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The motion of domain walls (DWs) is critical to switching kinetics in ferroelectric (FE) 

materials. Merz's law, dependent only on the applied electric field, cannot explain recent 

experimental observations in FE thin films because these experiments showed that the DW 

velocity depend on not only the strength of applied electric field, but also size of reversal 

domain. In this paper, we derive a model to understand the dominant factors controlling the 

velocity of FE DWs. Our calculation reveals that the DW velocities are not only a function of 

the strength of the electric field, but also decay exponentially with increasing the characteristic 

time of the measurement, or the size of the growing domain. Our observations can naturally 

explain the gigantic variation reported in the literature, over 15 orders-of-magnitude, in the 

experimentally measured DW velocities, and the formation of the stripe shape of FE domains.  
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I. Introduction     

    Understanding how the motion of domain walls (DW) is driven by an applied electric field is the key to 

many applications involving ferroelectric (FE) materials, such as the incorporation of ferroelectric thin-

film memories into standard silicon integrated circuits and high-density arrays of capacitors based on thin 

ferroelectric films [1, 2]. An electric field applied to a 180° DW will break the degeneracy of the 

ferroelectric double-well potential and lead to the motion of DWs during the reversal of polarization. 

Specifically, experimentally measured DW velocities have wide discrepancies, of up to 15 orders-of-

magnitude ranging from 10-12 to 103 m/s [3], for different measurement techniques. A summary of 

measured DW velocities in Pb(Zr,Ti)O3 (PZT) thin film is listed in Table 1 [4-10]. Those DW velocities 

(the first column in Table 1) differ drastically even for the same materials (PZT) between different 

research groups.  

    A well-known empirical law, called Merz’s law, has been widely employed to demonstrate the 

relationship between the DW velocity and the applied electric field: ⎟
⎠
⎞

⎜
⎝
⎛−∝

E
Ev aexp , where aE  is the 

‘activation field’ and E  is the applied electric field [11]. For decades, Merz’s law has been used and can 

correctly describe the trend of DW motion in bulk FE materials provided that the activation field is 

chosen properly [9, 12, 13]. In order to reveal the underlying physics of Merz’s law, Miller and Weinreich 

[14] first developed a model for the DW velocity based on classical nucleation theory although 

experimental observations and theoretical calculations show that Miller and Weinreich’s explanation 

overestimates the activation field by an order of magnitude [9, 12-13]. Miller and Weinreich suggested 

that the DW’s motion in the presence of an applied electric field results from the repeated nucleation of 

steps along existing parent 180° DWs, and that their velocity is controlled by the nucleation rate [15]. 

This implies that the expansion of reversed domains is a process in which new reversed-domain nuclei 

continuously merge into a growth domain. The process described by Miller and Weinreich’s model 

requires that there are sufficient nucleation centers in the sample. However, the existence of only limited 
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numbers of nucleation centers in FE thin films [16] leads to failure of this assumption of Miller and 

Weinreich’s model. Therefore, Miller and Weinreich’s explanation of Merz’s law cannot adequately 

describe the DW velocity in FE thin films. Furthermore, the DW velocities in PZT thin films, shown in 

Table 1, reveal that they are not monotonically dependent upon the strength of the applied electric field 

(see the first and second column in Table 1) as indicated by Merz’s law. This implies that other factors 

besides applied electric field also affect the DW velocity. We, as well as Scott and his collaborators in 

their recent review article [3], do not believe that so large a discrepancy (see the first column in Table 1) 

among the results of different researchers arises from the variations of the sample quality and the 

measurement technique. In contrast, variations of the characteristic time in various experimental methods, 

i.e., the averaged time resolution of a particular technique (see the third column in Table 1 and more 

detailed definition in the Supplementary Information), reveal a readily apparent trend of a significant 

decrease in velocity with increase of the characteristic time. This means that the DW velocities depend 

not only on the strength of applied electric field, but also on the characteristic time of the measurement [6, 

8, 9]. Obviously, Merz’s law cannot explain the relationship between DW velocity and the characteristic 

time because the time dimension was not taken into account. More importantly, there has been significant 

interest in experimentally measuring DW velocity during polarization reversal, in particular using 

aberration-corrected electron microscopy [17]. The gigantic variation in measured DW velocities has 

generated ever increasing confusion in the field of ferroelectrics and multiferroics. These considerations 

motivated us to develop a new theory of DW motion to account for these experimental results.  

