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The study of dynamics in closed quantum systems has been revitalized by the emergence of
experimental systems that are well-isolated from their environment. In this paper, we consider the
closed-system dynamics of an archetypal model: spins driven across a second order quantum critical
point, which are traditionally described by the Kibble-Zurek mechanism. Imbuing the driving field
with Newtonian dynamics, we find that the full closed system exhibits a robust new phenomenon
– dynamic critical trapping – in which the system is self-trapped near the critical point due to
efficient absorption of field kinetic energy by heating the quantum spins. We quantify limits in
which this phenomenon can be observed and generalize these results by developing a Kibble-Zurek
scaling theory that incorporates the dynamic field. Our findings can potentially be interesting in
the context of early universe physics, where the role of the driving field is played by the inflaton or
a modulus field.

The Kibble-Zurek mechanism describes the behavior
of systems ramped slowly across a continuous phase
transition1,2. It has been difficult to observe experimen-
tally due in part to non-universal dynamics that often
dominate late in the ramp and overwhelm the univer-
sal critical dynamics, although many attempts have been
made (see Ref. 3 for a recent review). Recent work has
extended the phenomenology of Kibble-Zurek to a full
non-equilibrium scaling theory in the vicinity of the crit-
ical point4–7, which has the advantage of yielding robust
universal behavior out of equilibrium. However, its ob-
servation requires the often challenging task of tuning
and measuring the system very close to its critical point.

In this paper, we will consider a simple extension to the
Kibble-Zurek mechanism of a quantum phase transition,
in which we treat the field λ that drives a system across
its quantum critical point as a dynamical “particle” in
its own right. With this simple change, we find a new
phenomenon in which the initial kinetic energy of the λ
degree of freedom is efficiently absorbed by heating of
the quantum critical degrees of freedom, trapping λ at
or near the critical point. By using the power of Kibble-
Zurek scaling theory, we can very generally predict when
such trapping will occur solely in terms of the equilibrium
critical exponents of the quantum critical point. This
gives universal non-equilibrium dynamics without fine-
tuning, which may prove useful in experiment studies of
Kibble-Zurek scaling. Also, as we will later argue, this
dynamic trapping may have connections to inflationary
physics.

More concretely, consider a generic Hamiltonian
H0(λ, φ(x)) in d spatial dimensions which can be stat-
ically tuned by λ across a second order quantum critical
point at λc. Here φ(x) represent the quantum degrees
of freedom in the system, which for notational simplicity
we refer to as spins36. We assume that λ is macroscopic
and thus described by classical Newtonian dynamics with
some bare mass Mλ and bare external potential V (λ).
The Hamiltonian of the full system is

H = H0(λ, φ(x)) +
p2
λ

2Mλ
+ V (λ) . (1)
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FIG. 1: Basic idea of the critical trapping phenomenon. The
control field λ is initialized in the disordered phase with ini-
tial velocity toward the QCP. (b) As the quantum degrees of
freedom (e.g., spins) heat up, the dynamic field slows down,
until (c) λ can get trapped at or near the critical point.

Together the system and control parameter are iso-
lated, and the total energy is conserved. The parameter
λ can represent either an external degree of freedom, such
as a macroscopic object that is coupled to the system8,9

or an internal (e.g., mean-field) degree of freedom such
as a superconducting gap10 or the effective mass in a
large N field theory11. Here we focus on an external de-
gree of freedom that drives the system across a second
order phase transition. We assume that the spins are
initialized in the ground state at some λinit far from the
critical point and that λ has some initial velocity vinit

toward the critical point. For an externally driven field
(i.e., Mλ =∞) the system’s response is described by the
well-known Kibble-Zurek (KZ) mechanism1,2, which pre-
dicts universal non-adiabatic dynamics characterized by
an emergent length scale2,6,12–15. In particular, external
ramping across the critical point at velocity vinit should
lead to heating of the spins at the critical point that

scales as Q ∼ Ldv
(d+z)ν
1+νz

init , where ν and z are the equilib-
rium correlation length and dynamic critical exponents,
respectively16.

If we now allow feedback of the spins on the dynamics
of λ (Mλ 6= ∞), we can approximate the fate of the
system via energy conservation. On the one hand, if the
spins remained in their ground state, then the kinetic
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energy Kc of λ at the critical point would be

Kc =
Mλv

2
init

2
+
[
V (λc)−V (λinit)

]
+
[
Egs(λc)−Egs(λinit)

]
,

(2)
where Egs(λ) is the ground state energy of the spin sys-
tem. This dissipationless limit defines the bare velocity
vc upon reaching the critical point

Kc =
1

2
Mλv

2
c . (3)

On the other hand, we have seen that the energy Qc
absorbed by the spin system scales as

Qc ∼ Ldv
(d+z)ν
1+νz
c . (4)

We expect that the parameter will be trapped if the en-
ergy the spins want to absorb is greater than the initial
kinetic energy:

Qc > Kc =⇒ µv
1

1+νz [2+ν(z−d)]
c

<∼ 1 , (5)

where µ = Mλ/L
d is the mass density of the λ field37.

This equation has very interesting implications. In low
dimensions, where the exponent in Eq. 5 is positive:

1

1 + νz
[2 + ν(z − d)] > 0 ⇐⇒ d < z +

2

ν
≡ d∗ , (6)

the parameter is always trapped below a certain thresh-
old velocity. However, in high dimensions d > z + 2/ν,
there is no trapping at small velocities and λ can freely
pass through the critical point. For example, in standard
Ginzburg-Landau type theories with z = 1, ν saturates
at 1/2 above d = 3, yielding a critical dimension d∗ = 5
below which trapping will occur.

