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For graphene interacting with a few-fs intense optical pulse, we predict unique and rich behavior
dramatically different from three-dimensional solids. Quantum electron dynamics is shown to be
coherent but highly non-adiabatic and effectively irreversible due to strong dephasing. Electron
distribution in reciprocal space exhibits hot spots at the Dirac points and oscillations whose period
is determined by non-locality of electron response and whose number is proportional to the field
amplitude. The optical pulse causes net charge transfer in the plane pf graphene in the direction of
the instantaneous field maximum at relatively low fields and in the opposite direction at high fields.
These phenomena promise ultrafast optoelectronic applications with petahertz bandwidth.

I. INTRODUCTION

Interactions of strong fields with solids have been stud-
ied from the onset of quantum mechanics1–17. Interest
in this field has grown due to availability of ultrashort
pulses with fields comparable to the internal fields in
solids6,10,18. Such fields excite reversible electron dynam-
ics and strongly modify properties of the solid within op-
tical cycle, i.e., on the attosecond time scale15–17. Here
we show theoretically that, in contrast, the strong-field
interactions of graphene are highly non-adiabatic and ir-
reversible causing significant electron transfer from the
valence band resulting in high population of the conduc-
tion band, which persists after the pulse’s end. These
interactions result in ultrafast current whose density is
orders of magnitude higher than that in dielectrics or
metals15,19. Though graphene in the absence of an ex-
ternal field has a zero band gap (it is a semimetal), it does
not necessarily mean that the corresponding electron dy-
namics is irreversible, since in an electric field electrons
drift through the entire Brillouin zone, which introduces
an effective band offset and a band gap ∼ 8 eV20. In
this case, similar to dielectrics16,17, one should have ex-
pected reversible dynamics. The extraordinary extreme
nonlinear properties of graphene and the irreversibility
in it are related to its unique electronic structure causing
the singularity of the interband coupling in the vicinity
of the Dirac points. It is this singularity to result in the
irreversible electron dynamics in graphene.

We consider interaction of ultrashort laser pulses with
graphene monolayer21–23. The purely two dimensional
electron dynamics in graphene is characterized by unique
dispersion relation, the low energy part of which is
relativistic-like with linear dependence of the electron en-
ergy on momentum. The behavior of such low energy
electrons is described by the Dirac relativistic massless
equation. The Fermi energy of undoped graphene is at
the Dirac point and, therefore, graphene is a semimetal
with zero bandgap. This should result in strong inter-
band mixing of the valence band (VB) and the conduc-
tion band (CB). Below we consider femtosecond laser

pulses whose duration τp is less than the electron scat-
tering time ∼ 10 − 100 fs24–29. In this case, the elec-
tron dynamics is coherent and can be described by time-
dependent Schrödinger equation.
In contrast, dynamics of graphene in relatively slow

fields, τp & 100 fs, for which the scattering processes be-
come important and the electron dynamics is incoherent,
was studied30 within the density matrix approach, where
a hot-electron Fermi distribution was reported. For cir-
cularly polarized long optical pulses, interaction of elec-
trons in graphene with periodic electric field results in
formation of Floquet states and opening a gap in the en-
ergy spectrum31–33 or graphene-like topological surface
states of a topological insulator34.

II. MODEL AND MAIN EQUATIONS

We consider an optical pulse that is incident nor-
mally on a graphene monolayer and parametrize it by
the following single-oscillation form, which is an ideal-
ization of the actual 1.5-oscillation pulses used in recent
experiments15,16,

F (t) = F0e
−u2 (

1− 2u2
)

, (1)

where F0 is the amplitude, which is related to the pulse
power P = cF 2

0 /4π, c is speed of light, u = t/τ , and
τ is the pulse length, which is set τ = 1 fs correspond-
ing to carrier frequency ω ≈ 1.5 eV/~. Note that due
to this parametrization, the pulse has always zero area,
∫∞
−∞ F (t)dt = 0. We will assume that the pulse is lin-
early polarized, where the plane of polarization is char-
acterized by angle θ measured relative to axis x. Here
the x and y coordinate system is introduced in the plane
of graphene and are determined by the crystallographic
structure of graphene - see Fig. 1. The graphene has
hexagonal lattice structure, which is shown in Fig. 1(a).
The lattice has two sublattice, say ”A” and ”B”, and is
determined by two lattice vectors a1 = a/2(

