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We investigate the topological and transport properties of the recently discovered valley-polarized
quantum anomalous Hall (VQAH) phase. In single layer, the phase is realized through the com-
petition between two types of spin-orbit coupling, which breaks the symmetry between the two
valleys. We show that the topological phase transition from conventional quantum anomalous Hall
phase to the VQAH phase is due to the change of topological charges with the generation of ad-
ditional skyrmions in the real spin texture, when the band gap closes and reopens at one of the
valleys. In the presence of short range disorders, pairs of the gapless edge channels (one from each
valley in a pair) would be destroyed due to intervalley scattering. However, we discover that in
an extended range of moderate scattering strength, the transport through the system is quantized
and fully valley-polarized, i.e. the system is equivalent to a quantum anomalous Hall system with
valley-filtered chiral edge channels. We further show that with additional layer degree of freedom,
much richer phase diagram could be realized with multiple VQAH phases. For a bilayer system, we
demonstrate that topological phase transitions could be controlled by the interlayer bias potential.

PACS numbers: 73.22.Pr, 73.43.Cd, 75.70.Tj

I. INTRODUCTION

Gapless one-dimensional (1D) edge channels are in-
triguing physical objects which are usually associated
with nontrivial topological phases of two-dimensional
(2D) systems. For example, the precise quantization of
Hall plateaus in quantum Hall effect is tied with the
dissipationless chiral edge channels and is related to a
bulk topological invariant known as the Chern number
(or TKNN invariant).1,2 It was later realized that the
existence of such edge channels in fact does not necessar-
ily require the orbital effects of external magnetic field.
Instead, it could arise from the combined effects of spin
polarization (e.g. due to magnetic ordering) and spin-
orbit coupling (SOC).3–7 This topological phase, known
as the quantum anomalous Hall (QAH) phase, has been
sought for more than 20 years. Hence its first realization
in magnetically doped topological insulator thin films
has attracted significant attention and research activities
recently.8–12

It is possible that these edge channels may carry addi-
tional flavors. For example, in quantum spin Hall effect,
the chirality of the edge channel is tied with its spin,
hence on each edge, there is a Kramers pair of counter-
propagating spin-polarized edge channels, which are pro-
tected by time reversal symmetry.13,14 When the band
structure has multiple energy extremas, carriers could
have another type of flavor, valley. Similar to spintron-
ics, it was proposed that this valley degree of freedom
may also be utilized for information processing, leading
to the concept of valleytronics.15–21 It has been shown
that there could be topological charges associated with
the valleys and it is possible to realize 1D channels that
carry specific valley indices.22–27 However, in these pre-

vious studies, the numbers of 1D channels in each valley
are balanced, due to the presence of either time reversal
symmetry or inversion symmetry.

In a recent work, we demonstrated that by break-
ing both time reversal symmetry and inversion symme-
try, it is possible to achieve a novel topological phase,
the valley-polarized quantum anomalous Hall (VQAH)
phase.28 The hallmark of this phase is that at system
edges where valleys can be distinguished, there exist
unbalanced numbers of counter-propagating chiral edge
channels associated with the two valleys. This imbal-
ance automatically indicates that the system is in a QAH
phase. The additional valley features of the edge chan-
nels are manifestations of the unbalanced valley topolog-
ical charges in the bulk. Therefore such phase is char-
acterized by two bulk topological invariants: the total
Chern number C and the valley Chern number Cv. We
have found that such a novel phase could be realized due
to the competition between two types of SOCs in a low
buckled honeycomb lattice model which may describe 2D
materials such as silicene or germanene.29–36

Due to length restrictions, several important physical
aspects of the VQAH phase were not exposed in the pre-
vious work. In the present paper, we would address these
details. More importantly, we greatly extend our previ-
ous work by investigating the disorder effects on VQAH
phase and the valley-polarized topological phases in a bi-
layer system. The valley polarized channels are robust
against smooth-varying scattering potentials, expected
from the large momentum separation between the two
valleys. Through explicit transport calculations, we show
that for short range scatterers, although the interval-
ley scattering would destroy pairs of counter-propagating
valley channels, remarkably, the remaining |C| channels
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can still retain their valley character in transport. As
a result, each edge could serve as a perfect valley fil-
ter with chiral edge channels for one specific valley. We
show that this happens for an extended window of in-
termediate scattering strength. Furthermore, for a bi-
layer system formed by stacking two single layers, we
find that the resulting properties are not simply super-
position of the two. In fact, the bilayer system exhibits
a much richer phase diagram including several VQAH
phases with different (C, Cv) invariants. The topological
phase transitions between these phases could be more
easily controlled by tuning the interlayer bias potential.

Our paper is organized as following. In Sec. II, we
discuss the VQAH phase in a single layer lattice model.
By decomposing the topological charges into real spin
and pseudospin sectors, we show that the topological
phase transition to VQAH phase is accompanied with
the change of real spin topological charge in one valley.
In Sec. III, we study the effects of short range scattering
on the VQAH phase based on a two-terminal transport
calculation and show that in a window of intermediate
scattering strength, only one chiral edge channel with K ′

valley character is left. In Sec. IV, we investigate the rich
topological phases in a bilayer system and demonstrate
the tunability of the phases through interlayer bias and
exchange field strength. Finally, we give our conclusion
and summarize our results in Sec. V.