To justify these considerations we will analyze a spe-
cific exactly solvable model – the transverse-field Ising
(TFI) chain in d = 1 spatial dimension with a dynamical
transverse field:

H0 = −
∑
j

[
(1− λ)szj + sxj s

x
j+1

]
, (7)

where s are the Pauli matrices. The TFI chain undergoes
a quantum phase transition at λc = 0 from a disordered
paramagnet (λ < 0) to Z2 symmetry-broken ferromagnet
(λ > 0) with exponents ν = z = 1, yielding trapping if
µvc <∼ 1. Because the TFI chain has an explicit UV cutoff,
our previous arguments require that the trapping veloc-
ity is sufficiently small to give Kc and Qc much smaller
than the cutoff; in general systems, we similarly require
that excitations caused by the dynamics occur at a scale
well below the scale of the leading irrelevant operator to
ensure the validity of the critical field theory.

The TFI chain is integrable; it can be solved by a
Jordan-Wigner transform from spin 1/2’s to spinless
fermions to yield a quadratic Hamiltonian17. We then
numerically simulate the exact coupled spin and field
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FIG. 2: Demonstration of critical trapping in the TFI model
for V (λ) = −Egs(λ), such that vc = vinit (see main text). (a)
As vinit is increased from 0.02 to 0.06, 0.1, and 0.14 at fixed
µ = 1, the field undergoes a trapping/untrapping transition.
(inset) The critical value of vinit for trapping (blue dots) scales
as 1/µ (red line) as predicted from a KZ analysis. (b) Scaling
collapse of the dynamics at fixed µvinit = 0.06.

equations of motion for large system sizes (L>∼ 10000),
which are checked for system size independence to en-
sure convergence to the thermodynamic limit. Details
of our simulations can be found in App. A. As we will
see, neither the macroscopic dynamics of the λ field nor
the KZ scaling are sensitive to the integrability of the
theory7, so we expect that the results we present will be
generic.

We first carry out the simulations in a potential V (λ)
chosen to cancel out the ground state energy: V (λ) =
−Egs(λ). This ensures that there is no force on λ when
the spins remain in their ground state, and thus vc =
vinit in Eq. 2. Later we consider a more general setup
without such compensation. We start the system in its
ground state at large negative λ and give it positive initial
velocity so that it heads toward the critical point. With
this choice of potential the equations of motion are

Mλλ̈ = −〈ψ(t)|∂λH0|ψ(t)〉+ ∂λEgs(λ)

i
d|ψ(t)〉
dt

= H0

(
λ(t)

)
|ψ(t)〉 , (8)

where |ψ(t)〉 is the spin wave function. We find that
the resulting behavior of the magnetic field is in per-
fect agreement with our qualitative considerations. For a
fixed value of the mass density µ, our data show a tran-
sition in the long time behavior of λ as the velocity is
increased past a critical threshold (Fig. 2a). Examining
this trapping/untrapping transition for a range of µ, we
see that the prediction of Eq. 5 is born out: the transi-
tion happens at a constant value of the initial momen-
tum density µvinit = µvc (Fig. 2a, inset). Furthermore,
postulating that µvc is the only important scale in the
problem, we see in Fig. 2b that the entire dynamics of
the field undergoes scaling collapse if the mass is varied
at fixed µvc.

Fig. 2b foreshadows the existence of a non-equilibrium
scaling theory that is a natural extension of the con-
ventional Kibble-Zurek mechanism in the presence of a
dynamic field. We show in App. C that the equations
of motion for λ and the spin wave function are consis-
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tent with a Kibble-Zurek scaling theory with character-
istic time and length scales given by scaling dimensions
[λ] = 1/ν, [t] = −z, [vc] = [λ̇] = 1/ν + z:

`KZ = v−ν/(1+νz)
c , tKZ = v−νz/(1+νz)

c , λKZ = v1/(1+νz)
c

(9)
The only difference from conventional KZ scaling is that
externally-imposed ramp rate is replaced by the initial
velocity. In particular, it is clear that a scaling solution
is possible if both sides of Eq. 8 have the same scaling
dimensions, implying that

[µ] + [λ] + 2z − d = z − [λ] ⇐⇒ [µ] = d− z − 2/ν .

Combining this with Eq. 9, we see that a scaling solution
is possible if the mass µ scales as

µKZ = v
ν(d−z)−2

1+νz
c , (10)

which matches with the prediction of Eq. 5 for the trap-
ping/untrapping transition. Therefore, the dynamics of
the trapped field, as well as the spin observables, should
be universal at fixed ratio µ/µKZ as shown numerically
in Fig. 2b. We note in passing that Eq. 10 gives a scaling
dimension of mass that is consistent with that of the mass
renormalization of λ found elsewhere via adiabatic per-
turbation theory9. Thus the trapping condition in Eq. 6
is equivalent to a negative scaling dimension of the mass
renormalization, i.e., divergence of the dressed mass of λ
at the critical point.

Now consider a more generic situation where the ex-
ternal potential does not exactly compensate the ground
state energy. Because there is no general principle of
choosing such a potential38, we simply expand it as a
Taylor series near the critical point. Generically the lead-
ing term will be linear, but if the critical point has addi-
tional symmetries, the leading term can be higher order.
Therefore we consider the case V (λ) = −Egs(λ)+αLdλr,
where α is the strength of an arbitrary power law poten-
tial added to the flat potential. This modifies the equa-
tion of motion to

Mλλ̈ = −〈ψ(t)|∂λH0|ψ(t)〉+ ∂λEgs − rαLdλr−1 . (11)

The scaling dimension of the force due to the power law
potential is clearly [Ldλr−1] = −d+ (r − 1)/ν, while the
scaling dimension of the other term is [∂λH] = z − 1/ν.
We see that this additional force is relevant provided that

−d+
r − 1

ν
< z − 1

ν
⇔ r < ν(z + d). (12)

For our case this implies r < 2, so a constant force –
corresponding to r = 1 – is clearly relevant.

