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Ripples in pristine freestanding graphene naturally orient themselves in an array that is alternately curved-up and curved-down; 
maintaining an average height of zero. Using scanning tunneling microscopy (STM) to apply a local force, the graphene sheet will 
reversibly rise and fall in height until the height reaches 60-70% of its maximum at which point a sudden, permanent jump occurs. We 
successfully model the ripples as a spin-half Ising magnetic system, where the height of the graphene is the spin. The permanent jump 
in height, controlled by the tunneling current, is found to be equivalent to an antiferromagnetic-to-ferromagnetic phase transition. The 
thermal load underneath the STM tip alters the local tension and is identified as the responsible mechanism for the phase transition. 
Four universal critical exponents are measured from our STM data, and the model provides insight into the statistical role of 
graphene’s unusual negative thermal expansion coefficient. 

PACS numbers: 68.65.Pq, 82.37.Gk, 68.37.Ef, 05.50.+q 
 

I. INTRODUCTION 
The long-range stability of any two-dimensional (2D) crystal 
is considered impossible, the result of many years of 
laboratory research backed by the well-established theoretical 
work of Peierls, Landau, and the Mermin-Wagner 
theorem [1]. Therefore, deviations from planarity are essential 
to the stability of isolated graphene [2,3]. In fact, when 
pristine suspended graphene is imaged via transmission 
electron microscopy [4] or scanning tunneling microscopy 
(STM) [5], its topography resembles a network of adjacent 
hemispherical surfaces with openings turning alternately either 
upward or downward. Yet, this natural intrinsic roughening is 
not the only allowable configuration; it is possible to rearrange 
the ripples to achieve lattice distortions of a desired shape, 
size, or periodicity [6-10]. 

The Ising system, which was initially introduced to 
describe simple spin systems, has proven to be useful in many 
areas of physics, from statistical mechanics to biophysics. 
Given the coupled two-state nature of graphene ripples and 
their potential for collective behavior, the celebrated and 
versatile Ising model might, in principle, be applicable. While 
Onsager’s famous 2D solution was initially applied to the 
spontaneous magnetization of a 2D square lattice 
ferromagnet [11,12], through group renormalization [13] it has 
been established that a wide range of systems belong to the 2D 
spin-half Ising universality class [14-21]. Bonilla and Carpio 
treated graphene’s individual carbon atoms with the 2D Ising 
model [22,23] and reproduced the existence of ripples [24,25]. 
They found when carbon atoms are placed in a double-well 
potential at each lattice site, the nonlinear force (plus added 
noise that effectively breaks meta-stability) produces stable 
ripples after a short transient period. 

In this Letter, we show that pristine freestanding 
graphene undergoes transitions from a flexible state to a rigid 

state, consistent with a general solution of the 2D Ising 
universality class. This conclusion is reached from our 
experiments measuring freestanding graphene’s perpendicular 
displacement when both a local electric field and local heating 
are applied with STM. Our study provides a new 2D Ising 
framework for understanding the role of graphene’s ripples. 

 
II. EXPERIMENTAL METHODS 

The graphene sample was grown using chemical vapor 
deposition, then transferred onto a 2000-mesh, ultrafine 
copper grid having a lattice of square holes 7.5 μm wide with 
bar supports 5 μm wide. An Omicron ultrahigh-vacuum (base 
pressure is 10-10 mbar) low-temperature model STM, operated 
at room temperature, was used with tips manufactured in-
house [26]. STM images of freestanding graphene, as well as 
constant-current (feedback on) tip height versus bias voltage 
and setpoint current measurements were acquired. During a 
constant-current, tip-height measurement, a topography scan is 
made (typically only over an area of 0.1 nm by 0.1 nm), the 
imaging scanner is paused at one point, and the feedback loop 
remained operational. Assuming the sample is stationary, this 
process indirectly probes its density of states (DOS) [27,28]. A 
second interaction is also taking place, however, in which the 
tip bias induces an image charge in the grounded sample, 
resulting in an electrostatic attraction that increases with the 
bias and causing the sample to move towards the STM tip. 
 