II. Formalism  

    In FE materials, the equivalently stable polarization states split into metastable- and stable-states under 

an applied electric field; thereafter, the metastable states decay, and the stable states nucleate and grow 

into metastable regions. Metiu et al [18] showed that this process can be described by the time-dependent 

Ginzburg-Landau equation. In this paper, we use this equation to discuss the motion of a 180° 

ferroelectric DW in an applied electric field. The free-energy density can be expressed as 
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    ( ) ( ) ( ) ( ) ( ) ( )ji,GiEklickleliPklji,i PF+PE,F+ε,PF+εF+PF=ε,P,PF                                                  (1) 

where PF  and elF  are, respectively, the Taylor series expansions in powers of the spontaneous 

polarization ( )321 P,P,P=P  and the elastic strain { }klε  ( 1,2,3=lk, ); cF  is the coupling energy between  

P  and { }klε . EF  is the energy associated with the applied electric field, E , in the direction of 

polarization, written as EP=FE . GF  is the gradient energy due to the spatial variation of P  within the 

domain-wall layer, viz., ( )2
2

2
11

2
33 2

1
2
1

,,,G P+Pg+Pg=F , where 1g  and 3g  are material-dependent 

constants; and 
i

i, x
P=P

∂
∂

. The sum of the first three terms in Eq. (1) is the free energy density, U , in the 

homogeneous phase without an applied electric field. In the tetragonal perovskite phase, polarization 

adopts the form ( )3,0,0 P=P . For simplicity, we use P  instead of 3P ; then the sum of the first three 

terms is 

    ( ) ( ) ( )[ ] 2
2211233133223311221112

2
33

2
22

2
1111

4
11

2
1 2

1 Pε+εB+εBεε+εε+εεc+ε+ε+εc+Pα+Pα=U −   (2) 

    We consider two kinds of 180° DWs (Fig. 1): (1) Transverse (or sidewise) (Fig. 1(a)); and, (2) 

longitudinal (or head-to-head) (Fig. 1(b)). The red arrow in Fig. 1 shows the orientation of applied electric 

field that is perpendicular to surface of thin film. In the transverse, P  depends only on 1x ; in the 

longitudinal, P  depends only on 3x . In this paper, we will only consider a stress-free system, i.e., a 

system that is not clamped by surrounding medium. In the absence of stress 0=
ε
F=σ

ij
ij ∂

∂
, where the ijσ  

is the Cauchy stress components, and using the elastic compatibility condition, all of the spontaneous 

strain components can be replaced by polarization [19]. The total free energy density can be simplified as 

follows: 
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⎠

⎞
⎜⎜
⎝

⎛
∂
∂

i
iiii x

Pg+EP+PA+PK=F     for i=1, 3;                                                                      (3) 

The subscripts i=1 and 3 in Eq. (3) respectively represent the transverse- and longitudinal-DW; the 

coefficients iK  and iA  are obtained using the method shown in ref. 19 (their explicit representations are 

given in the Supplementary Information).  