Naively one would expect that this constant force will
simply destroy the localization and the system will fall
downhill through the critical point. However, the situa-
tion is much more interesting if the coefficient α is small.
Let us then revisit our previous analysis for small α and
consider the specific case of starting at rest (vinit = 0)

with non-zero λinit. We had argued in the absence of a
potential that the system will stop as long as the velocity
vc is smaller than a critical value (see Eq. 5), setting an
upper bound on vc. This bound was derived with the
implicit assumption that the time scale tc to reach the
critical point was much larger than the inverse of the ini-
tial gap, ∆−1

init ∼ λ−νzinit , so that the initial dynamics is
adiabatic. Let’s first consider this regime, which trans-
lates to λinit

>∼ (α/µ)1/(1+2νz) for a particle starting from

rest. In this regime vc ∼
√
λinitα/µ, and demanding that

Q/Ld >∼αλinit implies trapping for

λinit
<∼

1

α

(
1

µ

) ν(d+z)
2−ν(d−z)

. (13)

Now consider λinit
<∼ (α/µ)1/(1+2νz), in which case tc

is much shorter than gap time scale and the dynam-
ics of λ approach those of an instantaneous quench. In
this regime the renormalized mass of λ is much larger
than the bare mass9, so the bare mass term becomes
completely irrelevant to the long time dynamics (see
App. C). Consequently, λinit is effectively the only scale,

and we have that Q ∼ λν(d+z)
init . This implies trapping for

Q>∼K ∼ αλinit ⇔ λinit
>∼α

1/[ν(d+z)−1]. Combined with
Eq. 13, we therefore expect trapping if

α
1

ν(d+z)−1 <∼ λinit
<∼

1

α

(
1

µ

) ν(d+z)
2−ν(d−z)

, (14)

which for small α and d > 1/ν − z yields a non-trivial
region. One expectation from Eq. 14 is that starting di-
rectly at the QCP (λinit = 0) should not lead to trap-
ping, which we readily confirm numerically. Another
prediction is that above some critical value α > αc ∼
µ[ν(d+z)−1]/[ν(d−z)−2], Eq. 14 cannot be satisfied and thus
no trapping will occur for any initial conditions.

Substituting the exponents for the TFI chain we have
that trapping occurs for

1 <∼
λinit

α
<∼

1

µα2
. (15)

More rigorously, we expect a phase diagram in which
the trapping transition is a universal function of scal-
ing variables µα2 and λinit/α as shown in Fig. 3. The
phase diagram demonstrates our prediction of a maxi-
mum slope αc ∼ 1/

√
µ above which no trapping occurs.

Furthermore, the phase boundaries from Eq. 14 describe
low µα2 well due to a clean separation between initially
adiabatic and diabatic regimes in this limit.

All of the above arguments are exact in the scaling
limit α→ 0, but for realistic systems the approximations
must break down at long times, where RG-irrelevant op-
erators can affect the dynamics. An important example
of this in the TFI chain are weak integrability-breaking
interactions, which at long times are expected to lead
to thermalization18–21. For our results to remain robust
against interactions, we must see whether a thermal state
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FIG. 3: Trapping in the presence of an external potential.
(a) Starting from rest, as the particle falls through the criti-
cal point, excitations act as an effective potential (red dashed
line) drawing the system toward the QCP. Depending on the
strength of this dressing, the system can be either trapped
(upper) or untrapped (lower). Scaling arguments suggest that
trapping should occur for 1 <

∼λinit/α<
∼ 1/(µα2), which is en-

compassed in the phase diagram shown in (b). To visualize
the transition, we show a one-dimensional cut across the phase
boundary in (c), showing a field which is trapped (red), un-
trapped (blue), and near the transition (black). Data in (b)
and (c) is shown for α = −3 × 10−4, which numerically ap-
pears to approach the α→ 0 scaling limit.

at the same energy is trapped, i.e., if there exists a lo-
cal maximum of the entropy as λ is varied. We ana-
lyze this thermodynamic trapping for the TFI chain in
App. E and find thermodynamic trapping for initial ener-
gies λinit/α>∼ 15.3. This thermodynamic trapping region
encompasses the entire dynamically trapped region, so
we expect that our results will be robust against interac-
tions. Finally we note that in some cases which we call
untrapped (e.g., Fig. 2a and Fig. 3c), the field quasiperi-
odically oscillates around the critical point rather than
escaping to infinity. At long times, this behavior could
be modified by irrelevant operators as well and it is pos-
sible that these operators could damp the quasiperiodic
oscillations and thus increase the trapped region.