III. EXPERIMENTAL RESULTS 
To image freestanding graphene using STM, we first 
developed a method to convert it from a flexible state to a 
rigid state. To illustrate this method, five characteristic height-
voltage, Z(V) measurements are displayed in Fig. 1. All 
measurements were acquired at the same sample location, in 
order of increasing current (as labeled). The three low-current 
curves (red) are characterized by a continuous, reversible 
increase in tip height (approximately 40 nm) as the tip bias is 
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increased. Notice that the higher current, 0.5 nA data has a 
slightly larger displacement compared to the lower current, 
0.1 nA data. This is due to the extra contraction occurring at 
higher currents as shown in our previous work [9,29]. The 
1.0 nA curve (black) shows one small jump up around 0.5 V, 
then a sudden ~30 nm permanent jump follows at ~2.5 V, 
before reaching a plateau. Notice, the height change before the 
permanent jump is ~60% of the total height change. The high-
current curve (blue, 5 nA) shows a total tip height change of 
only 3-4 nm over the entire tip bias range of 0.1 V to 3.22 V 
(i.e., the rigid state). This curve is displaced at the top of the 
1.0 nA curve because the jump in height for the 1.0 nA trial 
was permanent (as indicated by the one-way direction arrows). 
Once in the rigid state, an STM image could be obtained from 
freestanding graphene as shown in Fig. 2(a) using a 4 nm 
black-to-white height scale. The characteristic honeycomb 
structure is visible throughout the image, and the overall 
topography features a wide ridge running diagonally from the 
bottom left corner to the top right corner. Note that these are 
difficult images to obtain because graphene is still very floppy 
by STM standards. To quantify the statistical properties of the 
STM image, a height-height correlation function, 
<Z(x,y)Z(x+rx,y+ry)> was computed and is displayed in 
Fig. 2(b). This autocorrelation function is elongated in the 
same direction as the graphene ridge, and the correlation 
values are shown as a line profile in Fig. 2(c). The decay is 
modulated by small-scale oscillations caused by the presence 
of atomic corrugations. Half the correlation line profile is 
displayed on a log-log plot in Fig. 2(d). At about 1 nm, this 
curve drops sharply due to the edge of the STM image. A line 
having slope -0.25 is shown for comparison. 
 

IV. ISING MODEL 
To model the experimental results, the thermodynamic 
behavior of the magnetization, M of a modified 2D spin-half 
Ising magnet was simulated as a function of an external field 
having spatial dependence, h(r) and temperature, T. The 
corresponding model Hamiltonian, H can be written: ∑ ∑       (1)  
where the Ising spins,  represent ripples having either 
positive ( 0  or negative 0  curvature and J(M) is 
the coupling energy between the nearest neighbor ripples 
whose value depends on the total magnetization, ∑                                        (2)  
and h(r) = ho e-r/ξ represents the external field (in units of J) 
due to the STM tip, which we assume decays exponentially 
with length scale, ξ. We associate J(M) to the elastic energy of 
the ripples. Local heating (due to the increasing tunneling 
current) contracts the graphene and increases J(M) such that 
ripples are no longer favored. The last term in the Hamiltonian 
is related to the electrostatic energy between the tip and 
sample, which breaks the up-down symmetry. 

In the floppy state of graphene, J(M) = -1 yields the 
desired antiferromagnetic coupling between nearest neighbor 

spins, while in the rigid state J(M) = +2 is used to provide the 
desired ferromagnetic coupling. We performed Monte Carlo 
simulations using the Metropolis algorithm at different 
temperatures (in units of J/kB) on a hexagonal lattice with 
96,000 sites but having an overall nearly square layout [30-
32]. An individual spin, si represents an entire ripple, having a 
diameter of about 10 nm, which contains ∼1,000 carbon 
atoms, giving us a scale transformation compared to Bonilla 
and Carpio [23]. This scale change assumes that ripples exist 
and allows us to model the collective behavior of the ripples. 

 
V. NUMERICAL RESULTS 

Five characteristic magnetization-field M(ho) simulation 
curves are displayed in Fig. 3(a). All simulations were carried 
out for strategic values of J, T, and ξ (as labeled). The three 
lowest dashed curves (red) are characterized by an increase in 
magnetization with field, plus as the temperature is lowered 
the overall magnetization increases. Qualitatively, these are 
similar to the lower three experimental Z(V) curves, with the 
height, bias voltage (note, we assume the electric field varies 
linearly with bias voltage) and tunneling current playing the 
role of the order parameter, external field, and temperature, 
respectively. However, notice that as the tunneling current 
increases, the temperature in the simulation decreases. The 
next simulation (black curve) has a small jump followed by a 
larger permanent jump (indicated with one-way arrows). 
During this simulation run the first jump occurred because we 
increased the field decay length ξ from 28 to 35 (in lattice 
spacing units). The second jump occurs because the 
magnetization has reached 60-70% of its maximum, and at 
this point the overall nearest neighbor coupling J(M) is 
changed into +2. This value of J(M) and at this simulation 
temperature, the system is ferromagnetic below Tc. Therefore, 
even as the external field is lowered back to zero, the system 
stays ordered and follows the upper simulation dashed curve 
(blue) thereafter (as indicated by the arrows). The ordered 
simulations show excellent agreement with the high-current 
experimental Z(V) curves. Real-space images extracted from 
the simulations at four different magnetizations are shown as 
insets in Fig. 3(a). 
 