II. VALLEY-POLARIZED QAH PHASE IN
SINGLE LAYER SYSTEM

The VQAH phase was first discovered in a lattice
model defined on a low-buckled single layer honeycomb
lattice.28 The tight-binding Hamiltonian is written as31

H =− t
∑
〈ij〉α

c†iαcjα + itSO
∑
〈〈ij〉〉αβ

νijc
†
iαs

z
αβcjβ

− itR2

∑
〈〈ij〉〉αβ

µijc
†
iα(s× d̂ij)zαβcjβ

+ itR1

∑
〈ij〉αβ

c†iα(s× d̂ij)zαβcjβ +M
∑
iαβ

c†iαs
z
αβciβ .

(1)

Here c†iα(ciα) is a creation (annihilation) operator for an
electron with spin α at site i. The summation with
〈...〉 (〈〈...〉〉) runs over all nearest (next-nearest) neigh-
bor sites. The s’s are the Pauli matrices for real spin
degree of freedom. For the right hand side, the first term
is the usual nearest neighbor hopping term. The second
term is the so-called intrinsic SOC term involving the
next-nearest neighbor hopping,37,38 νij = +1(−1) if the
electron makes a left (right) turn in going from site j to
site i along the nearest-neighbor bonds. The third and
fourth terms are the intrinsic and extrinsic Rashba SOC
terms respectively. d̂ij is the unit vector pointing from
site j to i, and µij = ±1 depending on the AB-sublattice.

FIG. 1. (color online) Upper panel: bulk band structure
along the line of ky = 0. Lower panel: the corresponding
energy spectra for a zigzag edged ribbon with a width of 400
atomic sites. (a, d) with only extrinsic Rashba SOC tR1 =
0.06 and no intrinsic Rashba SOC; (b, e) with only intrinsic
Rashba SOC tR2 = 0.1 and no extrinsic Rashba SOC; (c, f)
when both extrinsic and intrinsic Rashba SOCs are present,
tR1 = 0.06 and tR2 = 0.1. Other model parameters are set as
t = 1, and M = 0.5.

The last term represents an exchange coupling. The var-
ious t’s and M denote the strengths of the terms.

This model was first derived in the study of low en-
ergy physics of silicene.31 The various SOC terms are the
symmetry-allowed terms for the low buckled honeycomb
lattice structure. The exchange term breaks the time re-
versal symmetry, which is necessary for the realization of
QAH phase.3 As discussed in the previous work,28 the
VQAH phase results from the competition between the
intrinsic and extrinsic Rashba SOC terms, i.e. the third
term and the fourth term in Eq.(1). The intrinsic Rashba
term is due to the mirror symmetry breaking of the 2D
plane from the lattice buckling.31 The extrinsic Rashba
term further breaks the inversion symmetry and it can
result from a perpendicular electric field or from a sub-
strate. To simplify the analysis, in the following we shall
focus on these two SOC terms and neglect the intrinsic
SOC term. The effects of the intrinsic SOC term and
possible sublattice symmetry breaking term will be dis-
cussed later in the paper.

First, we examine the properties of the model when ei-
ther intrinsic Rashba or extrinsic Rashba term is present,
but not both. Figure 1(a) shows the bulk energy spec-
trum near the band gap along kx direction when only
extrinsic Rashba SOC is present, and Fig. 1(d) shows the
corresponding energy spectrum for a ribbon with zig-zag
edge termination. The results for the case with only in-
trinsic Rashba SOC are shown in Fig. 1(b) and 1(e). One
observes that for both cases, the system is in insulating
state with a finite band gap. In the results for ribbons,
four gapless chiral edge states can be identified in the
band gap. From their wave functions, it is easily checked
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that on each edge, there are two edge states propagat-
ing in the same direction, indicating a QAH phase with
C = 2. The Chern number can be directly calculated
from the bulk band structure using the formula2

C =
1

2π

∑
n∈occ.

∫
BZ

d2kΩn, (2)

where the integration is over the Brillouin zone and the
summation is over all occupied valence bands. Ωn is the
momentum-space Berry curvature for the n-th band

Ωn(k) = −
∑
n′ 6=n

2Im〈ψnk|vx|ψn′k〉〈ψn′k|vy|ψnk〉
(εn′k − εnk)2

, (3)

where vx(y) is the velocity operator and |ψnk〉 is the
Bloch eigenstate with eigen-energy εnk. The magnitude
of Berry curvature is usually peaked at avoided band
crossings where the gap is small.39 For a system with
multiple valleys, such as the case here with two valleys
K and K ′, Berry curvature will be concentrated around
the valley centers.28 This allows us to define a topologi-
cal charge associated with each valley by integrating the
Berry curvature over the neighborhood of each valley as
in Eq.(2).22,23,40 We denote the results by CK and CK′ .
They represent the contribution to the total Chern num-
ber from each valley, and their difference Cv = CK − CK′

is called the valley Chern number. Note that the con-
cept of valley as well as the valley topological numbers
are well-defined only when the low energy regions are
well separated in the reciprocal space. This condition is
ensured in our following calculations. In the studied pa-
rameter range, the various SOCs are small perturbations
compared with the nearest-neighbor hopping which is the
largest energy scale.