One crucial aspect of all of our results is their robust-
ness, which is inherited from the universality of Kibble-
Zurek scaling theory. For example, consider the Hamil-
tonian of a complex interacting scalar field φ living in d
spatial dimensions:

Hφ =

∫
ddx
[
|Π(x)|2 + |∇φ(x)|2 + λ|φ(x)|2 + u|φ(x)|4

]
,

(16)
where Π is the momentum conjugate to φ. As λ is driven
from large positive to large negative values, the system
undergoes a phase transition from disordered (〈φ〉 = 0)
to ordered, where 〈φ〉 6= 0 spontaneously breaks the
U(1) symmetry. This type of phase transition occurs
in a wide range of systems, from the Ginzburg-Landau
theory of superconductivity22 to the dynamics of the
Higgs field in particle physics. This system has standard
Ginzburg-Landau critical exponents so, as argued earlier,

FIG. 4: A simple experiment to illustrate critical trapping. As
a permanent magnet moves down the hill (position x), its field
h(x) drives a stationary quantum critical system through its
phase transition. If the system parameters are in the trapped
region of the phase diagram (Fig. 3b), then the magnet is
trapped very near this critical point (x(t→∞) ≈ xc).

this model should be trapped at low vinit for d < 5.
If we think of Eq. 16 as describing the Higgs field in the

early universe, it is conceivable that the mass term λ is
related to the value of the inflaton field, a field whose po-
tential energy has been proposed to drive expansion, or
a modulus field as in Ref. 23. Setting aside the complica-
tions due to expansion for future work, here we focus on
the simpler case of a field whose energy is extensive in a
system of constant volume. If we initialize the system on
the disordered side of the transition with a non-zero ve-
locity of the λ field directing it toward the quantum crit-
ical point, then for slow enough initial velocities (or weak
enough slope α), we have seen that the λ field should be
trapped near the critical point, which corresponds to zero
Higgs mass. Such a situation can occur naturally in the
slow roll inflation paradigm (see24 for a review). If these
arguments hold up against the additional complications
of inflation, then this is potentially an interesting picture
of how the Higgs field can be “trapped” at small mass in
the absence of fine-tuning.

In a condensed matter context, there are a number of
scenarios where we would expect this physics to be rel-
evant. A simple example is illustrated in Fig. 4. The
idea is that a stationary quantum critical system (e.g., a
ferromagnet or a superconductor) is coupled to the mag-
netic field generated by a moving magnet at position x.
As the magnet slides down a hill, the changing magnetic
field experienced by quantum critical system drives it
across a phase transition. If the slope of the hill is suffi-
ciently small, where “sufficiently small” is encapsulated
by the phase diagram in Fig. 3b, then the permanent
magnet is trapped very close to this critical point. This
dynamical phenomenon can yield some counter-intuitive
results. For instance, if we consider a superconductor
whose phase transition is driven by having the magnetic
field h drop below the superconducting critical field, then
a standard undergraduate physics experiment says that
the Meissner effect will start to repel the magnet (or for a
different geometry, levitate it). But our dynamical trap-
ping phenomenon would have the opposite effect, leading
to a magnet that is actually pulled toward the supercon-
ductor just at the onset of superconductivity. In realistic
settings one must account for finite temperature dissi-
pative effects that will eventually destroy this trapping,
which will be the subject of a future paper. However, if
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one is at low enough temperatures within the “quantum
critical fan”17, then for a certain time scale this counter-
intuitive dynamical trapping should have a significant ef-
fect before thermal excitations eventually untrap it.

A similar story holds for other coupled systems and
may be particularly relevant for cases where a single sys-
tem has two different types of degrees of freedom. In
the solid state one could imagine scenarios where a fer-
romagnetic field from stationary electrons drives the su-
perconducting transition of itinerant electrons or where
the magnetic field from a spin impurity drives a quantum
phase transition in its bath. These ideas are particularly
relevant in ultracold atom experiments, where hybrid
sytems combining multiple atomic species25, atoms in
higher Rydberg states26, and cold atoms coupled to cold
ions27 have become prevalent. One use of the atom/ion
system is to simulate isolated condensed matter systems,
where the ions have long-range Coulomb interactions
that allow them to self organize into a lattice. Future
experiments may be able to use this to drive a quan-
tum phase transition, such as the bosonic superfluid to
Mott insulator transition that would occur upon increas-
ing the ionic lattice spacing to decrease tunneling. If one
were to do a ramp or quench of some parameter λ that
controls the bosonic hopping (e.g. the strength of the ion
trap or the ion/atom interaction strength), then the ionic
lattice could become dynamical trapped near the value
where the transition occurs. The key difference from the
experiments in which the Mott insulator to superfluid
transition has been seen in optical lattices28 is that the
degrees of freedom driving the transition are a dynami-
cal part of the system. Therefore the strong backaction
of the quantum critical system plays a huge role in the
global dynamics.

In conclusion, we have used intuition drawn from
Kibble-Zurek scaling theory to find a novel trap-
ping/untrapping transition of a dynamic field occurs in
systems near their quantum critical point, which is seen
to occur without fine-tuning for a wide range of ini-
tial conditions. This idea readily generalizes to classical
phase transitions which also exhibit the critical slowing
down at the heart of the dynamic trapping mechanism.
We expect this idea to have applications for a wide va-
riety of systems, from condensed matter and cold atom
systems that are well isolated from their environment to
possibly inflationary scenarios. Also, the thermodynamic
trapping mechanism discussed above can potentially have
implications as far-reaching as high-temperature super-
conductors and other systems where the order parameter
(playing the role of λ) is often observed to be “trapped”
in the vicinity of a hypothesized hidden critical point29,30.
An interesting open question is the robustness of these
results against quantum fluctuations of the λ field. Berry
has semi-classically argued that such a quantum field ex-
periences an additional correction to the potential that
is proportional to the quantum metric tensor8, which di-
verges at the critical point. While this term is suppressed
in the thermodynamic limit for an extensive mass Mλ, it
may prove an important correction at long times for large
but finite systems.
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Appendix A: Simulating the dynamic TFI chain

Throughout this paper, we illustrated our ideas using
the quintessential example of a quantum phase transi-
tion: the one-dimensional transverse-field Ising chain17.
As a reminder, the spin Hamiltonian of the model is

H0 = −
∑
j

[
(1− λ)szj + sxj s

x
j+1

]
, (A1)

where λ is the transverse field and sij are Pauli matrices
on site j. We consider a TFI chain with L sites and
periodic boundary conditions. To this spin Hamiltonian,
we add classical dynamics to the transverse field and an
energy offset to remove the ground state energy Egs(λ),
yielding the full system Hamiltonian

H = H0(λ) +
1

2

(
µL
)
λ̇2 − Egs(λ) . (A2)

We ignore quantum fluctuations of the field λ because
it is extensive, and therefore fluctuations vanish in the
thermodynamic limit (TDL).

