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We introduce the cluster expansion ghost lattice method, which extends the applicability of exist-
ing cluster expansion software, to cluster expand structures of arbitrary finite and infinite geometries
in a fast, unique, and transferable way. The ghost site is introduced that zeroes the cluster function
of any cluster which includes it. This enables the use of bulk clusters grouped by bulk symmetries
in non-bulk systems and distinguishes the cluster expansion ghost lattice method from a regular
ternary cluster expansion with an inactive vacuum atom type. Even though the method does not
treat surface terms, it can be used as an efficient way of obtaining the bulk term in [Lerch, D. et
al., 2009. Model Simul Mater Sc]. We use the method to learn the thermal conductivity of Si-Ge
nanowires, oriented along the [111] direction on a diamond lattice, versus their configuration of Si
and Ge atoms. Once learned, the ghost lattice method cluster expansion is shown to be able to
predict the lowest-thermal-conductivity nanowire configuration, in agreement with the configuration
recently found in [Chan, M. et al., 2010. Physical Review B].

PACS numbers: 66.70.-f, 61.46.Km, 62.23.Hj

I. INTRODUCTION

Alloy properties such as the quantum mechanical
energy,1,2 the thermal conductivity,3 the band gap,4 etc.,
are typically expensive to obtain in terms of time and
other resources, even on a supercomputer. We can there-
fore only observe the property of a few alloy structures,
on the order of thousands in the best case. But if our
task at hand is to optimize some property, e.g., say we
want the lowest thermal conductivity configuration, then
hundreds of millions of evaluations are typically needed.
The computer code used to obtain the property q(·),

such as VASP5 or LAMMPS,6 provides a data set of,
what we assume to be, true properties for a set of inputs
of our choosing. Based on these true properties, we can
attempt to approximate the value of any output from the
computer code by using a truncated cluster expansion7

with basis functions called clusters, which are quick to
compute. This brings the optimization task back into
our reach. The clusters have associated expansion coeffi-
cients called effective cluster interactions (ECI) and the
space group symmetry operations of the lattice groups
together the clusters under the same expansion coeffi-
cient. The unknown ECI are determined by fitting to the
expensive data. Once known, the ECI can provide an es-
timate of q(·) for, in principle, any input, many orders of
magnitude faster than the time needed to compute the
true property.
To perform a cluster expansion, the open source soft-

ware package ATAT8–13 has been available for many
years. Non-bulk systems such as surfaces can be cluster
expanded with ATAT,14 but consider now using ATAT
to cluster expand any geometry—even one fully void of
periodicity and/or large in size. The computation of the
clusters in ATAT, and of the associated correlation func-

tions, the latter to be introduced later in this paper, for
arbitrary structure shapes, easily becomes prohibitively
expensive to compute for large unit cells. One of the
main reasons is that the number of clusters to compute,
as will be shown in Section III, grows extremely fast with
the unit cell size.

Here we introduce the cluster expansion ghost lattice
method (CE-GLM). The CE-GLM is an idea, which en-
ables, via minor modifications, a cluster expansion soft-
ware package to cluster expand structures of arbitrary
shapes with the same computational effort as the corre-
sponding bulk system. Its main strength is in the ease of
implementation in existing cluster expansion code. What
makes the method different than a regular cluster ex-
pansion with vacuum atom types, is in the way it han-
dles large low-symmetry structures by using a practically
convenient ad-hoc grouping of the clusters. The work of
Ref. 3 provided evidence that some ad-hoc grouping of
the clusters should be expected to be necessary for low-
symmetry systems since the number of unknowns other-
wise becomes insurmountable. We propose to make the
ad-hoc choice unique and transferable.

In order to demonstrate that our choice of using bulk
clusters in non-bulk low-symmetry systems can be useful,
we set out to reproduce the work of Ref. 3, but by using
the CE-GLM implemented in ATAT. If successful, this
will provide a strong case for the usefulness of the CE-
GLM method.

The paper is organized as follows. We lay down the
theoretical groundwork for the cluster expansion in Sec-
tion II followed by a discussion of how the CE-GLM ex-
tends it in Section III. Then, in Section IVA, we start
out with an overview of the nanowire problem considered,
followed by details on how the nanowire data set was ob-
tained in Section IVB. In Section IVC we discuss how the
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thermal conductivities of the nanowires were computed.
The results of this work are provided in Section V before
concluding in Section VI.