Straightforward calculations using the present model
confirm that for both cases, the system is in the same
QAH phase with C = 2, and Cv = 0 showing that contri-
bution from the two valleys are equal (CK = CK′ = 1).
Indeed, on one edge, each valley contributes one chiral
edge channel propagating in the same direction.

The situation becomes quite different when both SOCs
are present. Starting from a fixed intrinsic Rashba SOC
as in Fig. 1(b, e), gradually increasing the strength of
extrinsic Rashba SOC, it has been shown that the gap
at K valley remains open but the gap at K ′ valley closes
and reopens, leading to a topological phase transition to
the VQAH phase with Cv 6= 0. As shown in Fig. 1(c) and
1(f), in VQAH phase, the two valleys become asymmet-
ric. In K valley, there are still two gapless edge states,
but in K ′ valley there are four. These states can be more
clearly seen in the zoom-in images in Fig. 2(a) and 2(b).
In Fig. 2(c), we schematically plot the spatial distribution
of these edge states in the ribbon geometry. One notes
that on each edge, there are two chiral channels from K ′

valley propagating in opposite direction to only one chan-
nel from K valley. Calculation of the topological charge
shows that CK in this case is still 1, but CK′ changes from
1 to −2, which is consistent with the doubling of the K ′

FIG. 2. (color online) (a) and (b) are the enlarged spectra
showing the gapless edge states (a) in K valley and (b) in K′

valley, corresponding to the boxes in Fig 1(f). (c) Schematic
figure of the spatial distribution of the edge channels in the
ribbon. The colors label the edge states at different valleys.
(d) Phase diagram as a function of tR1 and M . The dashed
lines are the phase boundaries where the bulk gap closes.
Phase I is the conventional QAH phase, while Phase II is
the VQAH phase.

valley edge channels and the reversed chirality. In such
a VQAH phase, on the edge, there is an imbalance be-
tween channels from different valleys, and in the bulk, it
is characterized by both a nonzero C and a nonzero Cv.
In the present case, we have (C = −1, Cv = 3).

By looking at the figures in Fig. 1, one notices that for
the cases with either one Rashba SOC, the energy spectra
at K and K ′ valleys are symmetric. But when both SOCs
are present, the symmetry of the spectra is broken. To
understand this, we expand the model around the K and
K ′ points to obtain the low energy effective Hamiltonian.
The corresponding forms of the kinetic energy term, the
extrinsic Rashba term, the intrinsic Rashba term, and
the exchange coupling term are

H0(k) = v(τzσxkx + σyky), (4a)

HR1
(k) = λR1

(τzσxsy − σysx), (4b)

HR2
(k) = λR2

σz(kysx − kxsy), (4c)

HM (k) = Msz, (4d)

where τz = ±1 refers to K and K ′ valleys, σ’s are Pauli
matrices representing the AB-sublattice pseudospin de-
gree of freedom, the coupling strengths in these terms
are related to the parameters in Eq.(1) by v =

√
3t/2,

λR1
= 3tR1

/2, and λR2
= 3tR2

/2. When the extrinsic
Rashba SOC is absent, i.e. λR1

= 0, as in Fig. 1(b, e), the
remaining terms all have inversion symmetry, P = σx,
such that PH(k)P−1 = H(−k), meaning that the spec-
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tra at the two valleys must be symmetric under inver-
sion. When extrinsic Rashba term is present, the inver-
sion symmetry is broken. However, in the absence of
intrinsic Rashba term, the low energy model has another
symmetry Q = σxsz which is an inversion with an ad-
ditional spin rotation, such that QH(k)Q−1 = H(−k).
Therefore the spectra in Fig. 1(a, d) also exhibit simi-
lar symmetric feature. We emphasize that Q is not an
intrinsic symmetry for the crystal, it is an emergent sym-
metry only for the low energy model. Finally when both
Rashba terms are present, the two symmetries P and Q
are both broken. The spectra at the two valleys become
asymmetric, as observed in Fig. 1(c, f). The asymme-
try between the two valleys is a necessary condition for
realizing the VQAH state.

The topological phase transitions from conventional
QAH phase to VQAH phase can be realized by tuning
the model parameters. In Fig. 2(d), we show the phase
diagram in the (tR1

-M) plane at a fixed intrinsic Rashba
strength. It can be seen that the VQAH phase has an
extended parameter range in the phase diagram (region
II). On each side of VQAH phase, it is the usual QAH
phase with (C = 2, Cv = 0). The color map shows the size
of the band gap. One observes that the topological phase
transitions are accompanied with the gap closing and re-
opening processes, as usually mentioned in the study of
topological insulators.14 However, in the present model,
such gap closing happens only at one valley (the K ′ val-
ley), hence the topological charge is only changed at that
valley, leading to the valley-polarized feature.