As derived in the main text, the equations of motion
for the field are given by

λ̈ = −〈∂λH0/L〉 − 〈∂λH0/L〉0
µ

, (A3)

which for the TFI chain is given by ∂λH0 =
∑
j s
z
j .

Meanwhile, the quantum evolution is tractable for large
system sizes because the TFI chain is integrable. Start-
ing from the Hamiltonian in Eq. A1, we can diagonal-
ize it by doing a Jordan-Wigner transformation from
spins to fermions, followed by a Fourier transform (cf.
Ref. 17). Implicit in this transformation are the par-
ity of the number of sites (L) and of the total number
of spin-up particles (N↑), which is a conserved quan-
tity in the TFI model. For simplicity, we choose both
of these quantities to be even, which amounts to con-
sidering an even number of fermions with anti-periodic
boundary conditions15; in the thermodynamic limit, this
assumption will not be important. Then the Hamiltonian
is separable, H0 =

∑
k>0Hk, where k = 2π(n + 1/2)/L

for n = 0, 1, . . . , L/2 − 1 are the positive momenta in
the first Brillouin zone and, following the conventions of
Ref. 7,

Hk = (1− λ− cos k)(c†kck + c†−kc−k − 1)

+ sin k(c†kc
†
−k + c−kck) . (A4)

This quadratic Hamiltonian respects conservation of both
momentum and fermion parity, and thus can only ex-
cite momenta +k and −k in pairs. One can easily show
that the parity in each momentum sector is even by adi-
abatic continuation from λ = ±∞, so since we start from
the ground state, we can safely neglect the unpaired-
momentum sector. Thus, each Hk reduces to a 2 × 2
Hilbert space, which we can rewrite in terms of pseudo-
spin operators σk, in which the (+k,−k) pair is filled if
σzk = 1 and empty if σzk = −1. The pseudo-spin Hamil-
tonian is

Hk = (1− λ− cos k)σzk + (sin k)σxk . (A5)

The spins begin in their ground state |ψ〉 =
⊗

k |ψk〉,
which is a product state over momentum sectors. Each
sector evolves independently under the Schrödinger equa-
tion

i
d|ψk〉
dt

= Hk|ψk〉 , (A6)

where Hk is a function of the instantaneous value of λ
(Eq. A5). Similarly, given the wave function |ψ〉, the
value 〈sztot〉 = 2

∑
k〈σzk>0〉 can be easily computed, where

the sum is over positive momenta because the fermions
are excited in ±k pairs. Therefore, we simulate the cou-
pled dynamics of the field and the spins by a Suzuki-
Trotter decomposition31,32, first evolving the field via
Eq. A3 for a small time step ∆t with fixed |ψ〉, then
evolving |ψ〉 with fixed field. We reach the continuous-
time thermodynamic limit by making ∆t smaller and L
larger until no further changes in the observables can be
seen.
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FIG. 5: Higher order corrections to the scaling theory. (a)
Long-time behavior of the transverse field, where the disper-
sion relations are truncated at n-th order in momentum. The
Hamiltonians are given by Eq. B1 for n = 1 (linear), Eq. B2
for n = 2 (quadratic) and Eq. A5 for n = ∞ (untruncated).
The inset shows even longer times for n = ∞. (b) Excita-
tion probability pexc as a function of momentum for various
times during the ramp truncated to linear order. The in-
set compares pexc for n = 1 and n = 2 truncation at late
time t = 1000. The characteristic momentum scale k∗ is la-
beled. (c) Log-log plot of initial kinetic energy versus λ at
late times, which is extrapolated from data similar to panel
(a). The data shows consistency with the expected scaling
λfinal ∼ Kinit (dashed line). Data in panels (a) and (b) is
shown for µ = 20 and vinit = 10−2.

Appendix B: Effect of integrability-preserving
irrelevant perturbations

When we examine the dynamics of the full TFI chain
with a dynamic field in detail, we find that for even for
small vinit, at late times the field does not settle directly
to the QCP (see Fig. 5a). Zooming into these dynamics
shows that the field appears to undergo damped oscilla-
tions on two separate time-scales before finally settling to
a value λfinal 6= 0. Based on the Kibble-Zurek arguments
that will be described in more detail in the next section,
we expect that in the limit vinit → 0, the field will settle
at λfinal = 0 if µvinit is small enough for the field to get
trapped. Therefore, we expect that the non-zero value
of λfinal seen in Fig. 5 should be a result of irrelevant
operators that vanish in the Kibble-Zurek limit.

To see this, we expand the sine and cosine functions
in Eq. A5 around k = 0 to n-th order. At leading order
(n = 1), the Hamiltonian becomes

H
(1)
k = −λσzk + kσxk . (B1)

We refer to this linearized case as the scaling theory,
which will be justified in the next section. As seen in
Fig. 5a, this linearized Hamiltonian settles exactly to the
QCP at late times. At second order, we find

H
(2)
k = −

(
λ+

k2

2

)
σzk + kσxk , (B2)

and similarly at higher orders. For the field dynamics
in Fig. 5, we clearly see that this second-order approx-
imation is sufficient to describe the offset of λfinal from
zero.