    According to the theory of Metiu et al [18], the most probable path from the metastable to the stable 

state that satisfies the time-dependent Ginzburg-Landau equation is 

    
δP
δF=

t
Pγ −

∂
∂

                                                                                                                                          (4) 

where γ  is the Landau-Khalatnikov damping-coefficient [20]. 
P
F

δ
δ

 is the variational derivative of F  

with respect to P . Combining Eqs. (4) and (3), we obtain the following: 

    EPAPK
x
Pg

t
P

ii
i

i +++
∂
∂−=

∂
∂− 3

2

2

γ              for i=1, 3                                                                      (5) 

Referring the variables in Eq. (5) to moving coordinates, vtx=z − , Eq. (5) can be written as 

    ( )( ) ( )( ) ( )( ) 0221
2

2

=PPPPPPA
z
Pg+

z
Pγv iiiii −−−−

∂
∂

∂
∂

                                                                       (6) 

Here, v  represents the DW velocity, and ( )1
iP , ( )2

iP , and ( )3
iP  are the solutions of 03 =E+PK+PA ii . 

If ( )2
3

2
1

2
3

3

2
ii KAE −<

−
, the three roots are real, and they correspond to the polarization of the stable-, 
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unstable-, and metastable-states. Assuming that ( ) ( ) ( )321
iii P<P<P , Eq. (6) has a solitary wave solution 

[18, 21]: ( ) ( )
( ) ( )

( )bz+
PP+P=zP ii

i exp1

13
1 −

 with ( ) ( )( ) 2
1

13

2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

i

i
ii g

APPb , and the DW velocity 

   ( ) ( ) ( )( )2312
1

2
2

1
iii

ii

i
i PPPAgv −+⎟

⎠
⎞

⎜
⎝
⎛=

γ
                                                                                                     (7) 

If 0≠E , one of the domains with polarization ( )1
iP  and ( )3

iP  will become metastable, whilst the other 

will remain stable. A transition from the metastable- to the stable-state will initiate the DW motion. 

    Eq. (7) has been obtained by some researchers [18, 21]. However, to evaluate the real DW velocity 

from Eq. (7), we require a knowledge of the value of iγ . According to Landau and Khalatnikov’s theory 

[20], iγ  is expressed as iii τ=γ 2K− . iτ  is a unit of time and represents the relaxation time of 

polarization reversal from the metastable- to the stable-state crossed at the unstable-point ( )2
iP . This 

theory has been discussed by other researchers [22~26], and an approximation, as follows, was given by 

Caroli et al [26]: 

    ( ) ( )( ) ( ) ( )( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ−=
−−

−

Tk
NU

Tk
NU

B

i
ii

B

i
iii

21
2
1

21
23

2
1

231 expexp ωωωωτ                                                   (8) 

where ( )
( )( )

2
1

2
2

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=
m

xd
Ud

j
ij

iω ; ( )j
ix  is the atomic displacement when the polarization equals ( )j

iP  

(superscript j=1, 2, 3; they corresponds to three polarization state, ( )1
iP , ( )2

iP  and ( )3
iP ); m  is the 

effective atomic mass of the clusters of atoms that cross the energy-barriers; and ( )j
iω  represents the 

effective frequency of atomic vibration [22], and its typical value is about 20THz. 
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( )( ) ( )( )3223
iii PUPU=ΔU −−  and ( )( ) ( )( )1221

iii PUPU=ΔU −− , which depend on strength of applied 

electric field, are the energy-barriers of the unstable-point ( )2
iP . N  is the number of atomic clusters or 

molecules that flip from the metastable state to the stable one on domain boundary. For perovskite FE 

oxides, the atomic cluster is taken to be ABO3. To calculate ( )( )2
2

j
ixd

Ud , we use a linearized 

approximation [27], ( )j
izx

Ω
e=P , where e  is the absolute value of the electron charge, Ω  is the unit cell 

volume, and z  is the Born effective charge.  

    From the Landau theory, we know that the effective frequency ( ( )j
iω ) and the energy-barriers ( 23−

iΔU  

and 21−
iΔU ) of the unstable-point ( )2

iP  will decrease when the temperature approaches the critical point 

of ferroelectric phase transitions. 1−
iτ  will decrease along with ( )j

iω , but increase with the decrease of 

23−
iΔU  and 21−

iΔU  based on Eq. (8). Obviously, the effective frequency and the energy-barriers are 

determined by the nature of material and applied electric field. In this paper, we will focus on the effect of 

another factor, the characteristic time of the measurement, which is related to N  in Eq. (8) and is 

independent of the nature of material and applied electric field.  