√
3, 1) and

a2 = a/2(
√
3,−1), where a = 2.46 Å is the lattice con-

stant. The distance between the nearest neighbor atoms
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FIG. 1: (a) Hexagonal lattice structure of 2D graphene.
The graphene lattice consists of two inequivalent sublattices,
which are labeled by ”A” and ”B”. The vectors a1 =
a/2(

√
3, 1) and a2 = a/2(

√
3,−1) are the direct lattice vectors

of graphene. The nearest neighbor coupling, which is char-
acterized by the hopping integral γ, is also shown. (b) The
first Brillouin zone of reciprocal lattice of graphene. Points K
and K′ are two degenerate Dirac points, corresponding to two
valleys of low energy spectrum of graphene. Blue line with
arrows shows polarization of the time-dependent electric field
of the pulse. The polarization is characterized by angle θ.

of graphene is a/
√
3. The first Brillouin zone of the recip-

rocal lattice of graphene, which is a hexagon, is shown
in Fig. 1(b). The points K = (2π/a)(1/3, 1/

√
3) and

K ′ = (2π/a)(−1/3, 1/
√
3), which are the vertices of the

hexagon, are the Dirac points. The energy gaps at these
points are zero and the low energy spectra near these
points are described by the Dirac relativistic equation.
The points K and K ′ correspond to two valley of low
energy spectrum of graphene.
The Hamiltonian of electrons in graphene in the optical

field has the form

H = H0 + eF(t)r, (2)

where H0 is the field-free electron Hamiltonian, r =
(x, y) is a two-dimensional vector, and F(t) =
[F (t) cos θ, F (t) sin θ]. Below we consider the case of
θ = 0 only, i.e., pulse is polarized along the x-axis. We
consider a nearest-neighbor tight-binding model, which
describes coupling between the two sublattices ”A” and
”B” of graphene with coupling constant γ = −3.03
eV35–38- see Fig. 1. In the reciprocal space the corre-
sponding HamiltonianH0 is a 2×2 matrix of the form35,36

H0 =

(

0 γf(k)
γf∗(k) 0

)

, (3)

where γ = −3.03 eV is the hopping integral and

f(k) = exp

(

i
akx√
3

)

+ 2 exp

(

−i
akx

2
√
3

)

cos

(

aky
2

)

. (4)

The energy spectrum of Hamiltonian H0 consists of
conduction band (π∗ or anti-bonding band) and valence
bands (π or bonding band) with the energy dispersion
Ec(k) = −γ|f(k)| (conduction band) and Ev(k) =

γ|f(k)| (valence band). The corresponding wave func-
tions are

Ψ
(c)
k (r) =

eikr√
2

(

1
e−iφk

)

(5)

and

Ψ
(v)
k (r) =

eikr√
2

(

−1
e−iφk

)

, (6)

where f(k) = |f(k)|eiφk . The wavefunctions Ψ
(c)
k and

Ψ
(v)
k have two components belonging to sublattices A and

B, respectively.
When the duration of the laser pulse is less than the

characteristic electron scattering time, which is ∼ 10 −
100 fs24–29, the electron dynamics in external electric field
of the optical pulse is coherent and can be described by
the time dependent Schrödinger equation

i~
dΨ

dt
= HΨ, (7)

where the Hamiltonian (2) has explicit time dependence.
The electric field of the optical pulse generates both in-

terband and intraband electron dynamics. The interband
dynamics introduces a coupling of the states of the con-
duction and valence bands and results in redistribution
of electrons between two bands. For dielectrics, such dy-
namics results in its metallization, which manifest itself
as a finite charge transfer through dielectrics and finite
conduction band population after the pulse ends.
It is convenient to describe the intraband dynamics,

i.e. the electron dynamics within a single band, in the
reciprocal space. In the reciprocal space, the electron
dynamics is described by acceleration theorem, which has
the following form

~
dk

dt
= eF(t). (8)

The acceleration theorem is universal and does not de-
pend on the dispersion law. Therefore the intraband elec-
tron dynamics is the same for both conduction and va-
lence bands. For an electron with initial momentum q

the electron dynamics is described by the time dependent
wave vector, kT (q, t), which is given by the solution of
Eq. (8),

kT (q, t) = q+
e

~

∫ t

−∞
F(t1)dt1. (9)

