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Abstract

Coherent phonons in single wall carbon nanotubes (SWNTs) are observed as oscillations of the

differential absorption coefficient as a function of time by means of pump-probe spectroscopy.

For the radial breathing mode (RBM) of a SWNT, the coherent phonon signal is understood to

be a result of the modulated diameter-dependent energy gaps due to the coherent RBM phonon

oscillations. However, this mechanism might not be the dominant contribution to other phonon

modes in the SWNT. In particular, for the G band phonons, which correspond to bond-stretching

motions, we find that the modulation of the interatomic optical dipole (electron-photon) matrix

element gives rise to a strong coherent G band phonon intensity comparable to the coherent RBM

phonon intensity. We also further discuss the dependence of coherent G band and RBM phonon

amplitudes on the laser excitation pulse width.

PACS numbers: 78.67.Ch,78.47.J-,73.22.-f,63.22.Gh,63.20.kd
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I. INTRODUCTION

Single wall carbon nanotubes (SWNTs), characterized by the chiral index (n,m),1 have

been important materials that provide us with a one-dimensional model system to study

the dynamics and interactions between electrons, photons, and phonons.2 In particular,

rapid advances in ultrafast pump-probe spectroscopy have allowed researchers to observe

lattice oscillations of SWNTs with the same phase in real time, known as coherent phonon

spectroscopy.3–7 The coherent phonon motions can be observed as oscillations of optical

properties, such as the differential transmittance (∆T/T ) or differential reflectivity (∆R/R)

as a function of delay time between pump and probe pulses. To excite a coherent phonon

of a given frequency, it is necessary for the pump pulse to have a Fourier component at the

phonon frequency. By performing a Fourier transform of the oscillations of ∆T/T or ∆R/R

with respect to time, we can obtain the coherent phonon spectra as a function of phonon

frequency. Several peaks found in the coherent phonon spectra of a SWNT correspond

to Raman active phonon modes, such as the radial breathing modes (RBMs), D bands,

G bands, and G′ bands.8 Lim et al. showed that even the low-frequency acoustic phonon

signals can be observed in purified (6, 5) SWNTs by coherent phonon spectroscopy because

of its ultrafine spectral resolution.9 Moreover, ultrafast spectroscopy techniques allow us to

directly measure phonon dynamics, including phase information, or life time of phonons, in

the time domain.3,4,6

It is known that oscillations of ∆T/T or ∆R/R as a function of delay time t between

pump and probe pulses in coherent phonon spectroscopy are directly related to the mod-

ulations of the absorption coefficient α as a function of the probe energy Eprobe and t.10

Therefore, in order to obtain the coherent phonon spectra theoretically, we need to calculate

the absorption coefficient α(Eprobe, t) for a given coherent phonon amplitude. In the case of

RBMs, the oscillations of α(Eprobe, t) have been understood as a result of energy gap modu-

lations, which are inversely proportional to the nanotube diameter.4,6 However, in the case

of G bands, which are assigned to longitudinal-optical (LO) and in-plane transverse-optical

(iTO) phonon modes,2 it is known that these modes do not significantly modify the energy

gaps because the SWNT diameters are not sensitive to the LO/iTO vibrations. While the

coherent G band signals are experimentally observed to be on the same order of magnitude

as the RBM signals,9,11 our previous theoretical calculation predicted that the modulations

2



of absorption coefficient due to the G band (LO) phonons are about 1000 times smaller

than those caused by the RBM.12 We expect that the reason for the discrepancy is because

we considered only the change of the energy gap as a main contribution for the coherent

G band spectra and also because the excitation pulse used in the calculation was too long

(50 fs) compared to the G band oscillation period (20 fs). This fact indicates that a different

mechanism is necessary to explain the coherent G band intensity and that the effects of laser

pulse width on the coherent phonon intensity should be taken into account, both of which

are the main subjects of this paper.