II. THE CLUSTER EXPANSION

Define an alloy via a lattice and consider a set of atoms
which can occupy each lattice site. A single configura-
tion, represented by a vector σ, is given by specifying
which atom sits where on the lattice sites. The set of all
possible configurations of the lattice forms the configu-
ration space. If we let q(·) be a configuration-dependent
alloy property, Ref. 15 showed that we can expand this
property in an orthonormal basis, which is exact if un-
truncated:

q(σ) =
∑

α

mαJα〈Γα′(σ)〉α, (1)

where α is a cluster represented as a vector. If Mi dif-
ferent atoms can occupy lattice site i, αi can take values
from zero to Mi − 1. If αi = 0, site i is not contained in
the cluster. The sum in Eq. (1) is over all symmetrically
inequivalent clusters under the space group operations
of the underlying empty lattice. Sites hosting different
sets of atoms are to be considered symmetrically distinct.
The Jα’s are the ECI and mα is the number of clusters
equivalent to α. The average 〈·〉α is called the correla-
tion function and is over all clusters α′ equivalent to α

by a space group operation. All such equivalent clusters
are grouped into what can be called a cluster orbit. The
quantity Γα(σ) is a cluster function defined, for a single
cluster, as the following product over all lattice sites in
the system:

Γα(σ) =
∏

i

γαi,Mi
(σi),

where

γ0,Mi
(σi) = 1 (2)

and

1

Mi

Mi−1
∑

σi=0

γαi,Mi
(σi)γβi,Mi

(σi) =

{

1 if αi = βi

0 otherwise,

which implies that the cluster functions are orthonormal,
i.e., 〈Γα,Γβ〉 is one if α = β and zero otherwise. The
cluster expansion is thus an expansion over the average
cluster function in all cluster orbits. Due to Eq. (2),
a cluster can be thought of as a subset of the lattice
sites and is called an n-point cluster if it contains n sites.
Ref. 16 provides more details and discusses a particular
implementation of γαi,Mi

(·).
From Eq. (1), the cluster expansion of the thermal con-

ductivity, the latter to be introduced later as κ, can be
expressed in the linear regression form, with added Gaus-
sian noise ǫ as:

κ = Xβ + ǫ, (3)

where any dependence on σ is suppressed, the ith ele-
ment of κ is κ of structure i with its associated noise in
the ith position of ǫ, X is called the design matrix and
contains, in the ith row and jth column, the correlation
function of structure i for cluster orbit j, and the ECI is
the vector β. In this work, we will use the least squares

method to obtain a fitted set of ECI denoted β̂ and as
a side note, we will not be interested in a thorough esti-
mate of the uncertainty in the thermal conductivity. We
refer to the framework developed in Ref. 17 for this.
In summary, our task is to obtain κ and X for some

data set that we will denote D, and then to solve for the

ECI β̂. We emphasize that, since the CE-GLM is em-
ployed in computing the correlation functions, and there-

fore used to compute X, a good β̂ cannot be learned if
the CE-GLM does not perform well.

III. THE CLUSTER EXPANSION GHOST

LATTICE METHOD

The CE-GLM removes the computational overhead of
cluster expanding non-bulk possibly low-symmetry sys-
tems compared to bulk structures. The cluster expansion
of 2D sheets, nanowires, spheres, etc., takes the same
time as cluster expanding a bulk structure equivalent in
size—the equivalence quantified, e.g., by using the bulk
structure which just exactly encloses the non-bulk struc-
ture. This is accomplished by introducing a new type of
site in the system called a ghost site. The cluster func-
tion Γ·(σ) of any cluster, which includes a ghost site, is
zeroed.
In addition, for low-symmetry systems, the CE-GLM

chooses to use the bulk clusters and group them by the
bulk symmetries. We discuss the implication of this at
the end of this section, but before that, we present how
one employs the CE-GLM. A large box is created con-
taining lattice sites on the same underlying lattice as the
non-bulk structure in question. Then, a subset of lattice
sites inside this box is selected to represent the non-bulk
structure. The remaining sites are the ghost sites. We
note that this is not a new idea in the cluster expansion
framework; our modification is in how the ghost sites
are kept in the system and thus enables the use of bulk
clusters grouped by their bulk symmetries. In Fig. 1 we
consider an example of a CE-GLM implementation for
a hypothetical system, namely a single-layer Si-Ge slab
on a simple cubic (sc) lattice. The large box in Fig. 1(a)
is on an sc lattice as well, containing white ghost sites.
As a side note, we can think of this entire box as the
equivalent bulk structure. The non-bulk structure is not
visible inside this box until the cross-section, identified
by the black surrounding square in both Fig. 1(a) and
Fig. 1(b), is taken. This reveals the structure in Fig. 1(b).
A black ellipse delineates a 3-pt cluster originating from
an atom inside the structure, but which includes ghost
sites. The atoms within the cluster are colored green,
which is purely a visual construct. Since the cluster in-
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Silicon