The corresponding wave functions are the Houston

functions,39 Φ
(H)
αq (r, t),

Φ(H)
αq (r, t) = Ψ

(α)
kT (q,t)(r)e

− i
~

∫
t

−∞
dt1Eα[kT (q,t1)], (10)

where α = v (valence band) or α = c (conduction band).
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Using the Houston functions as the basis, we express
the general solution of the time-dependent Schrödinger
equation (7) in the following form

Ψq(r, t) =
∑

α=v,c

βαq(t)Φ
(H)
αq (r, t). (11)

The solution (11) is parametrized by initial electron wave
vector q. Due to universal electron dynamics in the re-
ciprocal space, the states, which belong to different bands
(conduction and valence bands) and which have the same
initial wave vector q, will have the same wave vector
kT (q, t) at later moment of time t. Since the interband
dipole matrix element, which determines the coupling of
the conduction and valence band states in external elec-
tric field, is diagonal in the reciprocal space, then the
states with different initial wave vectors are not coupled
by the pulse field. As a result in Eq. (11), for each value
of initial wave vector q, we need to find only two time-
dependent expansion coefficients βvq(t) and βcq(t). Such
decoupling of the states with different values of q is the
property of coherent dynamics. For incoherent dynamics,
the electron scattering couples the states with different
wave vectors q. In this case the dynamics is described
by the density matrix.
The expansion coefficients satisfy the following system

of differential equations

dβcq(t)

dt
= −i

F(t)Qq(t)

~
βvq(t), (12)

dβvq(t)

dt
= −i

F(t)Q∗
q(t)

~
βcq(t), (13)

where the vector-function Qq(t) is proportional to the
interband dipole matrix element

Qq(t) = D[kT (q, t)]e
− i

~

∫
t

−∞
dt1{Ec[kT (q,t1)]−Ev[kT (q,t1)]},

(14)
where D(k) = [Dx(k), Dy(k)] is the dipole matrix ele-
ment between the states of the conduction and valence
bands with wave vector k, i.e.

D(k) =
〈

Ψ
(c)
k

∣

∣

∣
er

∣

∣

∣
Ψ

(v)
k

〉

. (15)

Substituting the conduction and valence band wave func-
tions (5) and (5) into Eq. (15), we obtain the following
expressions for the interband dipole matrix elements

Dx(k) =
ea

2
√
3

1 + cos
(

aky

2

) [

cos
(

3akx

2
√
3

)

− 2 cos
(

aky

2

)]

1 + 4 cos
(

aky

2

) [

cos
(

3akx

2
√
3

)

+ cos
(

aky

2

)]

(16)
and

Dy(k) =
ea

2

sin
(

aky

2

)

sin
(

3akx

2
√
3

)

1 + 4 cos
(

aky

2

) [

cos
(

3akx

2
√
3

)

+ cos
(

aky

2

)] .

(17)

The system of equations (12)-(13) describes the inter-
band electron dynamics and determines the mixing of
the conduction band and the valence band states in the
electric field of the pulse. There are two solutions of the
system (12)-(13), which correspond to two initial condi-
tions: (βvq, βcq) = (1, 0) and (βvq, βcq) = (0, 1). These
solutions determine the evolution of the states, which are
initially in the valence band or in the conduction band,
respectively.
For undoped graphene all states of the valence band

are occupied and all states of the conduction band are
empty. For an electron, which is initially in the valence
band the mixing of the states of different bands is charac-
terized by the time-dependent component |βcq(t)|2. We
can also define the time-dependent total occupation of
the conduction band for undoped graphene from the fol-
lowing expression

NCB(t) =
∑

q

|βcq(t)|2, (18)

where the sum is over the first Bruilluen zone and the
solution βcq(t) in Eq. (18) satisfies the initial condition
(βvq, βcq) = (1, 0).
Redistribution of electrons between the conduction and

the valence bands in time-dependent electric field also
generates electric current, which can be calculated in
terms of the operator of velocity from the following ex-
pression

Jj(t) =
e

a2

∑

q

∑

α1=v,c

∑

α2=v,c

β∗
α1q

(t)Vα1α2

j βα2q(t), (19)

where j = x, y and Vα1α2

j are the matrix elements of

the velocity operator V̂j =
1
~

∂H0

∂kj
between the conduction

and valence band states. With the known wave functions
(5)-(6) of the conduction and valence bands the matrix
elements of the velocity operator are

Vcc
x = −Vvv

x =
aγ√
3~

[

sin

(

akx√
3
− φk

)

+

sin

(

akx√
3
+ φk

)

cos
aky
2

]

,(20)