The scaling of this offset can be easily understood
from analyzing the late-time generalized Gibbs ensemble
(GGE)33, the density matrix obtained by dephasing this

integrable system at late times. The GGE is determined
by the field λ and the conserved excitation probabilities
pexc(k). To see this, we can rewrite the mode Hamilto-
nian as

Hk = −εk
[
σzk cos θk + σxk sin θk

]
εk =

√
(λ+ cos k − 1)2 + sin2 k

tan θk =
sin k

λ+ cos k − 1
. (B3)

The ground state at momentum k is a Bloch vector
aligned parallel to the effective magnetic field angle θk,
while the excited state is anti-parallel to this field. There-
fore,

〈σzk〉gs = cos θk =
λ+ cos k − 1

εk
= −〈σzk〉es . (B4)

The force on λ is proportional to
∑
k(〈σzk〉−〈σzk〉gs), which

can be written in the simple form∑
k

(〈σzk〉 − 〈σzk〉gs) = −2
∑
k

pexc
k 〈σzk〉gs . (B5)

The excitation probability pexc is a strictly positive
function, an example of which is shown in Fig. 5b. If we
empirically approximate it by pexc

k ≈ 1
2e
−k/k∗ with some

characteristic momentum scale k∗, then from energy con-
servation in the linearized approximation, we find that

Q/L =
1

2π

∫ π

0

dkεkp
exc
k ≈ 1

4π

∫ π

0

dkke−k/k
∗

∼ (k∗)2 ∼ Kinit/L . (B6)

Meanwhile, in the linearized approximation, 〈σzk〉gs →
λ/
√
λ2 + k2, meaning that sgn〈σzk〉gs = sgnλ. This

causes oscillations around λ = 0 and, in particular, en-
sures that λ = 0 is the only fixed point of the field evo-
lution in the linearized approximation.

However, if we include second order corrections to
〈σzk〉gs, the sign of this expectation value – and thus its

contribution to the acceleration λ̈ – will change at some
non-zero value of k. From a second-order expansion of
the numerator in Eq. B4, it is clear that this sign change
occurs at λ = k2/2. Then, assuming that k∗ is the only
momentum scale in the problem, we would predict that
the final value of λ would scale as λ∗ ∼ (k∗)2 ∼ µv2

init.
This prediction is confirmed in Fig. 5c, justifying our
assumption that the second order expansion provides a
good description of the late-time dynamics. It is clear
from this analysis that the second order and higher
terms in the expansion become irrelevant in the KZ limit
(vinit → 0).

Appendix C: Kibble-Zurek scaling with a dynamic
field

To understand many of the results in the previous sec-
tion, we can generalize the arguments in, e.g., Ref. 7 to
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show KZ scaling in the presence of a dynamic field. Be-
fore dealing with the dynamics of the field, we generalize
the Kibble-Zurek scaling arguments in Ref. 7 to an ar-
bitrary ramping protocol λ(t) such that the spins are in
their ground state at time t = 0. Without loss of gen-
erality, assume that there is a non-zero initial velocity
vinit = λ̇(0). We claim that a useful way of rescaling this
protocol to take the Kibble-Zurek limit of vinit → 0 is to
define the family of protocols,

λvinit(t) = λKZ λ̃(t̃ = t/tKZ) , (C1)

parameterized by the initial velocity. Here, λKZ and tKZ
are the standard KZ scales for vinit

16:

λKZ ≡ v1/(1+νz)
init , tKZ ≡ v−νz/(1+νz)

init , (C2)

and λ̃(t̃) is an arbitrary continuous function defined on

the range t ≥ 0, with dλ̃
dt̃

∣∣
t̃=0

= 1 (see Fig. 6). It is then

easy to see that the initial velocity of the protocol λvinit(t)
is vinit.

The dynamics near an isolated quantum critical point
becomes universal upon taking the limit vinit → 0 of the
above family of protocols. Note that this is precisely
the standard Kibble-Zurek scaling form with vinit playing
the role of the fixed velocity6; indeed one can recover
standard Kibble-Zurek scaling using the linear protocol
λ̃(t̃) = λ̃init + t̃. However, Eq. C1 can be generalized to
arbitrary ramps, and in particular, we will show it can
be used to self-consistently give scaling dynamics with a
dynamic field.

To continue the analogy with standard Kibble-Zurek
scaling, we wish to define a set of rescaled parameters,
which we denote by adding a tilde:

λ̃ = λ/λKZ ≡ λv
−1/(1+νz)
init

t̃ = t/tKZ ≡ tv
νz/(1+νz)
init

k̃ = k`KZ ≡ kv
−ν/(1+νz)
init

µ̃ = µ/µKZ ≡ µv
(νz+2−dν)/(1+νz)
init , (C3)

where k is the momentum. Note that for the case of the
TFI chain, µ̃ = µvinit is the initial momentum, which we
now show plays the role of a scaling parameter in the
dynamics. Beginning with the mode-evolution equation

i
d|ψk〉
dt

= [(1− λ(t)− cos k)σzk + (sin k)σxk ]|ψk〉 , (C4)

we can expand to third order in the momentum and
rewrite the dynamics in terms of the scaling variables:

i
d|ψk̃〉
dt̃

=
[
(−λ̃(t̃) +

k̃2

2
v

1/2
init +O(k̃4))σz

k̃
+

(k̃ − k̃3

6
vinit +O(k̃3))σx

k̃

]
|ψk̃〉 . (C5)

In the limit vinit → 0, all but the leading order terms
vanish, and the wave function becomes a function of just
t̃ and k̃. This justifies our choice to refer to the linearized
mode Hamiltonian (Eq. B1) as the scaling limit.