One possible dominant contribution to the coherent G band intensity is the modulation

of electron-photon interaction. For example, Grüneis et al. discussed the optical absorption

of graphene from π to π∗ bands, where the interatomic optical dipole matrix elements for the

nearest neighbor carbon-carbon atoms, mopt, are essential.
13 The optical matrix elements are

thus sensitive to the change in the carbon-carbon bond length, which can be significantly

modified by the G band phonons. In this work, in addition to the changes in electronic

structure which arise from the coherent phonons, we now consider changes to the optical

matrix element which arise from the coherent phonon oscillations. We find that modulation

of mopt is particularly relevant to the coherent G band intensity and that the changes to

the optical matrix element for the G band are larger than for the RBM oscillations. We

calculate the coherent G band spectra for a specified SWNT chirality and compare them

with the other coherent phonon modes in the SWNT. By a simple analytical model, we also

study how the variation of the laser pulse width affects the coherent phonon intensity.

This paper is organized as follows. In Section II, we explain coherent phonon simulation

methods which include a general theory for the generation and detection of coherent phonons

in SWNTs. In Section III, we present the main results and discuss how the coherent G band

intensity could have a stronger signal by considering the modulation of optical interaction

and shorter pulse width. And finally, we give a conclusion in Section IV.

II. SIMULATION METHODS

To calculate coherent phonon spectra, we follow the methods described in our earlier

papers,12,14 except that we will also now treat the effects of the coherent phonon modulations

of the electron-photon interaction which we previously neglected for simplicity. We define a
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coherent phonon mode with wavevector q = 0 (Γ point phonon) whose amplitude satisfies a

driven oscillator equation
∂2Qm(t)

∂t2
+ ω2

mQm(t) = Sm(t), (1)

where m and ωm denote the phonon mode (e.g. RBM, oTO, LO, iTO) and its frequency,

respectively. Equation (1) is solved subject to the initial conditions Qm(0) = 0 and Q̇m(0) =

0. The driving function Sm(t) in the right hand side of Eq. (1) is given by

Sm(t) = −2ωm

~

∑

nk

Mm
n (k)

(

fn(k, t)− f 0
n(k)

)

. (2)

where fn(k, t) is the time-dependent electron distribution function and f 0
n(k) is the initial

equilibrium electron distribution function. Here n labels an electronic state, while k gives

the electron wavevector. The electronic states of a SWNT are calculated within the extended

tight-binding (ETB) approximation.15 The electron-phonon matrix element Mm
n (k) in Eq. 2

is a shorthand for Mm,0
nk;nk, where Mm,q

n′k′;nk is the deformation potential electron-phonon

matrix element in the ETB model with phonon wavevector q = k− k′ and with a transition

from the state n to n′.16.

From Eq. (2), we see that the driving function Sm(t) depends on the photoexcited elec-

tron distribution functions, which can be calculated generally by taking photogeneration and

relaxation effects into account. The electron-phonon matrix element in this equation tells

us that the coherent phonon oscillations are basically generated by the time-dependent elec-

tronic population through the electron-phonon interaction, while the electronic population

is induced by the optical pulse through the electron-photon interaction. Besides creating

the electronic population, the ultrafast laser pulse also generates an interband polarization

that oscillates much faster than the phonon modes considered in this study. It thus aver-

ages to zero and hence we neglect its contribution for simplicity. The observed coherent

phonon intensity is then proportional to the power spectrum of the oscillations of optical

properties.10 Within the scope of this work, we ignore relaxation effects of the photoexcited

carriers and consider only the rapidly varying photogeneration term which can be calculated

directly from the Fermi’s golden rule. Neglecting carrier relaxation has a negligible effect

on the computed coherent phonon signal since the relaxation time is much greater than the

laser pulse duration and the coherent phonon period.12

Using the Fermi’s golden rule, we obtain the photogeneration rate for the distribution
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functions as follows,17

∂fn(k)

∂t
=

8π2e2 u(t)

~ n2
g (Epump)2

(

~
2

m0

)

∑

n′

|Pnn′(k, t)|2

×
(

fn′(k, t)− fn(k, t)
)

δ
(

Enn′(k, t)− Epump

)