To gain a better understanding of the change in topo-
logical charge between conventional QAH and VQAH
phases, we decompose CK and CK′ at each valley in terms
of contributions from real spin (s) as well as sublat-
tice pseudospin (σ) degree of freedom. We calculate the
winding number of the spin (pseudospin) textures using
the formula6

n =
1

4π

∫ ∫
dkxdky(∂kxĥ× ∂ky ĥ) · ĥ, (5)

where the unit vector ĥ(k) is the spin (pseudospin) po-
larization vector at k.

For the conventional QAH phase with either extrinsic
or intrinsic Rashba SOC, as in Fig. 1(a, b), we find that
the band-resolved topological charges carried by the real
spin or pseudospin for valleys K and K ′ are

nK,1s = nK′,1s ≈ 0;

nK,2s = nK′,2s ≈ 1;

nK,1σ = nK′,1σ ≈ 0.5;

nK,2σ = nK′,2σ ≈ −0.5.

(6)

Here subscripts 1 and 2 refer to the two valence bands
with band 2 close to the gap. One observes that the
topological charges are symmetric between the two val-
leys. The topological charges of pseudospin from the 1st
and 2nd valence bands are respectively 0.5 and −0.5 for

FIG. 3. (color online) Textures of real spin in the 2nd va-
lence band of K′ valley. (a) Map of 〈sz〉 component for the
conventional QAH phase with (tR2 = 0.1, tR1 = 0). (b) Map
of 〈sz〉 for the VQAH phase with (tR2 = 0.1, tR1 = 0.06).
(c) and (d) are the corresponding maps for the angle φ of
the in-plane spin component. The white colored loop is the
〈sz〉 = 0 boundary (as in (a) and (b)). The black circled
arrows indicate the rotation direction of the angle φ around
each vortex.

each valley, hence cancelling each other. The net con-
tribution is from the real spin in the 2nd valence band
which is 1 for each valley, with the texture correspond-
ing to one skyrmion. Therefore we have CK = CK′ = 1
and (C = 2, Cv = 0), which are consistent with previous
calculations.

In the VQAH phase, as in Fig. 1(c), straightforward
calculation shows that

nK,1s = nK′,1s ≈ 0;

nK,2s ≈ 1;nK′,2s ≈ −2;

nK,1σ = nK′,1σ ≈ 0.5;

nK,2σ = nK′,2σ ≈ −0.5.

(7)

Comparing with the results for the QAH phase in Eq.(6),
one can find that the topological charges associated with
pseudospin texture remain the same and are still can-
celled between the two valence bands. The difference is
from the real spin in the K ′ valley of the 2nd valence
band. After the gap closing and reopening at the K ′

valley, the topological charge nK′,2s changes from 1 to
−2. This results in an imbalance of the total topologi-
cal charges between the two valleys, leading to CK = 1
and CK′ = −2 with an imbalanced number of chiral edge
channels associated with the two valleys.

In order to visualize the change of nK′,2s more clearly,
in Fig. 3, we plot the real spin textures in k-space for
the 2nd valence band at K ′ valley in the QAH phase
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and in the VQAH phase. Figure 3(a) and 3(b) show the
z-component of real spin 〈sz〉 before and after phase tran-
sition. One observes that near the valley center, 〈sz〉 is
negative and away from the center it changes to positive
values. This feature remains the same across the phase
boundary. Figure 3(c) and 3(d) show the azimuthal angle
of the in-plane vector (〈sx〉, 〈sy〉) in the two phases. The
winding number nK′,2s can be visualized by counting the
number of vortices of the phase winding. For the QAH
phase, there is one vortex at the valley center, as seen in
Fig. 3(c), corresponding to nK′,2s = 1. In the VQAH,
in contrast, close to K ′ point three new vortices appear
around the places where the gap closes during the phase
transition. Their winding directions are opposite to the
one at the center, therefore leading to a total winding
number nK′,2s = −2. It is these additional skyrmions
generated at K ′ valley in the gap closing and reopen-
ing process that are responsible for the realization of the
VQAH phase.

III. DISORDER INDUCED VALLEY-FILTERED
CHIRAL EDGE CHANNELS

As we discussed in the previous section, in the VQAH
phase of the present model, there exist valley-polarized
chiral edge channels as shown in Fig. 2(c). Due to the
large separation of the two valleys in k-space, the val-
ley index is robust against smooth disorder potentials.15

In the presence of short-range disorder scattering, inter-
valley scattering events would be important and would
typically destroy the edge channels. Nevertheless, the
VQAH phase is first of all a QAH phase characterized
by a Chern number C = −1. The topological protection
of QAH phase is much stronger than that for the valley
indices. Therefore, we can expect that at moderate short-
range scattering strength, a pair of counter-propagating
edge channels (one from K and one from K ′) should be
destroyed, leaving only one chiral channel on each edge,
as required by the C = −1 constraint. An important
question to ask is that whether the remaining channel
still retains a valley character in terms of its transport
property?