The scaling relations apply not only to the wave func-
tions, but to expectation values of certain observables.
For instance, the operator szavg = 1

L

∑
j s
z
j should have

scaling dimensions of inverse length, such that we pre-
dict a scaling form

〈szavg(t)〉 − 〈szavg(t)〉0 = `−1
KZf(t̃) , (C6)

for some universal function f , where 〈· · ·〉0 is the instan-
taneous ground state expectation value. We see that this
form emerges by substituting the mode wave function
|ψk̃(t̃)〉 and taking the TDL:

〈szavg〉 =
1

L

∑
j

〈szj 〉 =
1

L

∑
k

〈szk〉

=
1

L

L

2π

∫
dk〈ψk̃(t̃)|szk|ψk̃(t̃)〉

= v
1/2
init

1

2π

∫
dk̃〈ψk̃(t̃)|sz

k̃
|ψk̃(t̃)〉︸ ︷︷ ︸

f(t̃)

, (C7)

and similarly for the ground state expectation value.
This type of scaling form should hold for a wide vari-
ety of operators4,6,7; as our scaling postulate, we assume
this to hold for the remainder of the paper.

We now demonstrate that the equations of motion gov-
erning the dynamics of the field are consistently solved
by a protocol of the same form as Eq. C1, with µ̃ now
appearing as an extra parameter:

λµ(t) = λKZ λ̃µ̃(t̃ = t/tKZ) . (C8)

As before, we note that the equations of motion for λ are

λ̈ = −〈∂λH0/L
d〉 − 〈∂λH0/L

d〉0
µ

. (C9)

Let’s assume that these dynamics yield λ of the form in
Eq. C8. Then, by the previous arguments (i.e., a gener-
alized form of Eq. C6), the expectation value will have
the scaling form

〈∂λH0〉 − 〈∂λH0〉0
Ld

=
1

tKZ`dKZλKZ
fµ̃(t̃) . (C10)

Substituting this expression into Eq. C9 and properly
inserting powers of vinit, we see that the equations of
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motion take the scale invariant form

d2λ̃

dt̃2
= − 1

µ̃
fµ̃(t̃) . (C11)

This establishes the consistency of the field motion with
the K-Z scaling ansatz of the spins, so the entire dynamics
is universal.

Appendix D: Scaling with a linear potential

Now consider a general model with a linear slope. One
can play the same games as the previous section to derive
a scaling theory in the presence of a slope by nothing that
the scaling dimensions of the slope α are [α] = z+d−1/ν.
In order for the low-α scaling limit to be well-defined, we
want α to have positive scaling dimension. This gives a
lower critical dimension d∗l = 1/ν−z below which scaling
is ill-defined. Combined with the upper limit d∗u = 2/ν+
z, we require that the dimension d fall within the range.

1/ν − z < d < 2/ν + z , (D1)

which is clearly the case for both the TFI chain and the
Higgs model.

It is then convenient to redefine scaling variables with
respect to α instead of vinit, since we want to be able to
include the case of vinit = 0. These new scales are given
by:

`
(α)
KZ = αν/(1−νz−νd)

t
(α)
KZ = ανz/(1−νz−νd)

λ
(α)
KZ = α−1/(1−νz−νd)

µ
(α)
KZ = α(t

(α)
KZ)2/λ

(α)
KZ = α(2+νz−νd)/(1−νz−νd) ,(D2)

where the α superscript is used to indicate that we rescale
with respect to α instead of vinit. In the case of the

TFI chain, these reduce to `
(α)
KZ = t

(α)
KZ = 1/λ

(α)
KZ = α−1

and µ
(α)
KZ = α−2. Let us start by considering the case

µ � µ
(α)
KZ and λinit � λ

(α)
KZ , where the initial dynamics

are adiabatic. As in the main text, the velocity at the
critical point will be

vc ∼
√
αλinit/µ ∼ v(α)

KZ

√
λ̂init/µ̂ , (D3)

where

v
(α)
KZ = λ

(α)
KZ/t

(α)
KZ , λ̂init =

λinit

λ
(α)
KZ

, µ̂ =
µ

µ
(α)
KZ

. (D4)

As earlier, the excess heat scales as Q/Ld ∼
v
ν(d+z)/(1+νz)
c and the kinetic energy is just K/Ld ∼
αλinit = αλ

(α)
KZ λ̂init, so trapping should occur if Q/Ld >

K/Ld. This translates to λ̂init < µ̂ν(d+z)/(νd−νz−2). For
the case of the TFI chain, this prediction reduces to
(λinit/α) ∼ 1/(µα2), which we confirm numerically in
Fig. 7a. Meanwhile, as earlier we expect trapping if

λ̂init is less than some constant value, yielding a trap-
ping regime:

1<∼ λ̂init
<∼ µ̂

ν(d+z)
νd−νz−2 . (D5)

As in the main text, this inequality is more accurately
represented as a phase diagram for trapping, which is
illustrated in Fig. 7b.