Germanium Ghost site

3-pt cluster
(a) (b)

FIG. 1. (Color) Demonstration of the CE-GLM for some hy-
pothetical single-layer slab of Si (Silicon; red) and Ge (Germa-
nium; blue) on a simple cubic lattice. Ghost sites are white.
The black square surrounding the boxes in (a) and (b) show
where a cross-section is taken in (a) to reveal the slab in (b).
A black ellipse in (b) delineates a 3-pt cluster containing ghost
sites. The sites in the cluster are colored green, purely as a
visual construct, to associate them with the cluster.

cludes at least one ghost site, its cluster function is zero,
and hence does not contribute to the cluster expanded
property.
The CE-GLM employs the bulk clusters and associ-

ated bulk symmetries in the cluster expansion even for
non-bulk geometries. To further understand the impor-
tance of symmetries in cluster expansions, and why an
ad-hoc grouping is expected to be necessary in most low-
symmetry cluster expansions, consider the following hy-
pothetical scenario. We want to cluster expand some
function of configuration on a bulk face-centered cubic
(fcc) lattice with a 5 Å lattice constant, and clusters
with up till 4 points (4-pts) are to be included. This
is a very common cluster expansion problem.18–21 The
unknown ECI are learned by training the cluster expan-
sion on some data set containing the property values of,
say, 80-200 alloy structures. Assume, for the sake of the
argument, that the more clusters that are included, the
better the property is captured. For quantum mechani-
cal energies, e.g., this assumption seems to hold well.18

Therefore, it is of interest to include large sized clusters.
Assume that the hypothetical property follows the size-
hierarchy rules in Ref. 22. In particular, we will include
all 2-pt clusters of a given maximum spatial extent L.
Then, we also include all 3-pt clusters within some lesser
extent, chosen here as L − 1, and finally all 4-pt clus-
ters with spatial extents less than L − 2 are included as
well. In this sense, all clusters are bound by the length L
quantifying the maximum spatial extent of any included
cluster. As L increases, the number of clusters, generally
speaking, increases as well. This, in turn, increases the
number of unknown ECI.
In Fig. 2(a), we plot the number of unknown ECI ver-

sus L, first if we do not exploit the fcc lattice space group
symmetries (Nnone), and then together with the number
of unknowns if we do use all the 48 space group sym-

FIG. 2. (Color) (a) Number of unknown ECI to be determined
for a face-centered cubic (fcc) lattice, representing some hy-
pothetical alloy, versus the maximum spatial extent L of any
included cluster in the cluster expansion, when not using any
symmetries in the system (Nnone) and when using all 48 bulk
space group symmetries (Nbulk). The inset shows the ratio of
the main plot curves versus the same L. The parenthesized
numbers above the abscissa at L equal to 4, 5, and 7 Å are
matched with those in (b). (b) The fcc lattice considered with
a 5 Å lattice constant and its lattice sites represented as green
balls. The cubic cell structure is delineated with black lines.
The red lines with parenthesized numbers show the maximum
allowed length of any 2-pt cluster included in the cluster ex-
pansion when choosing L at three different values along the
abscissa in (a).

metries of the bulk (Nbulk). The inset shows the ratio
of the two curves from the main plot. Notice how this
ratio increases rapidly with L. The fcc lattice is illus-
trated in Fig. 2(b) where red lines illustrate the largest
2-pt cluster for three different values of L. The paren-
thesized numbers can be matched with those above the
abscissa in Fig. 2(a) to find the corresponding value of
L. Notice that L is not necessarily the length of the
largest 2-pt cluster. Furthermore, no other clusters than
the largest 2-pt cluster are illustrated in Fig. 2(b) for any
given L. From Fig. 2(a) we learn that, e.g., when the 2-pt
cluster has maximum spatial extent L = 10 Å we have
Nbulk = 118 and Nnone = 3160. Since these cluster sizes
are very common it implies that, exploiting symmetries
in the cluster expansion critically lowers the number of
unknowns. In Ref. 23, a similar plot for Nbulk is given
for the body-centered cubic lattice.
The choice of grouping the clusters by the bulk symme-