To address this question and to test the above physical
picture, we carry out direct transport calculations on a
standard two terminal structure. As shown in Fig. 4(a),
the structure is divided into a left lead, a right lead, and a
central scattering region. We take a zigzag-edged ribbon
described by our model for the central region. The two
leads are taken as semi-infinite. To eliminate the contact
resistance and also for the analysis of the valley charac-
ter of the transport channels, we model the leads with
the same lattice model and with the same width as the
central region. Short-range scatterers are confined in the
central region and are modeled by random on-site disor-
der potentials with magnitude in the range [−W/2,W/2].
The parameter W characterizes the disorder strength.
We emphasize that due to disorder scattering, valley is

FIG. 4. (color online) Schematic figure showing the two-
terminal setup for transport calculation. (a) A zigzag edged
ribbon is divided into a left lead, a right lead, and a central
scattering region. The propagating modes in the leads with
their valley characters are indicated. (b) Distribution of the
edge modes in the scattering region without scattering or with
only weak long range scattering. (c) With short range scatter-
ing, at moderate scattering strength, the transport property
of the system is equivalent to a QAH system with one chiral
edge channel in K′ valley. The colors label the edge states at
different valleys.

no long a good quantum number in the central region.
However, its valley transport property could be inferred
from the transmission and reflection amplitudes of valley-
polarized carriers from the leads. To this end, the two
leads must have valley well-defined. Our setup resem-
bles that of the original proposal of valley filter15 and we
shall demonstrate that our system indeed acts as a per-
fect valley filter when moderate short-range scatterers are
incorporated.

The two-terminal conductance can be calculated based
on the Landauer-Büttiker formula41

G =
e2

h
Tr[ΓLG

rΓRG
a], (8)

where Gr,a are the retarded and advanced Green’s func-
tions of the central scattering region. The quantities
ΓL/R are the linewidth functions describing the coupling
between the left/right lead and the central region, and

can be obtained from Γp = i(Σrp − Σap). Here, Σ
r/a
p is

the retarded/advanced self-energy due to the pth semi-
infinite lead (p = L,R), and can be numerically evaluated
using a recursive method.42

Before turning on the disorder potential (W = 0), we
know that on each edge there are three conducting chan-
nels and the propagation directions of the them are tied
to their valley indices. For example, on the upper edge,
there are one channel in K valley propagating to the
right and two channels in K ′ valley propagating to the
left, as shown schematically in Fig. 4(b). For the lower
edge, the directions of the channels are reversed. Ob-
viously, the two-terminal conductance for the structure



6

should be G = 3 (in units of e2/h) due to three ballistic
transport channels in each direction.

When we increase the disorder strength W , backscat-
tering occurs in these edge channels because short-range
scatterer can couple the counter-propagating channels at
K and K ′ valleys. This would decrease the conductance.
However, at moderate scattering strength, there must be
one remaining transport channel as dictated by the to-
tal Chern number C = −1. The chirality requires that
at the upper edge, this channel propagating to the left,
while at the lower edge, it propagates to the right. This
should lead to a plateau of G = 1 for the two-terminal
conductance.

In Fig. 5(a) we plot numerical results of the conduc-
tance G as a function of the disorder strength W . The
central scattering region has a width of 480 atomic sites
and a length of 1200 atomic sites. The Fermi level is
set at EF = 0.004 in the gap and an ensemble of 100
random disorder configurations are taken for each data
point. Indeed, as we expected, G starts from the value
of 3 at W = 0 and decreases with increasing W . A quan-
tized plateau of G = 1 appears around W = 0.5 with
negligibly small fluctuations. This implies that a pair of
counter-propagating channels are localized by the short-
range scattering and there is one channel left. Further
increasing W above ∼ 0.75 eventually destroys the QAH
channels by coupling the two chiral channels at the op-
posite edges through strong scattering across the bulk.
All these are consistent with our previous argument.

However, we do not yet know whether the one chiral
channel on the G = 1 plateau still retains a well-defined
valley character, although one may intuitively think that
after one channel in K valley gets annihilated with one
in K ′ valley, the remaining one should be from K ′ val-
ley. With finite disorder strength, it is difficult if not
impossible to check the valley feature in energy spec-
trum. Instead, we infer the valley character of the chan-
nel from its transport properties. More specifically, we
consider the valley resolved transmission probability Tvv′
(v, v′ ∈ {K,K ′}) which is defined as the transmission
probability from any incoming mode in valley v′ of the
left lead to any outgoing mode in valley v of the right
lead. Hence Tvv′ =

∑
m∈v,n∈v′ Tmn, where Tmn is the

transmission probability from mode n to mode m, n and
m label the propagating modes in the left and the right
lead respectively. In our case, since we consider the Fermi
level in the band gap, the only propagating modes in the
leads are the edge modes. The Tmn for each pair of in-
coming and outgoing propagating modes can be calcu-
lated using the technique developed in Ref. 43–45.