Vcc
y = −Vvv

y =
aγ

~
cos

(

akx

2
√
3
+ φk

)

sin
aky
2

, (21)

Vcv
x = −i

2aγ√
3~

[

cos

(

akx√
3
− φk

)

−

cos

(

akx√
3
+ φk

)

cos
aky
2

]

, (22)

and

Vcv
y = −i

2aγ

~
sin

(

akx√
3
+ φk

)

cos
aky
2

. (23)
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The interband matrix elements of the velocity operator,
Vcv
x and Vcv

y , are related to the interband dipole matrix
elements, Vcv

x = iDx(k) [Ec(k) − Ev(k)] /~ and Vcv
y =

iDy(k) [Ec(k) − Ev(k)] /~.
40

Within the nearest neighbor tight binding model, the
graphene has electron-hole symmetry, which results in
the relation Vcc

y = −Vvv
y . Inclusion into the model

the higher order tight-binding couplings, e.g. next-
nearest neighbor terms, introduced electron-hole asym-
metry, which results in different magnitudes of velocity
in the conduction and valence bands.41 This asymmetry
is weak and does not change the main results presented
below.
If the direction of electric field of the pulse is along the

direction of high symmetry of graphene crystal, then the
current (19) is generated along the direction of electric
field of the pulse only, J||. For graphene, the directions of
high symmetry correspond to polarization angles θ = 0
and 300. If polarization of electric field is not along the
direction of high symmetry of graphene, then the current
is generated in both the direction of the field, J||, and in
the direction perpendicular to the field, J⊥. Our results
show that the perpendicular component of the current
is more than two orders of magnitude smaller than the
parallel component of the current. Therefore we calculate
only the parallel component of the current.
The generated current results in charge transfer

through the system, which is determined by an expres-
sion

Qtr =

∫ ∞

−∞
dtJ||(t), (24)

The transferred charge is nonzero only due to irreversibil-
ity of electron dynamics in the optical pulse. For com-
pletely reversible dynamics, when the system returns to
its initial state, the transferred charge is exactly zero. In-
deed, since the current can be expressed in terms of po-
larization P(t) of the electron system as J(t) = dP(t)/dt,
then the transferred charge is determined by the resid-
ual polarization of the system, i.e. polarization of the
electron system after the pulse ends, Qtr = P (t → ∞).
The residual population is nonzero only for irreversible
dynamics.

III. RESULTS AND DISCUSSION

A. Conduction band population

Electron dynamics in an optical field is determined by
two interrelated properties of graphene: (i) zero band
gap, which results in strong interband mixing even in a
weak electric field, and (ii) strong dependence of inter-
band dipole matrix elements on the wave vector. These
matrix elements, Dx and Dy, are singular at the Dirac
points, K and K ′, as ∝ 1/∆k, where ∆k = |k − kK | is
the distance in the reciprocal space from nearest Dirac

2

-2

0

kx (1
/Å)0

-2

2

k
y (1/Å)

0

-10

10

D
x 

(e
Å

)

FIG. 2: Interband dipole matrix element Dx is shown as a
function of the wave vector k. The red lines show the bound-
ary of the first Brillouin zone. The dipole matrix element is
singular near the Dirac points (K and K′ points).

point, see Fig. 2 (calculated in SI). Away from the Dirac
points, Dx ∼ Dy ∼ ea/2 ≈ 1.2 eÅ. At the center of the
Brillouin zone (the Γ-point), Dx = Dy = 0. Thus there
is strong interband coupling at the Dirac points and no
coupling at the Γ point.

A strong optical electric field causes redistribution of
electrons between the CB and the VB. The total CB
population, NCB(t) [see Eq. (18)]. It is displayed as
a function of time t together with the corresponding
time-dependent electric field, F (t), in Fig. 3(a). Its
qualitative features are in sharp contrast with those of
dielectrics16,42. First, the electron kinetics is dramati-
cally irreversible: when the pulse is over, the CB popu-
lations does not return to zero staying at a high residual

level N (res)
CB which is close to the maximum CB popula-

tion during the pulse, N (max)
CB . The second, related fea-

ture is that there is a ∼ π/2 phase shift between NCB(t)
and the electric field, F (t): the maximums of the conduc-
tion band population occur at zeros of the electric field.
In contrast, for dielectrics, the CB population adiabati-
cally follows the field, and their maximums coincide with
a good accuracy16,42.