tries of the underlying lattice in the CE-GLM makes the
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clusters unique in the sense of being user-independent.
Also, if one develops a cluster grouping, particular to
a problem at hand, this will, almost never, be useful for
other structure shapes thus requiring new groupings to be
developed for each new property and/or geometry. This
issue is dealt away with in the CE-GLM since the choice
is to use the bulk clusters. It is in this sense that the CE-
GLM is transferable. Also, the choice presented in this
work has the added feature that, if no ghost sites are
present, the system is truly bulk, in which case the CE-
GLM naturally merges into the standard cluster expan-
sion without being a special case. Finally, the choice of
cluster-grouping-scheme for low-symmetry systems does
not increase computational efforts when compared to the
bulk because of the ghost sites.
Finally, it is important to point out the fact that we

do not claim that the choice of bulk clusters will always
work equally well on any geometry and configurational
property. If it does not perform well, one may have to
consider using a more elaborate grouping scheme. But
the CE-GLM could provide a starting point for cluster
expanding exotic geometries and the method might turn
out to perform sufficiently well. In the context of the
work presented in Refs. 24 and 25, the CE-GLM can also
be used as a computationally efficient way to obtain the
bulk contribution to the energy in Eq. (13) in Ref. 24.
To do so, let us call the energy computed for the sur-
face structure with the ghost region filled with ghost sites
Eglm. Let then Eghost be the energy contributions only
from the clusters extending from the surface structure
into the ghost region, but where this region is filled with
the atoms that would have been there had the surface
not formed in the first place (i.e., the ghost region does
not contain ghost sites in this case). To get Eghost one
must implement the GLM in a way that can aggregate
the contributions to the energy from just the clusters ex-
tending from the surface region into the ghost region. As
an example, if the GLM has been implemented by iden-
tifying these clusters and ignoring their contribution to
the total energy, as was the case in this work, one now
simply needs to sum these contributions to form Eghost.
The bulk contribution then equates to Eglm + Eghost.

IV. APPLICATION: PREDICTING LATTICE

THERMAL CONDUCTIVITY OF SI-GE

NANOWIRES

A. Nanowires as Thermoelectric Devices

We consider Si-Ge nanowires used as thermoelectric
devices.26,27 The efficiency of a thermoelectric device is
quantified by the dimensionless figure of merit:28

ZT =
S2σel

κ
Tavg, (4)

where S is the Seebeck coefficient quantifying the induced
thermoelectric voltage in response to a temperature gra-

dient across the device, σel is the electrical conductiv-
ity of the device, Tavg its average temperature, and κ
its thermal conductivity. The thermal conductivity κ
can be decomposed into contributions from the electrons
(el) and the phonons/lattice (lat) writing κ = κel + κlat,
but typically, and this will be assumed here as well,
κel ≪ κlat.

28,29 Therefore, from now on, we let κ ≈ κlat.
Thus we see from Eq. (4) that, keeping everything else
constant, a minimal κ leads to a maximal ZT . The best
thermoelectric devices currently have ZT ≈ 2 at room
temperature,28,30,31 and with ZT > 3, we can begin re-
placing compressor-based refrigeration units.32–34

Ref. 35 discovered that Si nanowires possessed two or-
ders of magnitude lower thermal conductivity compared
to the bulk value of 150 W/m.K.36 This brought a lot of
interest into studying nanowires for thermoelectric appli-
cations. We are interested in the heat transferred along
the nanowire axis, so we now let κ mean the axial lat-
tice thermal conductivity. The thermal conductivity has
been shown to depend on the configuration of the Si and
Ge atoms,37 and is thus well suited to be described by
the cluster expansion.
In the present work, 50 nm long Si nanowires

are considered, with roughened surfaces—roughened to
help scattering phonons—which currently achieve a ZT
around 1. A factor of, at least, 10 reduction in κ is, how-
ever, still needed. The authors in Ref. 3 used a clever
meta cluster expansion (MCE) to capture κ. In essence,
this is a cluster expansion technique which uses an ad-
hoc grouping of the clusters based on physical intuition.
Then, in conjunction with the learned MCE, a genetic
algorithm was employed to find the configuration with
lowest κ. They found that, a silicon nanowire with pure
planes of germanium (PPG)—the planes spaced about
1 nm apart—was the lowest thermal conductivity con-
figuration. While the method was very successful, ex-
tending it to other properties and/or system geometries
requires a new set of cluster groupings which can be a
complex task.