III. Analysis and calculations 

    Using Eqs. (7) and (8), theoretically, the DW velocity can be calculated numerically for a given applied 

electric-field. However, these equations do not give an explicit relationship between the velocity of the 

DW and the intensity of the applied electric field because 23−
iΔU  and 21−

iΔU  in τ  cannot be expressed 

by an analytical function of the strength of the electric field. Recently, some empirical formulae were 

suggested for the DW velocity derived from experimental results [8, 9, 28]. To compare our theory with 

these empirical formulae, some approximations to our theory are required so that the DW velocity can 

become an explicit function of the intensity of the electric field. 



8 
 

    In order to obtain an explicit expression of the velocity of DW for the intensity of the electric field, we 

assumed that the applied electric field is small compared to 
0

0

P
U

 (where ⏐
⏐
⏐⏐

⏐
⏐

i

iK=U
4A

2

0  is the energy barrier 

between two equivalent states with 0=E , 
0

0

P
U

≈2×106V/cm for PZT, and typical applied electric fields 

are about 105V/cm. Therefore, the assumption is reasonable.). Using Taylor expansion, only keeping 

terms to first order in E , and neglecting reversed atomic flips from stable- to unstable-states we obtain 

    
( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

Ω
−=−

Tk
UEPN

PK
E

m
Kez

Bi

i
i

00

0

2
1

1 exp
8

312τ                                                                        (9) 

Eq. (9) is similar to the result obtained by Griffiths et al [23]. From Eq. (9), we find that the DW velocity 

is zero as long as 
0

0

P
U<E  at 0=T , whereas for 

0

0

P
U>E , the DW starts moving. The action of 

0

0

P
U

 is 

similar to a threshold force for a pinning-depinning transition [29, 30]. For 
0

0<<
P
UE  and 0≠T , the DW 

velocity generated by an applied electric field can be written as: 

    

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
⋅−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Ω

−=
−

E
P
U

P
U

Tk
NUezE

mK
Agv

Bi

ii
i

0

0

0

0

0
2
1

2
4
5

exp2                                                                             (10) 

When we merge all constants together, Eq. (10) can be further simplified. 

    ⎥
⎦

⎤
⎢
⎣

⎡
+

⋅−=
EE

f
Tk

LEfv
B

ii
0

0exp            ( =i 1, or 3)                                                                             (11) 



9 
 

where 
0

2
0

0 aP
Uf = , 

0

0
0 P

UE =  and ez
mK
Agf

i

ii
i

2
1

2
4
5

2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ω

−=
−

 are constants dependent on material; NaL =

(here a  is lattice constant) represents the DW width. Obviously, the width of domain wall L  is in 

directly proportional to the size of reversed domain. Eq. (11) is similar to Eq. (5) of Ref. 28, which was 

derived from experimental data, but a physical expression for the threshold electric field 
0

0
0 P

UE =  was 

not given therein. 

    The DW velocity from Eq. (11) differs from the Merz’s law [11, 14]. This is not surprising because our 

theoretical model envisions the DW motion as “jumps” of atomic clusters driven by applied electric-field 

while Merz’s law was derived via a classical nucleation model. The jumping probability of atomic 

clusters strongly depends on the barrier’s height. Its height for 0=E  is ⏐
⏐
⏐⏐

⏐
⏐

i

iK=U
4A

2

0 . Because 

2
1

3

3
2
1

1

1
0 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

A
K

A
KP [19], the difference between 1K  and 3K  (see Supplementary Information) 

results in the different 0U  in 1=i  and 3 orientation, therefore, lead to the different velocities of the 

longitudinal- and transverse-DWs. 