The result for each Tvv′ as a function of disorder
strength is shown in Fig. 5(b). One observes that when
W is small (< 0.3), both TKK′ and TK′K are zero. This
is easily understood by inspecting the configuration of
channels in Fig. 4(a). In order for an incoming mode in K
valley from the left lead to transfer to an outgoing mode
in K ′ valley at the right lead, it has to cross the insulat-
ing bulk hence such probability is negligibly small. For

TKK

TK’K

TKK’

TK’K’

RKK

RK’K

RKK’

RK’K’

GV
G
ηV

FIG. 5. (color online) (a) The two-terminal conductance as
a function of disorder strength W . Each data point is aver-
aged over 100 disorder configurations. The error bar shows
one standard deviation. (b) The valley resolved transmis-
sion probability as functions of W . (c) The valley resolved
reflection probability versus W . (d) The charge (G), valley
(Gv) conductance, and the valley polarization (ηV ) as func-
tions of W . The model parameters used here are M = 0.5,
tR1 = 0.045 and tR2 = 0.08. Fermi energy is taken as
EF = 0.004.

small W (< 0.1), we approximately have TK′K′ ≈ 2TKK ,
because the number of channels in K ′ valley doubles that
of the K valley. They both decrease with increasing W .
When W reaches the plateau region as in Fig. 5(a), TKK
vanishes implying that the transport channel at K val-
ley in the central region is totally destroyed. Meanwhile
TK′K′ shows a quantized plateau at 1. This indicates that
the remaining chiral edge channels protected by Chern
number C = −1 is of K ′ valley character. The result
suggests the physical picture in which the short-range
scattering couples the edge states of the two valleys and
destroys a pair of counter-propagating modes (one from
each valley), leaving only one edge channel of K ′ valley
in the system. Finally at very large W , scattering can
couple the two edges, and the plateau is destroyed. The
discussed features are schematically shown in Fig. 4(b)
and Fig. 4(c). At moderate disorder strength (in the
plateau region), the central region can be viewed effec-
tively as having one chiral channel in K ′ valley on each
edge [Fig. 4(c)].

The valley resolved reflection probability Rvv′ can be
defined in a similar way as Tvv′ .

43 The results are shown
in Fig. 5(c). The key thing to notice is that in the
QAH plateau region, RK′K′ remains 0 because such re-
flection process requires the electron to transfer across
the insulating bulk to the other edge. This condition,
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combined with TK′K′ = 1 in this region, means that
carriers in K ′ valley can transmit through the system
without reflection while maintaining its valley charac-
ter. In addition, the rapid increase of RKK′ and RK′K

at small W demonstrates that the short-range scatterers
indeed cause strong backscattering between the counter-
propagating channels at each edge.

Based on the valley resolved transmission probability,
we could define a valley resolved conductance by

Gv =
e2

h

∑
m;n∈v

Tmn, v ∈ {K,K ′}, (9)

which measures the likelihood of transmission of incom-
ing carriers in each valley. Then the total conductance
can be written as G = GK + GK′ . Analogous to quan-
tities defined for spin transport, we can define a valley
conductance GV = GK′−GK and the valley polarization
ηV = GV /G. The numerical results for these quantities
are shown in Fig. 5(d). One observes that in the QAH
plateau region, the valley polarization shows a plateau
of 1, meaning that the transport through the system is
fully valley polarized.

From the above results and discussions, we confirm
the intuitive picture that we postulated at the begin-
ning of this section. We show that at moderate disorder
strength, the scattering localizes a pair of edge channels
on each edge, leaving the system in a C = −1 QAH
state. The remarkable point is that the remaining one
channel still retains its K ′ valley character. This implies
that disorder scattering effectively induces a transition
from a VQAH phase with (C = −1, Cv = 3) to another
VQAH phase with (C = −1, Cv = 1). Such disorder
induced VQAH phase with |C| = |Cv| always has fully
valley-filtered chiral edge channels in the bulk mobility
gap, and may be termed as a VQAH Anderson insula-
tor phase, analogous to the concept introduced in the
study of transport features of disordered topological in-
sulator systems.46,47 In this case, whether a carrier can
be transmitted through the system is determined by its
valley index. Hence this phase could be used to realize a
perfect valley filter for valleytronics applications.

IV. VQAH PHASES IN BILAYER SYSTEM

We have shown that VQAH phase can arise in a single
layer honeycomb lattice model due to the competition
between two types of SOCs. In the following, we show
that by combining two such single layers into a bilayer
system, more VQAH phases with different (C, Cv) could
be realized. The model we consider is

H = Ht+Hb+t⊥
∑

i∈(t,A);
j∈(b,B)

(c†i cj+h.c.)+U
∑
i

ξic
†
i ci, (10)

where Ht and Hb each given by Eq.(1) are the Hamilto-
nians for the top layer and the bottom layer. The third

FIG. 6. (color online) Phase diagram of the bilayer model in
the (tR1 , tR2) plane. Five extended insulating phase regions
can be identified. The color indicates the size of the bulk
band gap. Other model parameters used here are M = 0.4,
U = 0, and t⊥ = 0.18.