B. Creating the Nanowire Data Set

This section details how we obtained the nanowire data
setD. First, computing the correlation functions requires
a set of cluster orbits. Given these cluster orbits, the data
set generation is a two-step process. First, the nanowire
must be created, and its thermal conductivity computed.
Then, we must compute the correlation functions in
Eq. (1) using the orbits. Carrying this out for all wires
gives κ and X, respectively, in Eq. (3). As discussed in
the following section, we used molecular dynamics (MD),
as implemented in the large-scale atomic/molecular mas-
sively parallel simulator (LAMMPS), to compute κ.
Interestingly, it was shown in Ref. 3 that, instead of

modeling long (∼50 nm) nanowires with roughened sur-
faces, as we intend to do here, we can instead model
short (∼2 nm) ones with perfect surfaces. This is com-
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putationally easier, as we need not worry about modeling
the surface roughness, and we have fewer atoms overall.
Therefore, we adopt this approach here as well.

The CE-GLM requires us to create two representa-
tions of the same nanowire structure. One representa-
tion for use in ATAT-GLM to compute the correlation
functions. We call this the ATAT representation. The
other representation was generated for directly comput-
ing κ in LAMMPS without periodic images and ghost
sites. We call this representation the LAMMPS repre-
sentation. Creating both representations started out at
a common origin as follows: a large cubic box containing
a diamond lattice, with a lattice constant a0 = 5.431 Å
was created. A cylindrical region was selected along the
[111] direction representing the wire. OVITO38 was used
along the way to verify the nanowire geometry. All sites
inside the box, but not inside the nanowire or any of
the periodic images along its axis, were selected as ghost
sites. The non-ghost atoms, including images of the wire
along its axis, to be shown shortly, were chosen as Si
or Ge depending on the particular configuration of the
wire. This is the ATAT representation of the nanowire.
Notice that the number of periodic images needed here
depends on the cluster with largest spatial extent. One
periodic image was enough along each axial direction of
the nanowire in our case, since the largest cluster orbit
included was 1.2 nm and the wire had a length of roughly
2 nm. Further details about exactly which cluster orbits
were included are presented later.

Fig. 3 shows the ATAT representation of the nanowire.
At first, it can be difficult to see the atoms in the
nanowire. This is because all the ghost sites are
included—shown as smaller black atoms—and they en-
gulf the nanowire, just as in Fig. 1(a). Notice the rep-
etition of the wire by one image along its axis in both
directions. The image atoms are colored slightly lighter
than the atoms in the main wire. Of course, if we were
not modeling the wire as being infinitely periodic along
its axis, the images should not be there. Also, to be on
the safe side, the distance from the wire to any point
on the surface should be larger than the longest length
of any cluster included for the same reasons, which can
easily be achieved by making the cell large enough; there
is little increased overhead in computing the correlation
functions with an increase in the number of ghost sites.
The entire geometry is bulk, so it is straightforward to
parse with ATAT-GLM.

Next, to create the LAMMPS representation of the
nanowire, all periodic images of the ATAT representa-
tion, and all the ghost sites, were removed. The nanowire
axis was rotated to lie along the [100] direction in the box.
The box dimension along the wire axis was changed to
the periodic length of the wire closest to 2 nm, which is
2
√
3a0 ≈ 1.88 nm along [111] in a diamond lattice before

thermalization, to be discussed in the next section. The
nanowire diameter was made 1.5 nm, also before ther-
malization, leaving it with 220 atoms. Please consult
Fig. 4 for a visualization of the LAMMPS representation

ATAT representation

ghost site

Si
Ge

one periodic image
of the wire

“image” Si

“image” Ge

FIG. 3. (Color) The ATAT representation of an arbitrary Si
(red atoms) nanowire from the data set D alloyed with 6.4 %
Ge (blue atoms). Ghost sites are black atoms, made small so
the wire becomes visible. The atoms in the two images of the
wire along its axis are colored with a slightly lighter color to
distinguish them from the main wire. The thick black circle
identifies one of the two nanowire images. Ge atoms are made
slightly larger than Si atoms for visual clarity.

of the nanowire. Fig. 4(a) and (b) show the end and side
view, respectively, with the black box in each view being
the LAMMPS simulation cell. In Fig. 4(b), notice how
the wire becomes periodic along its axis when applying
periodic boundary conditions along x in LAMMPS.