Such irreversible electron dynamics takes place for all
pulse amplitudes F0 as Fig. 3(b) clearly demonstrates.
The maximum CB population is reached at t ≈ 1 fs; the

residual (at the end of the pulse) CB population, N (res)
CB ,

is close to N (max)
CB in all cases [Fig. 3(c)]. We have found

(not shown) that the CB population has only a weak
dependence on the polarization direction, and the results
similar to Fig. 3 are obtained for other polarizations.

As we interpret, the irreversible electron dynamics is
due to the gapless energy dispersion in graphene and
strong dependence of the interband dipole matrix ele-
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FIG. 3: Population of the CB. (a) The CB population,
NCB(t), and the corresponding electric field, F (t), of the laser
pulse are shown as function of time t. The polarization of the
pulse is along axis x, i.e. θ = 0. (b) Series of the CB popula-
tions are plotted as functions of time for peak fields indicated
on the graph. (c) The maximum and residual CB populations
as functions of the peak electric field.

ments, Dx and Dy, on the wave vector. This causes a
unique dependence of the Zener tunneling rate, ∆l ∝ l−1,
where l is the number of unit cells through which the elec-
tron tunnels to cross the band gap43; in a sharp contrast,
in 3d crystals, this dependence on l is exponential. This
weak l-dependence brings about strong resonance transi-
tions between the VB and CB leading to dephasing (Lan-
dau damping), which effectively causes irreversibility for
our time intervals.
The singularities of the dipole matrix elements at the

Dirac points also result in a highly nonuniform distribu-
tion of the conduction band population in the reciprocal
space, NCB(k, t) = |βck(t)|2 (see SI for definition), which
is shown in Fig. 4. This population dynamics is unusual
and dramatic. The electrons are accelerated by the field
along its polarization direction (x-axis) as determined by
the time-dependent wave vector k(t) (see the acceleration
theorem in SI),

k(t) =
e

~

∫

F(t)dt . (25)

Initially, for t < −0.75 fs, the field is negative which accel-
erates the electrons to the right in Fig. 4. At the Dirac
points due to the singular and large interband dipoles,
the electrons are transferred VB→CB, which shows as

two ”jets” of high electron population at kx ≈ 1 Å
−1

–
see panels for t = −1.5,−0.75 fs. Then the field changes
its sign, and the electrons start to move left and also
undergo further VB→CB transitions leading to the ap-

pearance of the jets at kx ≈ −1 Å
−1

and interference

fringes at the kx ≈ 1 Å
−1

Dirac points for t ≥ 0.75 fs.
Further, additional electrons are transferred causing the

interference fringes at the kx ≈ −1 Å
−1

Dirac points for
t = 1.5 fs. The distribution becomes completely sym-
metric at the end of the pulse (t = 2.25 fs), which is a
consequence of the zero pulse area.

Residual (after the pulse end) distributions N (res)
CB (k)

of the CB electrons in the reciprocal space for various
field amplitudes F0 are displayed in Fig. 5. They ex-
hibit the jets at the Dirac points extended in the direc-
tion of the external field, which are modulated by the
interference fringes. The extension, ∆k, of the jets in-
creases approximately proportionally to the field; it is de-
fined by the acceleration in the average field during half-
period: ∆k ∼ eF0/ω. For instance, for F0 = 1.5 V/Å,
∆k ∼ 1 Å−1, in agreement with Fig. 5. The spacing
between the interference fringes, δk, is reciprocal to the
nonlocality scale, i.e., the length electron displaces dur-
ing the optical cycle, δk ∼ ω/vF ∼ 0.2 Å−1, where
vF ∼ 108 cm/s is the Fermi velocity; this estimate is
also in agreement with Fig. 5.
The residual distribution of Fig. 5 shows the fringes

with very high contrast: the maximum population proba-

bility, N (res)
CB (k) ≈ 1, and practically zero minimum pop-

ulation probability. Note that these fringes are created
by a femtosecond pulse but can be relatively long-lived,
decaying with electron collision time τ .
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FIG. 4: Conduction band population NCB(k, t) = |βck(t)|2
(see SI for definition)as a function of the wave vector at dif-
ferent moments of time. Only the first Brillouin zone of the
reciprocal space is shown. The peak electric field of the pulse
is F0 = 1 V/Å. Different colors correspond to different values
of the conduction band population as shown in the figure.

