, |−〉 =

(
sin θ
− cos θ

)
=

(
v
−u

)
.

(A26)
We have the identifications

αvky = EQ(k) cos 2θk = EQ(k)(u2
k − v2

k),

βvkz = EQ(k) sin 2θk = EQ(k) (2ukvk),

where uk = cos θk and vk = sin θk. Solving for θk, we
have

tan 2θk =
β

α

kz
ky
.

The Hamiltonian is diagonalized by a Hermitian and uni-
tary matrix U(k)

U(k) =

(
uk vk
vk −uk

)
= U†(k) = U−1(k), (A27)

Using this matrix, we obtain

HMF(Q) = 1
2

∑
k

(
EQ(k)η†k↑ηk↑ − EQ(k)η†k↓ηk↓

)
,

(A28)

as before, with the definition (A8).
In order to evaluate momentum integrals, it is conve-

nient to introduce the change of variables ky = |k| cosϕ
and kz = |k| sinϕ, in terms of which the energy spectrum
becomes

EQ(k) = v|k|(1 + δ2 + 2δ cos 2ϕ)1/2

= v|k|(1 + δ)(1− δ2 sin2 ϕ)1/2, (A29)

where we define δ2 ≡ 4δ/(1 + δ)2. The noninteracting
variational energy is

〈Φ0(Q)|H0|Φ0(Q)〉

= 1
2v
∑
k

[U(k)k · σ̃U†(k)]↓↓〈Φ0(Q)|η†k↓ηk↓|Φ0(Q)〉

= − 1
2v
∑
k

(
kz(2ukvk) + ky(u2

k − v2
k)
)

= − 1
2v

2
∑
k

αk2
y + βk2

z

EQ(k)

= − v

2(1 + δ)

∑
k

1 + δ − 2δ sin2 ϕ

(1− δ2 sin2 ϕ)1/2
|k|

=
v

π

(
δ2

1 + δ
K(δ2)− (1 + δ)E(δ2)

)∑
k

|k|, (A30)
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where K and E are the complete elliptic integrals of the
first and second kind, respectively, defined as

K(m) =

∫ π/2

0

dϕ

(1−m sin2 ϕ)1/2
, (A31)

E(m) =

∫ π/2

0

dϕ (1−m sin2 ϕ)1/2. (A32)

To compute the interaction variational energy, we de-
fine a four-point function as in Eq. (A14),

Γ
(Q)
αβα′β′(k,k

′, q) =

〈Φ0(Q)|γ
−k+

1
2q,α

γ
k+

1
2q,β

γ
−k′− 1

2q,α′γk′− 1
2q,β′ |Φ0(Q)〉.

(A33)

Equations (A15), (A16) and (A17) apply to this four-
point function as well, but with the modified definition
of U(k). After lengthy calculations, we obtain the inter-
action variational energy as

〈Φ0(Q)|V |Φ0(Q)〉 = − g

32

∑
p1p2

v

EQ(p1)

v

EQ(p2)

×
[
(k2
z − k2

y)(α2p1yp2y − β2p1zp2z)

−2kzkyαβ(p1yp2z + p1zp2y)] ,

where k ≡ p1 − p2. Performing a change of variables,

p1y = |p1| cosϕ1, p1z = |p1| sinϕ1

p2y = |p2| cosϕ2, p2z = |p2| sinϕ2,

we obtain

〈Φ0(Q)|V |Φ0(Q)〉 = − g

16

1

1 + δ2

∑
p1p2

|p1||p2|

× 1 + δ(cos 2ϕ1 + cos 2ϕ2) + δ2 cos 2ϕ1 cos 2ϕ2

(1 + δ1 cos 2ϕ1)1/2(1 + δ1 cos 2ϕ2)1/2
,

(A34)

where we define δ1 ≡ 2δ/(1+δ2). Once again the angular
integrals can be performed with the use of the elliptic

integrals (A31) and (A32), and we obtain

〈Φ0(Q)|V |Φ0(Q)〉 = − g

16π2

(∑
p

|p|

)2

× [(1 + δ)E(δ2) + (1− δ)K(δ2)]
2
. (A35)

Adding the contributions (A30) and (A35) and perform-
ing the remaining momentum integrals with a large mo-
mentum cutoff Λ, we obtain the total variational energy
as

EMF(Q) =
vL2
‖Λ

3

6π2
EQ(δ, α), (A36)

where the dimensionless function EQ(δ, α) is defined as

EQ(δ, α) =
δ2

1 + δ
K(δ2)− (1 + δ)E(δ2)

− α [(1− δ)K(δ2) + (1 + δ)E(δ2)]
2
, (A37)

and α ≡ gL2
‖Λ

3/96π2v is a dimensionless coupling con-

stant. Plotting EQ(δ, α) as a function of the dimension-
less nematic order parameter δ for several values of α,
we find that there is a continuous transition at a certain
critical value of α = αc (Fig. 3). To find αc, we expand
∆EQ(δ, α) ≡ EQ(δ, α)− EQ(0, α) in powers of δ,

∆EQ(δ, α) = rδ2 + uδ4 +O(δ6), (A38)

where

r =
π

4

(
3

2
+ α

)
, u =

3π

64

(
5

2
+ α

)
. (A39)

We see that r changes sign at αc = − 3
2 , while u remains

positive. Hence there is a continuous transition at the
negative critical coupling constant

gc = −144π2v

L2
‖Λ

3
, (A40)

such that Q = 0 for g > gc and Q 6= 0 for g < gc.
There is no nematic instability for g > 0. Our calcula-
tion reveals that bulk Goldstone modes induce a positive
coupling constant [Eq. (59)], thus we conclude that the
possibility of a surface nematic instability mediated by
bulk Goldstone modes in 3He-B is unlikely.
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