C. Computing the Nanowire Thermal

Conductivities and the Design Matrix

To compute the thermal conductivities κ of the
LAMMPS representations of the nanowires, the Green-
Kubo method39 was employed. Ref. 40 provides a thor-
ough study, and detailed discussion, of this. We will
refer to the LAMMPS representations of the nanowires
as simply (nano)wires in this section. The wire axis is
aligned along x with periodic boundary conditions, and
fixed boundary conditions along dimensions transverse to
the axis, so

κ =
Vwire

kBT 2
lim

τm→∞

∫ τm

0

〈Jx(τ)Jx(0)〉dτ, (5)

where Vwire is the nanowire volume, T is its temperature,
kB is the Boltzmann constant, Jx(τ) is the x component
of the heat flux vector J at time τ and 〈Jx(τ)Jx(0)〉 is
the heat flux autocorrelation function (HCACF) at lag τ .
The heat flux vector J must be collected while the sys-
tem is in a constant particle number N , system volume
V , and energy E (NVE) ensemble following a thermal-
ization according to the constant N , V , and temperature
T (NVT) ensemble.

The MD time step was set to 1 fs and the heat flux
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End view Side view

(a) (b)

1.88 nm

LAMMPS representation

GeSi

1.5 nm x

FIG. 4. (Color) The corresponding LAMMPS representation
of the nanowire in Fig. 3. The black surrounding box is the
LAMMPS simulation cell. (a) Shows the nanowire looking
down its axis, and (b) illustrates the same wire from the side.
The horizontal arrow inside the cell in (b) identifies the x-
axis. Double headed arrows report sizes of the wire, and the
smaller arrows in (b), over the wire, identify the atom types.
Ge atoms are made slightly larger than Si atoms for visual
clarity.

vector was defined as:

J =
1

Vwire









N
∑

i=1

eivi −
1

2

N
∑

i=1

N
∑

j=1
j 6=i

(

∂φij

∂rj
· vj

)

rij









,

where the sums are over all N atoms in the nanowire,
ri is the position of atom i, rij ≡ ri − rj , ei and vi are
the total per-atom energy (kinetic plus potential) and ve-
locity of atom i, respectively, and φij is the interaction
energy between atoms i and j modeled with the Tersoff
scheme.41 Note that 〈·〉 in Eq. (5) is an ensemble average,
which, in an MD simulation, becomes a time average, as-
suming, as we will, ergodicity is satisfied. The time τm
should be much smaller than the total simulation time,
but larger than the time required for the HCACF to de-
cay to zero.40

To collect J , the system needs to be thermalized in an
NVT ensemble at T = 300 K. In order to do this, it is
important to thermalize the nanowire surface, especially
for wires of this small size having large surface to vol-
ume ratios. We found the following procedure successful.
The atomic coordinates in the wire were first adjusted
using a conjugate gradient method until finding a (pos-
sibly local) minimum in the potential energy. We then
began an annealing process to thermalize the surface: an
initial set of velocities were chosen for each atom from

a mean zero Gaussian distribution with standard devia-
tion scaled to 1000 K, and the system was run for 500 ps.
Then, the temperature was gradually lowered 100 K at a
time over 10 ps. At each temperature, we ran the system
for 100 ps before decreasing by another 100 K, contin-
uing in this way until reaching 300 K. After obtaining
a room temperature NVT ensemble, the nanowire axis
was pressurized to 1 bar using a constant N , pressure P ,
and T = 300 K ensemble. This was necessary to reduce
strains from the size mismatch between the Si and Ge
atoms. Indeed, we observed the pressure to be, typically,
around 500 bar before pressurizing to 1 bar. After the
NPT ensemble run, the system was switched back to the
room temperature NVT ensemble and run for 1 ns.

Following this, the system was finally switched to an
NVE ensemble, and run for 16 ns. The total energy
stayed constant to within numerical accuracy expected
with the Verlet integrator, and the temperature stayed
constant, on average, by oscillating around 300 K with a
40 K amplitude. The axial heat flux Jx was output every
fourth time step (for memory reasons), and the HCACF
computed from this. The HCACF was then integrated.
Determining when to stop the integration, i.e., choosing
the best τm in Eq. (5), called τ∗m, was done as follows.
Forty moving averages of various window sizes ranging
from 50 ps to 200 ps were computed. The time point
where the standard deviation of all window sizes obtained
a minimum was chosen as τ∗m. In the context of Ref. 42,
the above method is a way of finding the “convergence re-
gion” when convergence of the HCACF integral is clear,
which it was for some wires, but also to find the “neck
region” in case convergence is not clear. For more details
on issues with the integration of the HCACF please see
Ref. 42.