    From Eq. (11), we note that the velocity of DW depends on the DW width, and thus it will be a 

function of the domain’s size. This result was confirmed in experiments using atomic-force microscopy 

and piezo-response force microscopy [5, 6, 9, 31, 32] and atomistic simulations [33]. Experiments carried 

out by Tybell et al [9] and Dawber et al [32] indicated that the reversed domain size, r , increases 

logarithmically with increasing writing time, t , of the applied electric field, i.e., tr ln∝ . Using this 

result, we easily obtain ( )Crv −∝ exp , where C  is a constant independent of t . If the applied electric 

field is fixed, Eq. (11) can be written as ( )Crvv i −= exp0 , where 0iv  and C  are the constants related to 

the applied electric field and material. This result is consistent with experimental observations. 
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    For illustrating our theory, we calculated the DW velocity in Pb(Zr0.2Ti0.8)O3 as an example, using the 

parameters [34] in our calculation taken from Refs [27, 35~36]. The coefficients of the gradient energy 

were determined by the thickness of DW, based on high-resolution transmission electron microscopic 

imaging [37]. 

    Fig. 2 shows the calculated DW velocity versus nucleus size for various applied electric fields using 

Eqs. (7) and (8). The velocity of a longitudinal DW is much higher than that of a transverse DW under the 

same applied electric field. This finding means that the energy barrier of a longitudinal DW is smaller 

than that of a transverse DW. The curves in Fig. 2 are almost linear when the scale of velocity is 

logarithmic, implying that the velocity can be approximated as ( )Crv −∝ exp , consistent with the 

experimental observations[31, 32]. The coefficient C  depends on the strength of electric field for a 

specific material. The DW velocities in Fig. 2 have a very large range depending on the size of growing 

domains. As is also evident therein, the growth of the nucleus is extremely rapid (~ 103m/s) in its early 

stage, and then slows down exponentially as the domain size increases. Table 1 lists the DW velocity in 

PZT from experiments measured by various researchers; the data show clearly that velocity depends 

sensitively upon the characteristic time of the experimental measurements. Experimentally, typical 

measurements of the switching kinetics in FE thin film use voltage pulses to supply the applied electric 

field. The DW velocities are determined by t
r=v Δ

Δ  (where rΔ  is an increment of domain size, and 

Δt  is the width of voltage pulse, i.e., characteristic time of measurements). Our theory indicates that the 

DW velocity has generally instantaneous differential characteristics during the growth of reversed 

domain, even when the strength of applied electric field is fixed. Therefore, the above measured method 

gives only an average DW velocity. Because the instant velocity exponentially decreases with the 

increase of the growth of reversed domain, the average velocity rapidly drops with increasing global 

measurement time Δt . For that reason, the shorter is Δt , the larger is the averaged velocity will be 
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measured. A similar trend of the DW velocity is seen in Table 1 and Fig. 3, consistent with our theoretical 

prediction. 

    As mentioned above, Merz’s law describes the DW velocity when it is controlled by the aggregation 

kinetics of nuclei of reversed domain. Unlike the Merz’s law, the velocity described by this paper depends 

on not only applied electric field, but also the size of reversed domain. Based on our theory, the velocity 

will quickly become immeasurably small with increasing nucleus size. At that time, our mechanism 

accounting for the DW motion becomes inapplicable; instead, the nucleation mechanism for DW motion, 

namely, the Merz’s law, will prevail. Thus, two mechanisms will control the domain switching kinetics. 