, (3)

where Enn′(k, t) = |En(k, t)− En′(k, t)| are the k dependent transition energies at time t of

a coherent phonon oscillation, Epump is the pump laser energy, u(t) is the time-dependent

energy density of the pump pulse, e is the electron charge, m0 is the free electron mass,

and ng is the refractive index of the surrounding medium. The pump energy density u(t) is

related with the pump fluence F by a relation F = (c/ng)
∫

u(t)dt and u(t) is also assumed

to be a Gaussian. Thus

u(t) = Ape
−4t2 ln 2/2τ2

p , (4)

where Ap = (2ngF
√

ln 2/π)/(cτp) and c is the speed of light. In Eq. (4), τp is defined as

the pump duration or laser pulse width. Unless otherwise mentioned, we use parameters

τp = 10 fs, F = 10−5 J cm−2, and ng = 1. To also account for lifetime broadening of the

photoexcited carriers during the absorption process, we replace the delta function in Eq. (3)

with a Lorentzian lineshape

δ(Enn′ − Epump) →
Γp/(2π)

(Enn′ − Epump)2 + (Γp/2)2
, (5)

where Γp = 0.15 eV is the spectral linewidth (FWHM).12 Here the time dependence of Enn′ is

determined by Qm(t) mainly through the RBMs, in which the energy dispersion is inversely

proportional to the SWNT diameter.4,12

By considering light polarized parallel to the tube axis (z axis) that contributed to the

optical absorption, we can write the optical matrix element Pnn′ in Eq. (3) within the dipole

approximation as13

Pnn′(k) =
~√
2m0

∑

i,jJ

C∗

i (n
′, k)Cj(n, k)e

iφJ(k)mopt(i, jJ), (6)

where Ci(n, k) and φJ(k) respectively denote the expansion coefficient and phase factor from

the Nth two-atom unit cell of the symmetry-adapted ETB wave functions.18 The atomic

electron-photon matrix element is given by

mopt =

∫

drϕ∗

i0(r−Ri0)
∂

∂z
ϕjJ(r−RjJ), (7)
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where ϕjJ is the 2pz orbital of the jth atom in the Jth unit cell.

We should note that Eqs. (6) and (7) still do not have an explicit time dependence. The

time-dependence of the optical matrix element comes from the coherent phonon amplitude

Qm(t) which allows the atomic matrix element mopt to also vary as a function of time as the

positions of the carbon atoms change. Grüneis et. al calculated the integral in Eq. (7) for

planar graphene analytically by expanding the orbital wavefunctions in terms of Gaussians

and it was found that mopt explicitly depends on the bond length between two carbon atoms

aCC.
13 If the bond length aCC is altered by coherent phonon oscillations, the atomic matrix

element mopt is directly affected, as is the dipole optical (electron-photon) matrix element

Pnn′. This is because the deformation of the bond lengths alters the transfer integral and

overlap matrix elements in the ETB model.

Based on above argument, the time-dependence of Enn′(k, t) and Pnn′(k, t) can be ob-

tained from the time-dependent lattice displacements due to the change in aCC by the

coherent phonon oscillations, especially for the G band, which is the in-plane C-C bond-

stretching mode. From the coherent phonon amplitudes, the time-dependent macroscopic

displacement of each carbon atom in an SWNT is given by12

UjJ(t) =
~√
2M

∑

m

êmjJ√
~ωm

Qm(t) (8)

where êmjJ ≡ êmjJ(q = 0) is the unit phonon mode polarization for the jth atom in the

J = (0, 0) two-atom unit cell, ~ωm ≡ ~ωm(q = 0), and M is the mass of a carbon atom.

The bond length aCC at each time t of a coherent phonon oscillation can then be calculated

from the macroscopic carbon atom displacements. Eventually, the time-dependent optical

matrix element can be evaluated by

Pnn′(k, t) = Pnn′(k, 0) + ∆Pnn′(k, t), (9)

where ∆Pnn′(k, t) is directly proportional to the time-dependent mopt and we take an average

of Pnn′ over three nearest neighbor atoms.