To verify our overall implementation, and to show ex-
plicitly how the choice of τm was carried out, please refer
to Fig. 5. We ran a pure Si wire, Fig. 5(a), and the PPG
wire, Fig. 5(b). Our approach gives 4.1± 0.4 W/m.K for
the pure Si wire and 0.12±0.03W/m.K for the PPG wire.
The errors are determined from re-running the wires with
different initial random velocity distributions. In com-
parison, Ref. 3 obtains 4.1 ± 0.3 W/m.K for the pure
Si wire and 0.23 ± 0.05 W/m.K for the PPG wire with
the same method of determining the standard deviations.
Discrepancies between these numbers are due to differ-
ent MD software used, a different surface reconstruction
technique, and different thermalization and pressuriza-
tion timings and methods.

Finally, this is how the design matrix X was obtained.
The ith row of the design matrix contains the cluster-
orbit-averaged correlation functions of nanowire i. It is a
priori unclear which cluster orbits are needed to describe
thermal conductivity. In this work we used up till 5-pt
cluster orbits with maximum spatial extents of the clus-
ter orbits chosen as 12, 8, 6, and 5 Å for the 2, 3, 4, and
5-pt cluster orbits, respectively. Since the largest cluster
orbit is 1.2 nm, one periodic nanowire image, which is
1.88 nm, is enough along the axis. For each structure in
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FIG. 5. (Color) Demonstration of the method used to obtain
the best τm in Eq. (5) called τ∗

m
. All ordinates are in units of

W/m.K. (a) Shows the pure Si wire and (b) the PPG wire.
Top plots are κ versus τm in Eq. (5). In the bottom plots
the µ/σ graph is the mean/standard deviation of 40 different
unweighted running averages of window sizes ranging from
50 to 200 ps applied to the top graphs. The µ/σ graph is
measured on the right/left ordinate. The red circles with
vertical lines crossing the abscissa mark the minima of the σ

graphs and hence the times τ∗

m
.

the data set, the ATAT representation of the nanowire
was parsed by ATAT-GLM providing the nanowire cor-
relation functions as output.

V. RESULTS

In Fig. 6(a) we show a histogram of D containing 145
wires each with a random Si-Ge configuration. The con-
centration of Ge was restricted to the range 3 % to 22 %
as in Ref. 3, which could be due to, e.g., weight con-
straints, and the wires had an average thermal conduc-
tivity of 0.90 W/m.K compared to 1.1 W/m.K in Ref. 3.
We will refer to a wire from D as a random wire (RW).
Please see the top left of Fig. 6(b) for an illustration
of this type of wire. For the purpose of learning β we
split the RW data set into a training set (RW train), of
140 wires, and a test set (RW test) containing 5 wires.
The ECI were learned on RW train, using least squares
with repeated random sub-sampling validation using 10
splits,43 and then initial predictions were made on RW
test. The predictions on RW test serves as a preliminary
test of the CE-GLM in the following sense. If the pre-
diction errors are much larger than the training errors at

(a)

(b)
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FIG. 6. (Color) (a) Nanowire data set of random Si-Ge con-
figurations plotted in a histogram with the number of ele-
ments versus their thermal conductivity κ. (b) Each type of
wire considered in the fitting and predictions of thermal con-
ductivity: wires with random Si-Ge configurations (RW), the
pure planes of Ge wire (PPG), and wires that are similar to
the PPG wire (SPPG). Red/blue atoms are Si/Ge. For the
SPPG wire, black circles show where two random atoms, one
atom from one of the pure Ge planes, and one atom from the
non-plane region, were substituted to perturb the PPG wire.

this stage, the CE-GLM is not capturing the underlying
physics and we should not trust further predictions. In
Fig. 7(a) we first show the least squares fit on RW train.
The average root-mean-square (RMS) training error of
all random splits was 0.15 W/m.K.