Which one is primarily responsible depends on the competition between nucleation rate and nucleus self-

growth of reversed domains. Because of a significant number of nucleation rates in bulk FEs, these nuclei 

of reversed domain form and merge, and then lead to propagation of reversed domain. In this case, the 

DW velocity is expressed in terms of the nucleation rate [15], i.e., the velocity corresponds to the Merz’s 

law. Conversely, for FE thin films, the nucleation sites of reversed domain are limited [16, 28]. In this 

case, the expansion of reversed domain only depends on the self-growth of these limited nuclei, and the 

DW velocity can be explained by our theory. Two experimental findings support this conclusion. 1) 

Based on nucleation-limited switching (NLS) model [16] in FE thin films, Jo et al [28] obtained an 

empirical formula for the DW velocity from their experimental results. Their empirical formula is similar 

to our Eq. (11). 2) Gruverman et al’s experiment [6] demonstrated that the deceleration of propagation of 

the domain wall, with the switching behavior obeying the NLS model, depends logarithmically on their 

measurement time. This time-dependence corresponds naturally to our model which takes into account 

the effect of increasing nuclei sizes on the DW velocity. 

    During switching, a stripe shape of the reversed domains is often observed [11, 14, 38]. Miller and 

Weinerich [14], and Fatuzzo [38] using Merz’s law only explained the transverse motion of DW, but not 

longitudinal motion. Here, we offer an explanation by the application of our theory. First, we use a two-

dimensional triangular nucleus model [14, 15] to describe the shape of an initial nucleus of a reversed 
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domain. Fig. 2 shows ( )Crv −∝ exp  is a very good approximation. Using the approximation, the 

velocities in 1x  (transverse) and 3x  (longitudinal) orientation are  

    ( )3110
1 exp2 xCv

dt
dx −=                                                                                                                       (12a) 

    ( )1330
3 exp xCv

dt
dx −=                                                                                                                        (12b) 

where 10v , 30v , 1C  and 3C  are material constants which depend upon the intensity of the applied electric 

field and temperature and are obtained by means of the fitting of the curve in Fig. 2.  

    The basic characteristic of the solutions of Eq. (12) is that the expansion of one orientation will 

predominate, while that of another orientation will be restrained. Therefore, the reversed domain will 

grow as a narrow stripe. Numerical study shows that small changes of 10v , 30v , 1C , 3C , and of the initial 

condition will lead to a large change in the solution of Eq. (12). Usually, we have 13 CC <  and 1030 vv >  

for a given electric field in PZT (for example, 5112.11 ≈C , 1476.13 ≈C , and 61.234610 ≈v , 

23.775230 ≈v  when the applied electric field is 500KV/cm), so that longitudinal expansion will 

predominate in most cases, as has been observed in many FEs not only in the PZT [11, 15]. However, the 

inhomogeneous strain field and electric fields between the FE film and substrate can change 10v , 30v , 1C , 

3C , and the shape of initial nuclei, which also can cause predominant expansion of reversed domain in 

the transverse direction, as recently was observed experimentally [39]. Fig. 3 shows a calculated example 

that the triangular nucleus develops into a stripe domain for an applied electric field of 500KV/cm. Fig. 4 

shows the DW velocity of a triangular nucleus versus characteristic time of measurement. From Fig. 4, 

we see that the expansions of nuclei already have larger longitudinal velocity than transverse velocity at 

the beginning stage of growth, and the difference becomes more pronounced over time. Finally, the 

longitudinal velocity approaches a constant, and the velocity along the transverse direction will be close 
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to zero, and a stripe domain comes into being. After the formation of a stripe domain, the DW’s sidewise 

velocity predicted by our theory is zero. It means that our theory will fail to predict the sidewise velocity 

at this time. Merz’s law will replace our theory to describe the sidewise velocity [14, 38]. 