In coherent phonon spectroscopy, a laser probe pulse is used to measure the time-varying

absorption coefficient of the SWNT. The time-dependent absorption coefficient α(t) at a
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probe energy Eprobe is given by the Fermi’s golden rule

α(Eprobe, t) ∝
∑

nn′

∫

dk |Pnn′(k, t)|2
(

fn(k, t)− fn′(k, t)
)

× δ
(

Enn′(k, t)− Eprobe

)

, (10)

We replace the delta function in Eq. (10) with a broadened Lorentzian spectral lineshape

with a FWHM of γ = 0.15 eV,12 similar to that in Eq. (5). Excitation of coherent phonons

by the laser pump modulates the optical properties of the SWNTs, which gives rise to a

transient differential transmission signal, or the modulations of absorption coefficient. The

time-resolved differential gain measured by the probe is then given by

∆α(Eprobe, t) = −[α(~ω, t)− α(~ω, t → −∞)] (11)

We take the theoretical coherent phonon signal (or intensity, I) to be proportional to the

Fourier power spectrum of such absorption modulations at a given energy Eprobe,

I(ω) =

∫

e−iωt |∆α(Eprobe, t)|2 dt, (12)

where ω represents the phonon frequency that contributes to the coherent phonon spectra.

III. RESULTS AND DISCUSSION

A. Modulation of optical interaction

First we discuss the effects of coherent phonon oscillations on the optical interaction.

The changes in aCC modulate the atomic matrix element mopt because of the direct corre-

spondence between these two quantities at time t. Fig. 1(a) shows the calculated mopt as

a function of aCC based on the formula given by Grüneis et al.13,19. It indicates that the

strength of optical interaction monotonically decreases as a function of aCC. In the inset

of Fig. 1(a), we show the atomic matrix element within an enlarged region around 1.40 Å

and 1.45 Å. The shaded region corresponds to the possible values of aCC affected by the

coherent LO phonon oscillation given in Fig. 1(b). From this figure, we can say that the

modulations of optical interaction is about 0.02 [a.u]−1 for the change of vibration ampli-

tude of about 0.02 Å. These modulations of optical interaction is thus approximately 10%

of mopt = 0.25[a.u.]−1, which is not negligible for calculating the absorption coefficient of a
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FIG. 1: (a) Atomic matrix element as a function of carbon-carbon bond length in SWNTs and

(b) the change of bond length as a function of time due to a coherent LO phonon oscillation of

in a (6, 5) SWNT at a laser (both pump and probe) energy of 1.15 eV. Inset in (a) shows an

enlarged region between 1.40 Å and 1.45 Å. A dot in the inset corresponds to the bond length

without coherent phonon oscillations, whereas the shaded region corresponds to the area in which

the bond length oscillates as shown in (b). (c) Coherent phonon intensity as a function of phonon

frequency, showing the RBM and LO peaks. Solid (dashed) line is the calculated result with

(without) considering the modulation of optical matrix element. Filled (open) circles are also a

guide for eyes to see the intensity values which include (exclude) the modulation of optical matrix

element.

SWNT. The coherent phonon intensity is proportional to |∆α|2 ∝ |∆mopt|4, which is the

leading order of the spectra. In the previous study, however, this fact was not taken into

account and the optical matrix element was considered constant as a function of time.12

Next, from the time-dependent optical matrix elements, we proceed to the calculation

of coherent phonon spectra by taking the Fourier transform of Eq. (11). The calculation is

performed by allowing the probe energy in Eq. (10) to be varied independently while keeping

the pump energy in Eq. (3) constant. We take a (6, 5) SWNT chirality as a sample for this

calculation. This SWNT has the first and second optical transition energies (band gaps) of

1.27 eV and 2.42 eV, denoted by E11 and E22, respectively.
20 In this calculation we neglect the

exciton effects for simplicity. Basically, the exciton-photon matrix elements are about 100

times larger than the electron-photon matrix elements,21 but such enhancement factors are

common for all the phonon modes. On the other hand, the values of exciton-phonon matrix

elements are almost the same as the electron-phonon matrix elements.21 Therefore, the

exciton effects will not modify the relative intensity between the phonon modes. In Fig. 1(c),
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we show an example of the calculation for intensity as a function of phonon frequency by

including or excluding the modulation of optical interaction. The coherent phonon spectra

shows both the RBM and LO peaks for a particular laser excitation energy of 1.15 eV. It can

be seen that the LO intensity is enhanced significantly when taking the modulation of optical

interaction into account (about 12 times larger than without considering the modulation of

optical interaction), while the RBM intensity is just enhanced slightly (only by a factor of

about 1.5).