The phase diagram represents most of the story, but
one question that remains is whether the trapping transi-

tion occurs at positive or negative λ̂init. It is clear that for

λinit far downhill from the QCP (λ̂init � −1) there can-
not be trapping, but we have not found a simple scaling
argument to predict whether starting from exactly at the
critical point (λinit = 0) will result in trapping. There-
fore, we are reduced to simulating this numerically; for
example, the case of the TFI chain is shown in Fig. 7.
We work in the limit µ̂� 1 and small α where we expect
the minimal value of λinit for trapping should occur (see
phase diagram). In this limit, bare mass µ is completely

irrelevant since the dressed mass34 scales as µ
(α)
KZ and is

therefore much larger than the bare mass. Thus the dy-
namics reduce to single-parameter scaling, as showing in
Fig. 7c. For the TFI chain, as in Fig. 3 of the main
text, we find no trapping when the system is initialized

at the critical, and thus a positive critical value of λ̂init

for trapping. However, we note that for other models we
are not sure what will happen if they are released from
their critical points, i.e., we cannot preclude the possibil-
ity that some models are trapped in this case. Finally,
note that at fixed µ, as α goes to zero, µ̂ goes to zero.
Therefore, starting in the critical regime in the limit of
small slope, the bare mass is irrelevant. Thus, except for
short time transients, it plays no role in the dynamics, as
seen in Fig. 7c.
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Appendix E: Effect of RG-irrelevant scattering
terms

As argued in the main text, in the presence of RG-
irrelevant integrability-breaking terms, the system is ex-
pected to thermalize in the long-time limit. Given some
initial energy density Einit = αλinit, here we show that
there is a transition in the thermal state between trap-
ping (Einit/α

2 > 15.3) and untrapping (Einit/α
2 < 15.3).

Since this argument is based on energy conservation with
an equilbrium statistical mechanical framework, it does
not depend on the mass density µ of the external field.
Combining this with the non-equilibrium phase diagram
from earlier, we see that the trapping region remains ro-
bust against these thermalizing interactions.

Consider the case of an arbitrary system with a quan-
tum critical point whose low-energy physics is described
by an integrable field theory. One example of this is the
transverse-field Ising chain, but many other examples ex-
ist in one dimension, such as the XXZ model35. A stan-
dard RG analysis would suggest that near the quantum
critical point and at vanishingly small energies, the sys-
tem is well-described by an integrable theory, meaning
that all integrability-breaking interactions are irrelevant.
Such RG schemes are well-established in equilibrium, but
within the context of Kibble-Zurek scaling, they are also
expected to hold6,7. Our main paper extends this KZ
scaling theory to the case of a dynamic field λ with a
well-defined scaling limit, i.e., α → 0 for the case of a
linear potential added to the ground state energy (cf.
previous section). However, for any finite α, the scaling
theory should only hold for a finite amount of time before
the interactions start to become important. From an RG
sense, at finite but small α we have not yet flowed all the
way to the IR, so there remain weak but existent inter-
actions that enable scattering on some long time scale.

Weak interactions perturbing an integrable theory
have been studied in many contexts. They are expected
to lead to thermalization, as can be seen for example by
using second-order perturbation theory to derive an effec-
tive Boltzmann equation21. Thus, after a very long time,
the state of the spin system should be well approximated
by a density matrix ρ = e−βH/Z, where H is the full
interacting Hamiltonian. This is a difficult density ma-
trix to work with, but fortunately interactions are weak
enough that its behavior can in turn be approximated by
the ensemble ρ0 = e−βH0/Z0, where H0 is the integrable
part of the Hamiltonian.

Taking this approximation to the density matrix, the
inverse temperature β(λ) must be chosen so that the en-
ergy of the spins above their ground state matches the
loss of potential energy: α(λinit − λ). Within this mani-
fold, the system will equilibrate in the state that (locally)
maximizes the entropy by standard principles of statis-
tical mechanics. Whether or not such a maximum ex-
ists near the critical point depends on two competing ef-
fects. At a constant energy density, the entropy is clearly

maximized at the QCP because this is where the most
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imum and the system becomes untrapped. Data is shown
for λinit/α = −20 (trapped), −10 (untrapped) and −15.3
(marginal).

low-lying states exists. However, going towards larger λ
increases the temperature, and thus the entropy. For the
case of the TFI chain, we determine which of these ef-
fects wins by numerically determining the entropy S(λ).
A few characteristic curves are shown in Fig. 8a-c, where
all the parameters are re-scaled by powers of α to sug-
gest the general form of these curves in the Kibble-Zurek
scaling limit. We numerically find that the entropy max-
imum vanishes at Einit/α

2 ≈ 15.3, yielding a thermal
trapping/untrapping transition. Remarkably, this tran-
sition point is quite close to the one found for the non-
equilibrium integrable TFI chain (main text, Fig. 3b), a
fact which bears further investigation.

Finally, we note that these ideas can be extended to
general models using similar idea as in Sec. D. In many
cases, particularly in dimensions higher than one, the
expectation is that most quantum critical points will be
non-integrable, and thus may thermalize even prior to
the inclusion of irrelevant interacting terms18–20. For
these cases, the irrelevant terms may modify the trap-
ping/untrapping phase diagrams in small regions around
the transition, similar to what they could do for inte-
grable QCPs at finite α, but they should not fundamen-
tally alter the shape of the trapped region. If the QCP
is non-integrable, however, a similar logic to the above
section holds. In particular, assuming that thermaliza-
tions occurs to good approximation within the integrable
scaling theory, then the same Kibble-Zurek scales as in
Eq. D2 hold. As with the TFI chain, the mass µ plays
no role in thermodynamic trapping, and we are reduced
to single-parameter scaling with a transition occuring

for sufficiently large initial energy: λinit/λ
(α)
KZ

>∼ 1. In
terms of the general trapping/untrapping phase diagram
(Fig. 7b), this would correspond to a vertical line such
that everything to the right of the line is thermodynami-
cally trapped, and everything to the left is not. However,
we do not currently have an argument for what this pre-
cise value of the thermodynamic trapping would be for
general integrable theories. Therefore, it is conceivable
that reaching thermodynamic equilibrium could decrease
the size of the trapping region for some cases.