VI. DISCUSSION 
As we sweep through a wide range of voltages and then step 
through a large range of tunneling currents we are, in effect, 
hunting for the proper condition where freestanding graphene 
will change from a floppy trampoline-type geometry, as 
shown schematically in the upper model in Fig. 3(b), to a more 
rigid, larger, single-curvature type structure shown in the 
lower model of Fig. 3(b). The reason the system changes its 
configuration is highlighted in a simple cross-sectional 
illustration, but with more details, shown in Fig. 3(c). At low 
current and low voltage, the graphene model is in an 
antiferromagnetic state, but just above Tc, with an arrangement 
of alternately-oriented ripples, as shown with the dashed curve 
in the left image of Fig. 3(c). As the voltage is increased (solid 
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curve), the ripples reverse their orientation and provide a 
mechanism for greater perpendicular displacement [33]. Next, 
as the current is increased, graphene is heated and contracts, as 
depicted in the shorter wavelength illustration shown with the 
dashed curve in the right image of Fig. 3(c). The contraction 
leads to a larger elastic energy build up (like a compressed 
spring), making the system more unstable to perpendicular 
movement. This is similar to Euler buckling when a system is 
under uniaxial compression [34] (i.e., a vertical column 
buckling under too much weight). When more voltage is 
applied at the higher tunneling currents, the system suddenly 
jumps to form a larger structure which is both rigid and stable. 
This final state is the ferromagnetic state below Tc and is 
shown as the larger solid line in Fig. 3(c). Notice, that the role 
of temperature in our Ising model is two-fold. Temperature 
increases the entropy of the system as it would normally, 
however higher temperatures also cause a contraction which 
increases the internal energy of the system and ultimately 
drives the change in geometry. 

A large number of additional Z(V,I) data sets were 
acquired from the freestanding graphene surface and across 
numerous samples, and results are in Fig. 4. All the current-
voltage data pairs at which graphene transitions from flexible 
to rigid are shown as open circles. When the voltage range is 
reduced, we found the sudden permanent jump occurred at a 
much higher tunneling current setpoint; similarly when the 
voltage range was expanded, the jump then occurred at a much 
lower tunneling current setpoint. For the highest voltage range 
sweeps (0.01 to 10 V), graphene would sometimes tear, while 
for the lowest voltage range sweeps the jump to the rigid state 
would sometimes not occur. The overall result is consistent 
with a 1/I2 behavior, in which thermal contraction at higher 
currents permits a lower voltage to drive the system into the 
rigid state. Remarkably, this trend also mimics the behavior of 
the critical field as a function of temperature for some 
ferromagnetic systems (i.e., hc vs. T) [35]. The inset of Fig. 4, 
shows another, larger Z(V) data set showing the flexible state 
in red, a single jump Z(V) in black, and then several rigid 
Z(V) in blue. Notice, the jump occurs when the total height 
reaches 60-70% of the maximum. 

The constant-current Z(V) data sets shown in Figs. 1 
and 4, along with the STM image shown in Fig. 2, all provide 
strong evidence that this system can be described by the 2D 
Ising magnet Hamiltonian. However, quantifying a system’s 
dimensionality and internal degrees of freedom requires the 
measurement of critical exponents [36].  Our large data set 
spanning current, voltage, and displacement made it possible 
to determine four of the six static 2D universal critical 
exponents, as listed in Table 1. Measuring just two of the 
critical exponents is enough to calculate the other six; so their 
interrelationships can be tested by measuring four. The pair 
correlation critical exponent η is a measure of the average 
domain size at the critical point. It was measured from the 
decay of the autocorrelation function for several STM images 
similar to the one shown in Fig. 2(b), and our average value 