To further understand the laser energy dependence of the spectra, we calculate the coher-

ent phonon intensity for a given phonon frequency ωm by considering different laser probe

energy from 1.0-3.0 eV with an interval of 0.1 eV. In Fig. 2, we show absorption coefficients

and coherent phonon spectra of the (6, 5) SWNT as a function of probe energy. For the

coherent phonon spectra, we give the spectra both in the linear scale and logarithmic scale

as shown in Figs. 2(b) and (c), respectively. The spectra are accompanied with the plot

of absorption coefficient in Fig. 2(a) as a reference for showing the positions of the optical

transition energy peaks. In Figs. 2(b) and (c), we compare the coherent G band phonon

spectra (LO and iTO modes) with RBMs and also with oTO (out-of-plane TO) mode for the

(6, 5) tube. In Fig. 2(b), we can see that the coherent RBM intensity and LO intensity are

on the same order, with the RBM intensity being slighly larger than that of the LO intensity

by a ratio of about 2.5 and 2.1 at E11 and E22, respectively. These results indicate that

modulations of optical matrix elements become important in enhancing the coherent G band

intensity. It should be noted that the coherent iTO intensity is hundred times smaller than

the LO intensity. Therefore, the coherent G band phonon spectra are mainly dominated by

the LO phonon modes.

It is also interesting to see in Fig. 2(c) that there is a dip at 2 eV for the RBM phonons,

which might be related with the zero value of the coherent RBM phonon amplitude.14 The

dip of RBM coherent phonon spectra could give information of photon energy that would

correspond to the transition from expansion to contraction (or vice versa) of the SWNT

diameter.14 Moreover, we obtain two peaks at each transition energy for all phonon modes,

consistent with some earlier works that reported the excitation energy dependence of coher-

ent phonon intensity always shows a derivative-like behavior of the absorption coefficient.4,11

The double-peak feature at each transition energy for the plots of coherent phonon intensity

versus probe photon energy can be symmetric or asymmetric depending on whether or not
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FIG. 2: (Color online) From top to bottom shows (a) absorption coefficient, (b) linearly scaled

and (c) logarithmically scaled coherent phonon intensities as a function of probe energy for a (6,5)

SWNT. The tube is photoexcited by a 1.15 eV Gaussian pump pulse linearly polarized along the

tube axis (z axis) with a pulse width of τp = 10 fs. The intensity is normalized to the maximum

intensity of the RBM.

the excitonic effects are taken into account.22 In this work, the double-peak lineshapes are

asymmetric, i.e. the two peaks at each the transition energy do not have the same intensity,

because we neglect the exciton effects for simplicty. It is also worth comparing the ratio of

the coherent RBM and LO intensity obtained in this study with that in the experiment.

For example, a pump-probe measurement by Lim et al. gave the RBM intensity of about
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FIG. 3: (Color online) (a) Coherent phonon driving force (Sm) as a function of time for the RBM

and LO phonon modes of the (6, 5) SWNT under E11 excitation. For each phonon mode in this

plot, we consider three different values of pulse width (τp): 10 fs, 20 fs, and 30 fs. (b) Coherent

phonon amplitude (Qmag) for the RBM and LO phonon modes obtained analytically as a function

of pulse width. Inset shows the logarithmic plot of the same amplitude as a function of squared

pulse width.

eight times larger than the LO intensity.9, thus the calculated relative intensity of RBM and

LO is already on the same order-of-magnitude as obtained in the experiment. The small

discrepancy, however, might come from the additional effect of the selection of laser pulse

width τp.
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B. Effects of laser pulse width

To discuss the effects of laser pulse width (τp) on the coherent phonon intensity, we can

analytically model the driving function Sm(t) of Eq. (2) by using the laser pulse in the form

of Eq. (4) and then solve for Qm(t). By understanding the τp dependence of Qm, we can

qualitatively explain the trend of the coherent phonon intensity when τp is varied. As we

can see from Eq. (2), Sm(t) is proportional to the carrier density, fn(k, t), which can be

obtained by integrating Eq. (3) with respect to time. For simplicity, we can write Sm(t) to

be directly proportional to the integration of u(t),

Sm(t) ∝
∫ t

−∞

Ape
−4t′2 ln 2/2τ2

p dt′

∝ ngF

2c

√

π

ln 2

[

1 + erf

(

2t ln 2

τp

)]