    The experimental data in Table 1 are also shown in the Fig. 4. Comparison of our theory with the 

experimental results shows that our theory can give a good account of the variation of DW velocity with 

characteristic time of measurement. However, the experimental results appear 1 to 2 orders of magnitude 

larger than our calculation for short of values of characteristic time of measurement. Some important 

factors can lead to the discrepancy. First, the nuclei of reversed domains form preferentially in defect 

areas where the reversed domains are energetically favorable, and the original domains stay in the higher 

energy state during the reversal of polarization. These effects of nucleation in defect areas are equivalent 

to decreasing the energy barrier and increasing the applied electric field. Undoubtedly, they will 

exponentially enhance the DW velocity in the nucleation stage. Second, many experiments show (see 

Supplementary Information) that the nuclei of reversed domain in thin ferroelectric film are much to form 

at the interface of ferroelectric and substrate. One reason is that the interface is a natural defect; another 

important reason is a depolarizing field effect due to the interface. According to Kretschmer and Binder’s 

calculation [40], an important contribution of the depolarizing field effect is to decrease the absolute value 

of the coefficient iK  of Landau polynomial. The decrease of the absolute value of iK  will quadratically 

decrease the energy barrier ⏐
⏐
⏐⏐

⏐
⏐

i

iK=U
4A

2

0 . It means that the DW velocity of the nuclei formed on the 

interface will be much larger than our prediction. Third, ferroelectric-electrode coupling may lead to the 

existence of favorable conditions for reverse domain nucleation and significantly decrease the coercive 

field [41]. All of these imply that the DW velocity from our calculation in nucleation stage was possibly 

underestimated. Some factors also decrease the DW velocity. For example, the depolarizing energy due to 

the divergence of polarization at the domain boundary will increase the nucleation barrier [14, 41]; 

defects can block DW motion; and the free charge compensation of the bound polarization charge can 
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cause a substantial reduction of the domain wall mobility [42]. All in all then, many factors will affect the 

DW velocity so that the calculation of the velocity becomes too complex to estimate an accurate value. 

Only an intrinsic velocity with a correct trend was given in this paper.  

IV. Conclusions  

    In summary, we have developed a theoretical model that predicts the longitudinal- and transverse-DW 

velocities in ferroelectrics under an applied electric field. We found a dominance of the size effect, or the 

characteristic time effect, over the effects of the applied electric field on the velocities of DWs. Our 

theoretical analyses address the large variation in experimental data, which can now be attributed to the 

dependence of DW velocity on growing domain size. The anisotropy of DW velocities found in our 

model also explains the formation of FE stripe domains. When the switching kinetics in FE thin film 

obeys the NLS model, the DW’s velocity can be described by our theory.  
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Table 1 The experimentally measured velocities of DW motion in PZT 

Velocity 

(m/s) 

Electric field 

kV/cm 

The characteristic time 
of the measurement 

Δt  
References 

2000~3000 

40 

10~100 

0.3~0.4 

0.02~0.04 

10-8~10-2  

~10-6 

250 

450 

100 

78 

600 

700~5000 

260~1000 

~80ps 

620ps 

100ns 

220ns 

1 μs 

50μs; 1ms; 100ms 

100ms  

4 

5 

6 

7 

8 

9  

10 
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(a) (b) 

FIG. 1. Two kind of 180 domain 
wall: (a) transverse domain wall and 
(b) longitudinal or head-to head 
domain wall. Orientation of 
spontaneous polarization with 
respect to the wall and that of 
applied electric field is shown with 
black and red arrows. 
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FIG. 2 The calculated velocity of DW motion versus size of nucleus for 

various values of applied electric field E=100 (black line), 200 (red line), 

500 (green line) and 1000KV/cm (blue line). Solid lines are longitudinal 

velocity, and dashed lines are transverse velocity. 
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FIG. 3 (color online). (a) The evolution of a triangular nucleus in an applied 

electric field 500KV/cm. The base and attitude of the initial triangular nucleus 

are respectively about 2 and 1 lattice cells. 
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FIG. 4 (color online). The calculated DW velocity versus characteristic time of the 

measurement based on our new theoretical model. For comparison, experimental 

measurements listed in Table 1 from several literatures are also included with 

different symbols. The three data sets from ref.5 with the upper and lower values 

represent the range of the measured DW velocities due to the variation in the 

samples, the strength of applied electric fields and the characteristic time of the 

measurement. 
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