At low excitation frequencies, we can estimate this
time for doped graphene with equilibrium CB electron
density n as τ = ~µ

√
πn/(evF ), where µ is the elec-

tron mobility. Setting µ ≈ 2.5 × 104 cm2V−1s−1 at
n ≈ 5 × 1012 cm−244,45 and vF = 1.15 × 108 cm/s46,
we obtain τ ≈ 0.6 ps. In contrast, at optical excitation
frequencies and high intensities, time τ is reduced and
is measured to be τ ∼ 140 fs25; for very high excitation
densities, carrier multiplication processes become impor-
tant, further reducing τ to a few tens of femtoseconds27.
Electron-phonon processes are relatively slow, with scat-
tering time τ & 600 fs27. Even the fastest electron col-
lisions, with tens of femtosecond time, are much slower
than the subcycle dynamics of . 1 fs duration predicted
in this article. The femtosecond and attosecond momen-
tum imaging17,47 is potentially capable of measuring the
ultrafast transient dynamics predicted by Fig. 4.

The formation of the localized regions with high con-
duction band population, which is illustrated in Figs. 4
and 5 of the paper, is due to singularity of the intra-
band dipole matrix elements at the Dirac points. The
interband dipole matrix elements are large near the Dirac
points and are diverging exactly at the Dirac points. An
electron with initial wave vector q propagates in the re-
ciprocal space along the direction of electric field and
the electron wave vector at a moment of time t is given
by the function kT (q, t), see Eq. (9). The trajectory of
such electron is shown schematically in the inset in Fig.
6(a), where the electron, which is initially at point ”1”,
is transferred along the path ”1”→”2”→”3”→”2”→”1”
during the pulse. Since the area under the pulse is zero,
the electron returns to its initial point ”1”. Along this
closed path the interband coupling, which is proportional
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FIG. 5: Residual conduction band population N (res)
CB

(k) as a
function of wave vector k for different amplitudes F0 of the
optical pulse, as indicated. Only the first Brillouin zone is
shown. The polarization of electric field is along axis x.

to the interband dipole matrix element, is the strongest
near the point ”2”, closest to the Dirac points. Thus, the
strongest mixing of the CB and VB states occurs when
the electron passes through point ”2”. For the closed
path ”1”→”3”→”1” there are two passages of point ”2”.
As a result there are two strong changes in CB popu-
lation. These two changes can be constructive or de-
structive, resulting in final large or small CB population,
respectively. These two possibilities are shown in Fig. 6,
where the time-dependent CB population is shown for
two initial wave vectors q. The time-dependent inter-
band dipole matrix element, Dx, calculated at wave vec-
tor kT (q, t) is also shown in Fig. 6. The two maxima
in the time-dependent dipole matrix element correspond
to two passages of the point ”2” shown in the inset in
Fig. 6(a). For both initial wave vectors [see Fig. 6 (a)
and (b)] the maxima of the dipole matrix element are
correlated with large changes in the CB population. In
Fig. 6(b) these changes are constructive resulting in large
CB population after the pulse ends, while in Fig. 6(a)
the changes are destructive, which results in small final
CB population. Whether changes of the CB population
constructive or destructive is determined by the phase
accumulated between two consecutive passages of point
”2”. The phase is determined by exponential factor in
the expression (14) for the vector-function Qq(t).

B. Transferred charge

A strong optical pulse applied to metal or dielectric
causes transfer of charge parallel to the pulse field; the di-
rection of the transfer (the sign of the transferred charge)
is determined by the carrier-envelope phase (CEP) of the
pulse15,17,19. In this article, the maximum of the carrier
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FIG. 6: Time-dependent conduction band population and
corresponding dipole matrix element Dx. The data are shown
for a state with initial wave vector q of the reciprocal space.
The conduction band population is calculated as |βcq(t)|2 and
the dipole matrix element is defined as Dx(kT (q, t). Two dif-
ferent initial wave vectors in panels (a) and (b) correspond
to small and large residual conduction band populations, re-
spectively. The inset in panel (a) illustrates schematically
the electron dynamics in the reciprocal space: the electron
is transferred along the path ”1”→”2”→”3”→”2”→”1”. The
polarization of the optical pulse is along axis x.

oscillation and its envelope coincide, which implies zero
CEP (effect of the CEP on graphene high-field behav-
ior will be considered elsewhere). In such a case, the
transfer in dielectric occurs in the direction of the field
maximum, and in metal in the opposite direction15,19.
Below we show that graphene (a semimetal) is unique
and different from both metals and insulators.