, (13)

where erf(x) = (2/
√
π)

∫ x

0
e−x′

dx′ is the error function. To obtain the full equality between

the left-hand and right-hand sides of Eq. (13), we can put an additional term of electron-

phonon matrix element as also indicated in Eq. (2). This additional term along with the

prefactor in the right-hand side of Eq. (13) form a constant Am, which will change only

when we have different phonon modes m. We can finally write the driving function as

Sm(t) =
Am

2

[

1 + erf

(

2t ln 2

τp

)]

. (14)

Next, to obtain a particular solution for Qm(t) from Eq. (1) with Sm(t) in terms of

Eq. (14), we can use a Fourier transform or Green’s function method. In doing so, we

assume that while there is a rise time in the carrier density that follows the integral of the

envelope function for the pump pulse, for simplicity, we can approximate it by a Heaviside

step function. This approximation should not affect the amplitude of the coherent phonon

mode provided the pulse duration is short compared to the mode frequency. This allows

us to write the equation for Qm in terms of initial condition at t = 0. The corresponding

solution for Qm(t) with an initial condition of Q̇m(0) = 0 (or equivalent to Qm(0) as a

minimum value) is

Qm(t) =
Am

ω2
m

[

1− e−ω2
m
τ2
p
/16 ln 2 cos(ωmt)

]

. (15)

Having the solution of Qm(t), we can now discuss its dependence on τp. First, the value

of Am in Eqs. (14) and (15) can be obtained by fitting to the maximum value of the force
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Sm(t) simulated from the full microscopic treatment in Eq. (2). In Fig. 3(a), we show the

simulated Sm(t) for the RBM and LO mode of (6, 5) SWNT under E11 excitation with three

different values of τp. We see that Sm(t) for all cases show a step-like behavior with a width

of τp, and thus consistent with Eq. (14). The maximum values of Sm(t) only differ between

different phonon modes. The fitted values of Am for the RBM and LO mode are 1161.7 ps−2

and 3516.5 ps−2, respectively. In Fig. 3(b), we show the magnitude of Qm, denoted as Qmag,

as a function of pulse width τp for the RBM and LO phonon modes. The definition for Qmag

is

Qmag =
Am

ω2
m

e−ω2
m
τ2
p
/16 ln 2, (16)

which represents the difference between the maximum and minimum values of the coherent

phonon oscillation amplitudes. We also have 2π/ωRBM = 110 fs and 2π/ωLO = 21 fs for the

RBM and LO oscillation periods of the (6, 5) SWNT, respectively. We can see from Fig. 3(b)

that as the pulse width increases, the coherent phonon amplitude quickly decays following

the Gaussian shape of the spectrum of the laser pulse.23 However, the rate of the amplitude

decay depends on the phonon mode oscillation frequency or period, as clearly shown in the

inset of Fig. 3(b). If the pulse width is much smaller than the phonon oscillation period, the

amplitude will be enhanced. In this case, the LO phonon mode is enhanced more quickly

than the RBM mode after the pulse width becomes shorter than the LO oscillation period.

Therefore, as we have used τp = 10 fs in the simulation discussed earlier, the coherent LO

intensity rapidly increases while at the same time the coherent RBM intensity increases

more slowly. This could be the reason why we have a slightly different ratio of the RBM

to the LO intensity since the coherent LO phonon amplitude is much more sensitive to the

variation of the laser pulse width within the sub-10 fs region compared to the coherent RBM

phonon amplitude.

IV. CONCLUSION

We have presented the mechanism by which a strong coherent G band signal could be

generated in ultrafast pump-probe spectroscopy. Instead of the energy gap modulation

mechanism which is dominant in the RBM case, we suggest that the modulations of electron-

photon interaction as a function of time should be relevant to the coherent G band intensity.

We also find an analytical formula that describes how a typical coherent phonon amplitude
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behaves as a function of laser pulse width. The formula indicates that the G band (LO

mode) intensity increases more rapidly than the RBM intensity by decreasing the pump

laser pulse width, especially when the pulse is much shorter than each of the phonon mode

period.
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