In Fig. 7(b) we show the initial test of the RW train fit
on RW test, and as can be seen, the predictions made on
RW test have errors comparable to those on RW train.
Indeed, the test error is 0.12 W/m.K. Note that the er-
rors in general are relatively large. This was the same
observation made in Ref. 3, and is due to inherent siz-
able noise in equilibrium MD simulations.

The purpose of this work is to show whether the CE-
GLM method would have lead to the same conclusions
as in Ref. 3. To this end, a data set of 18 nanowires
was created, each wire being a perturbed configuration
from the PPG wire. We refer to these as the similar-to-
PPG (SPPG) wires. As an example, one perturbation is
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obtained by substituting a random Ge atom from one of
the pure Ge planes in the PPG wire with a random Si
atom in the non-planes region of the wire. Each SPPG
wire has its own number of atoms, ranging from 1 to 8,
randomly substituted in this way. See Fig. 6(b) for an
example SPPG wire with 1 atom substituted.
Notice that, importantly, the RW test wires, the SPPG

wires, and the single PPG wire, are not used in training
the least squares model. Only RW train is employed for
this task. If the CE-GLM is useful here, we will predict
that a large majority (if not all) of the SPPG wires have
lower thermal conductivity than the RWs. In Fig. 7(b)
we see that this is also the case. Furthermore, the RMS
prediction error is 0.25 W/m.K, which is similar in mag-
nitude to the RW data sets. Also, a larger error for the,
more or less, ordered SPPG wires is to be expected since
the predictions are made based on a fit to the random
data set. In principle, this should not matter since we
assume that the thermal conductivity is captured well in
all of configuration space. However, in practice, since we
only observe a limited amount of data, it will typically
be the case that we enjoy an increased predictive capa-
bility in regions closer to the structures employed in the
training process.
As a final additional test, we see whether CE-GLM

predicts the PPG wire to have overall lowest thermal
conductivity of all wires considered above. This is an
important test. If it (almost) has the lowest conductiv-
ity, we would have been able to provide the same con-
clusion as Ref. 3 if coupling the cluster expanded ther-
mal conductivity with an optimization routine such as
the genetic algorithm or an adaptive sequential Monte
Carlo method.44 Remarkably, Fig. 7(b) shows that we
do indeed make this important prediction. Note that,
whether this is indeed the global minimum configuration
is out the scope of this work to determine. These re-
sults provide evidence that the CE-GLM does capture
the thermal conductivity of Si-Ge nanowires to, at least,
the same degree as the MCE, and is therefore a useful
method to apply in this problem.

VI. CONCLUSION

In this work we introduced a modified cluster ex-
pansion method, called the cluster expansion ghost lat-
tice method (CE-GLM), which is distinct to the regular
ternary cluster expansion with vacuum atom types. The
CE-GLM uses the bulk clusters and bulk symmetries for
any geometry. The ghost site—zeroing cluster functions
of clusters containing it—turns any structure into an ef-
fective bulk geometry and makes the CE-GLM computa-
tionally efficient when implemented in existing cluster ex-
pansion software packages—no matter the shape and/or
size of the structure in question when compared to an
equivalent bulk system. We discussed how to implement
the method in the cluster expansion software package
ATAT.
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FIG. 7. (Color) Predictions of thermal conductivity from the
cluster expansion ghost lattice method (CE-GLM) versus the
results from molecular dynamics. In (a) the least squares fit
on RW train is shown. Only one of the 10 train/test splits are
shown (green/white circles). In (b) the CE-GLM is tested on
three different test sets: RW test, the SPPG wires, and the
PPG wire. Note that in (b), RW train (green circles) is the
same as in (a). Error bars on the SPPG wires and the PPG
wire stem from 10 different random splits of the RW data into
train and test. For more information on the various nanowire
data sets see, e.g., Fig. 6(b).

To test the usefulness of the CE-GLM the method was
employed to predict the thermal conductivity of Si-Ge
nanowires. When comparing to a similar work carried
out recently we find great agreement: the lowest thermal-
conductivity-nanowire configuration is that of an Si wire
with planes of pure Ge spaced 1 nm apart. This estab-
lishes that the CE-GLM can be useful for cluster expand-
ing non-bulk low-symmetry systems with minor modifi-
cation to existing cluster expansion software.

The main drawback of the CE-GLM is that it does not
provide a way to systematically check whether increas-
ingly precise surface terms matter greatly in the problem
at hand or not. In future work it will be interesting to
employ the method on other even more exotic geome-
tries and preferably compare to other cluster grouping
methods.
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