TABLE I. The topological numbers of each phase in Fig. 6

Phase C Cv CK CK′

I 4 0 2 2
II 1 3 2 -1
III -2 6 2 -4

term on the right hand side is an interlayer coupling.
Here we take a bilayer with AB-stacking, hence hopping
between the nearest A site in the top layer and B site
in the bottom layer is considered. The last term is an
interlayer bias potential with ξi = ±1 for the two layers.

We first set the interlay bias U = 0. Figure 6 shows the
phase diagram in the (tR1

, tR2
) plane. One observes that

there are five phase regions. The color map indicates the
magnitude of the bulk band gap. The phase boundaries
are the points at which the gap closes. The topological
invariants for each phase are listed in Table I. It can be
seen that Phase I is the conventional QAH phase with
(C = 4, Cv = 0) and Phase III is a VQAH phase with
(C = −2, Cv = 6). These two phases can be understood
as resulting from the corresponding topological phases in
single layer by a direct doubling. Besides these two, in-
terestingly there is one additional phase, Phase II. We
find that this phase is also a VQAH phase. It is char-
acterized by (C = 1, Cv = 3), which differs from that
of Phase III. Therefore, one sees that by combining two
single layer models, it is possible to generate new VQAH
phases. The phase transition between each neighboring
phase is accompanied by the gap closing and reopening
process, which is a general feature of topological phase
transitions. In this case, the gap closing only occurs in
the K ′ valley, similar to the single layer case. This is con-
sistent with the variation of the valley topological charge
CK and CK′ in Table I, i.e. CK is the same for all the
three phases and only CK′ changes.

In the following, let’s have a closer look at the two
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FIG. 7. (color online) Phase II in Fig. 6. (a) Berry curvature
distribution in the Brillouin zone. (b) Spectrum of a zigzag-
edged ribbon with a width of 400 atomic sites. (c) and (d)
The enlarged spectra in the gap region of (b), corresponding
to the two valleys K and K′. (d) Schematic figure showing
the distribution of edge channels labeled in (c) and (d). The
parameters are set to be tR1 = 0.03, tR2 = 0.1, U = 0, M =
0.4, and t⊥ = 0.18.

VQAH phases, Phase II and Phase III. In Fig. 7(a) and
Fig. 8(a) we plot the total Berry curvature distribution
Ω(k) of the valence bands, which sums over the Berry
curvature for each individual valence band. One can find
that the nonzero Berry curvatures are mainly concen-
trated around the valley centers and have an overall op-
posite sign between the two valleys. This is in contrast
to the conventional QAH effect, in which the Berry cur-
vature usually has the same sign for different valleys.24

For both phases, the asymmetry between the two valleys
can be clearly observed. Comparing the two phases, one
observes that the curvature distributions at K valley are
almost the same, but the curvature at K ′ valley differ a
lot. Ω(k) around K ′ for Phase III has a larger negative
magnitude compared with Phase II. This difference leads
to the different CK′ between the two phases.

In Fig. 7(b), we plot the energy spectra of a zigzag-
edged nanoribbon for Phase II. In the zoom-in images
in Fig. 7(c) and Fig. 7(d), one observes that for valley
K, there are two pairs of gapless edge states while for
valley K ′, there is one pair. On each edge, there are
two channels from K valley propagating in one direction
and another channel from K ′ valley propagating in the
opposite direction, as shown schematically in Fig. 7(e),
which is consistent with the bulk topological invariants
(C = 1, Cv = 3). This net valley polarization of the edge
channels is one signature of VQAH phase.

Similarly, for Phase III, we plot its energy spectrum in
Fig. 8(b-d), in which one identifies two pairs of gapless
edge states in valley K and the other four pairs in val-
ley K ′. As illustrated in Fig. 8(c), on each edge, there

FIG. 8. (color online) Phase III in Fig. 6. (a) Berry curvature
distribution in the Brillouin zone. (b) Spectrum of a zigzag-
edged ribbon with a width of 400 atomic sites. (c) and (d)
The enlarged spectra in the gap region of (b), corresponding
to the two valleys K and K′. (d) Schematic figure showing
the distribution of edge channels labeled in (c) and (d). The
parameters are set to be tR1 = 0.065, tR2 = 0.15, U = 0,
M = 0.4, and t⊥ = 0.18.

FIG. 9. (color online) Phase diagram of the bilayer model
in the (U , M) plane. Five extended phase regions can be
identified. The color indicate the size of the bulk band gap.
Other model parameters are fixed as tR1 = 0.2, tR2 = 0.12,
and t⊥ = 0.18.

are two edge channels from valley K propagating in one
direction and four edge channels from valley K ′ propa-
gating in the opposite direction. Compared with Phase
II, the number of channels in K valley remains the same,
while the number in K ′ valley changes from 1 to 4. This
change reverses the valley polarization of the channels,
i.e. now the system has more edge channels in K ′ than
in K.