(see Table 1) is in good agreement with the 2D Ising 
prediction. The critical isotherm exponent δ characterizes the 
very slow, power-law increase in height with bias voltage 
along the critical isotherm (constant current). It is calculated 
using the Z(V) data curve just after the sudden permanent 
jump, and assumes that the electric field scales linearly with 
tip bias in the range of interest, as shown in Fig. 5(a). Next, 
the spontaneous polarization critical exponent β describes the 
slow increase in height with temperature, in the ordered state 
and near the critical temperature. It is calculated using all the 
high-current data sets acquired just after the sudden permanent 
jump for all the tip biases in the region of the jump, while 
assuming (from resistive heating arguments) that the local 
temperature increases with I2 for the graphene beneath the 
STM tip, as shown in Fig. 5(b) [37]. Please see our previous 
work for our method of modeling the sample heating [9,29]. 
Finally, the susceptibility critical exponent γ is a measure of 
how the susceptibility, ∂Z/∂V changes with temperature near 
the critical point. It is calculated for all the high-current data 
sets acquired just after the sudden permanent jump, as shown 
in Fig. 5(c). This large set of critical exponents, associated 
with the second-order phase transition, are all within the 2D 
Ising universality class [38], and therefore provides a rigorous 
testament of freestanding graphene’s 2D Ising behavior. 

One fascinating aspect for each of these data sets is 
that the transition from the flexible state (above Tc) to the rigid 
state (below Tc) occurs with increasing current, that is, when 
heating up the sample, which is opposite to  the usual 2D Ising 
magnet behavior. This is a consequence of graphene’s unusual 
negative thermal expansion property (see W. Bao et al., in 
which the coefficient was measured above room temperature 
in a similar suspended configuration) [39-43]. When graphene 
is heated, the internal tension increases, and this changes the 
coupling between the nearest-neighbor ripples. In effect it 
alters the lowest energy configuration for graphene from the 
antiferromagnetic state to the bulged out ferromagnetic state. 

 

VII. SUMMARY 

In summary, this study successfully applied the 2D magnetic 
Ising model to the technologically-important freestanding 
graphene system. Four universal 2D critical exponents were 
measured from STM data. Unexpectedly, a transition was 
observed between a flexible state and a rigid state as the 
sample was heated (which is opposite the 2D Ising system); 
this is explained in terms of the negative thermal expansion 
properties of graphene. We presented a model in which 
individual graphene ripples are the spins of a 2D magnet, with 
the distinction that the elastic energy of the ripples increases 
during heating due to thermal contraction. 
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FIG. 1. Constant-current, tip-height vs. bias voltage Z(V) data sets on suspended graphene acquired using the labeled setpoint 
currents.  The red curves indicate the flexible state which are reversible, the black curve is when the permanent jump occurred, and the 
blue curve indicates the rigid state. Curves are slightly offset from each other for clarity. 

 
FIG. 2.  (a) Constant-current, filled-state STM image over a 6 nm × 6 nm surface of freestanding graphene taken with V = 0.1 V and 
I = 1.0 nA. (b) Site-site correlation of (a). (c) Line profile taken from (b). (d) Half of the line in (c) on a log-log plot (circles) with solid 
line power law function (r -η with η = 0.25). 
 
FIG.3. (a) Dashed lines show the isothermal magnetization of a 2D Ising magnet vs. field using a particular J, T, and ξ as labeled. 
Curves are slightly offset from each other for clarity. Insets: Real-space simulation images at various magnetizations. (b) Rendered 3D 
molecular models of freestanding graphene illustrating the antiferromagnetic state (upper image) and local ferromagnetic state (lower 
image). (c) Schematic showing graphene ripples in cross-section at a low (left) and high (right) tunneling current for both low 
(dashed) and high (solid) bias voltages. Curved-up (-down) graphene ripples are spin-up (-down) elements. 
 
FIG. 4. Large set of experimental (Ic,Vc) points for which graphene transitions from floppy to rigid. The solid line is a trend curve to 
aid the eye. Inset: Complete data set showing several flexible Z(V) curves (red), a single jump curve in black, and several rigid curves 
in blue. Curves are slightly offset from each other for clarity. The three critical exponents δ, γ, and β are calculated using the 
highlighted data in the region marked in the inset figure and using the formulas shown in Table 1. 
 
FIG. 5. Plots used to determine the value of the critical exponents δ, β, and γ. (a) Log|Z-Zc| vs Log|V-Vc| shown as solid circles. The 
red line, shown for comparison, has the ideal slope of 1/δ or 1/15. (b) Log|Z-Zc| vs Log|I2-(Ic)2| shown as solid circles. The red line, 
shown for comparison, has the ideal slope of β or 1/8. (c) Log|∂Z/∂V| vs Log|I2-(Ic)2| shown as solid circles. The red line, shown for 
comparison, has the ideal slope of -γ or -7/4.  

TABLE 1. Measured critical exponents with predicted 2D and 3D values. Vc and Ic are the voltage and current at which the jump of 
height Zc occurred for a particular data set. 
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