Given that the area of the pulse is zero, the trans-
ferred charge is entirely due to optical nonlinearity. Cur-
rent density j and polarization P are exactly related,
j = Ṗ. The density of the net transferred charge per
pulse, Qtr, is thus determined by the residual polariza-

tion after the pulse end, Qtr = P
(res)
x , where x is the di-

rection of the field (charge transfer direction). Hence, in
a single-pulse experiment, the charge transfer is strictly
zero in the absence of relaxation (i.e., for adiabatic, re-
versible processes). Consequently, in graphene, where
the strong-field processes are highly irreversible and the

0 2-2
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-10
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FIG. 7: (a) Electric current density in graphene as a function
of time for two amplitudes, F0 = 1.0 V/Å and F0 = 2.0 V/Å.
(b) Transferred charge density through graphene monolayer
as a function of F0 for different levels of graphene doping
(defined by electron Fermi energy EF ).

residual charges dominate, the charge transfer should be
uniquely strong.
Formal expression forQtr is given in the SI; here in Fig.

7 we illustrate the results. Panel (a) displays temporal
dynamics of the current. In the first half of the pulse, this
current is negative, while in the second half it is positive
where also significant relaxation is evident in a strong
field, F0 = 2 V/Å, case.
The total transferred charge per pulse, Qtr, shown

in Fig. 7(b), is positive (as for dielectrics15) for F0 .
1.5 V/Å and negative for larger fields (i.e., the transfer
occurs opposite to the direction of the maximum field, as
for metals19); Qtr rather weakly depends on doping.
The charge transfer per pulse in bulk silica (quartz)15

is Qtr ∼ 10−5 C/m2 at F0 ≈ 2 V/Å. To compare with
graphene, it should be multiplied by the thickness of the
graphene monolayer, ∼ 0.1 nm, which yields for quartz
an equivalent of Qtr ∼ 10−15 C/m per atomic monolayer.
Our present result is Qtr & 10−9 C/m. Thus, in strong-
field charge transfer, graphene is six orders of magnitude
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more efficient than quartz.

IV. CONCLUSION

To briefly summarize, we have shown that graphene
subjected to an ultrafast (one optical oscillation) and
strong (∼ 1 V/Å) optical pulse exhibits fundamental be-
havior dramatically different from both insulators and
metals. Field-induced, Zener-type VB↔CB electron
transfer is deeply irreversible (non-adiabatic): the resid-
ual (after-pulse) CB population is close to the maximum
one. The reciprocal space (quasi-momentum) dynamics
is developing on a time scale ∼ 1 fs forming momentum
distribution, which exhibits deep fringes with the popu-
lation probability changing in the full interval between 1
and 0 with the periodicity independent of the field ampli-
tude. This unique periodic k-distribution can be accessed
experimentally.
In our calculations above we have described the in-

teraction of optical pulse with graphene within coher-
ent electron dynamics, assuming that the duration of
the pulse is longer than the corresponding relaxation
times. The relaxation times during ultrafast excitation
of graphene have been investigated experimentally25,27.
The carrier-carrier scattering in Ref.25 is observed to oc-
cur during 30-140 fs. In Ref.27, the observed electron-
electron scattering kinetics unfolds on times 10 fs or
longer. The field-induced processes that we predicted
are extremely fast: the populations of the valence and
conduction changes within subcycle intervals, on the time
scale of 500 attoseconds or shorter. In our article, the su-
perstrong near-single-oscillation pulse is not longer than
4 fs, which is shorter than experimentally observed scat-

tering times, and it drives very significant changes in the
electron distribution, which is also highly anisotropic.
The strong optical pulse causes the net charge trans-

fer (per unit width of the graphene, per pulse) Qtr ∼
10−9 C/m, which corresponds to a fs pulse of elec-
tric current in the plane of graphene with peak density
j ∼ 1016 A/m2. The charge is transferred in the direc-
tion of the maximum field for moderate field amplitudes
(F0 . 1.5 V/Å) and opposite to that for high fields. This
ultrafast charge transfer phenomenon is almost indepen-
dent of graphene doping. The charge transfer in fused
silica during propagation of fs optical pulse has been mea-
sured experimentally in Ref.15. Similar technique can be
applied for graphene. The fs currents and charge transfer
in graphene may provide fundamental basis for detection
and calibration of ultrashort intense laser pulses. They
are promising for petahertz-bandwidth information pro-
cessing.
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