Since bilayer systems provide another layer degree of
freedom, which offers additional controllability. In the
following, we examine the effect of tuning interlayer bias
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potential on the topological phases of the system. In
Fig. 9, we plot the phase diagram in (U , M) plane, with
fixed SOC strengths. One can identify five different topo-
logical phases in this diagram. The topological invariants
for each phase are listed in Table II. We take the values
of tR1 and tR2 such that at small U , the system is in the
conventional QAH phase with (C = 4, Cv = 0) (Phase I
in Fig. 9). With increasing U , we see that the system
can undergo topological phase transitions to a series of
VQAH phases with (C = 1, Cv = 3) (II), (C = −2, Cv = 6)
(III), (C = −3, Cv = 5) (IV), and (C = 0, Cv = 2) (V). By
inspecting CK and CK′ , we can see the sequence of gap
closing and reopening processes at the two valleys during
these phase transitions. For the transition from I to II
and from II to III, the gap closing is at K ′ valley, while
for the transition from III to IV, the gap closing hap-
pens at K valley. These results are also confirmed by the
band structure calculations. Therefore, from above dis-
cussion, the transition from conventional QAH to VQAH
can also be controlled by the interlayer bias. This is un-
derstandable because finite U breaks the inversion sym-
metry connecting the two valleys, hence could drive the
system towards a valley polarized state. Because inter-
layer potential is generally easier to control in practice,
e.g. through gating technique, hence this finding offers
a potentially convenient route for engineering a VQAH
phase in layered structures. Finally at very large U and
small M , the system’s total Chern number would vanish.
The topological charges of the two valleys cancel each
other. This is known as quantum valley Hall phase in
previous studies.25

TABLE II. Chern number contribution of each valley in Fig. 9

Phase C Cv CK CK′

I 4 0 2 2
II 1 3 2 -1
III -2 6 2 -4
IV -3 5 1 -4
V 0 2 1 -1

V. DISCUSSION AND SUMMARY

In the analysis of edge channels, the valley index of
them is only well-defined provided that the two valleys
are separated in momentum when projected to the edge.
This depends on the edge orientation. For example, for
zigzag edges of a honeycomb lattice, K and K ′ valleys
project to separated points on the edge, which ensures
the valley index to be defined. In contrast, for arm-
chair edges, the two valleys will be projected to the same
point on the edge. Therefore, the edge channels do not
have a well-defined valley index and usually strong mix-
ing between them could gap the edge states.15 This de-
pendence of the edge states on the edge orientation is
analogous to what happens in 3D Dirac and Weyl topo-

logical phases.48–52 Nevertheless, the topological invari-
ants such as C and Cv are defined for the bulk, hence do
not depend on the edge orientation.

In Sec. III, we used the single layer (C = −1, Cv = 3)
phase as an example to explicitly demonstrate the ef-
fects of short-range disorders. Similar physics also hap-
pens for other VQAH phases such as the phases that we
discussed in the bilayer systems. For example, for the
phase (C = −2, Cv = 6) as shown in Fig. 8, at moder-
ate scattering strength, two pairs of counter-propagating
channels would be localized, leaving only two transport
channels with K ′ valley character. Hence the resulting
system is equivalent to a C = −2 QAH phase with edge
channels fully polarized in valley K ′. This implies that
it is possible to achieve full valley polarized transport
with higher conductance values by starting from VQAH
states with higher Chern numbers. From the discussion
in Sec. III, one also expects that the valley polarized
transport plateau could be extended to even higher dis-
order strength if one could arrange the disorders to dis-
tribute more near the edges than in the bulk, thereby
suppressing the coupling between the two edges. Increas-
ing the edge roughness may be a possible way to achieve
this.

The intrinsic SOC as denoted by tSO term is a term
that preserves the inversion symmetry, hence is generally
not helpful for the purpose of inducing valley polariza-
tion. Previous studies have shown that this term could
drive the system to a quantum spin Hall phase in the
absence of time reversal symmetry breaking.37 For the
models we considered here, with other parameters fixed,
the intrinsic SOC tends to drive the system out of the
VQAH phase. However, since the topological phase is
protected by the band gap, for small tSO such that the
gap is not closed, VQAH phase is still maintained. In
the single layer model, the inversion symmetry could be
broken by a staggered sublattice potential term.38 Simi-
lar to the effect of interlayer bias potential for the bilayer
model, this term could generate valley polarization, and
is capable of driving the system from conventional QAH
phase to the VQAH phase in single layer model.

Finally, a particular lattice model is adopted here for
the proposition and the study of the novel VQAH phase.
We emphasize that the essential features we discuss here,
such as the valley-polarization of the gapless edge chan-
nels and the disorder effects on the edge channels, are
general features of the VQAH phase and are not particu-
lar to one specific model. In reality, several 2D materials
with low buckled honeycomb lattice structure have been
discovered or proposed.53–56 In principle, the strength of
each individual terms in our model Hamiltonian Eq.(1)
could be induced and controlled. For example, the ex-
trinsic Rashba SOC could be generated by substrate or
adsorbed atoms.57–59 The exchanged coupling could be
generated by defects, magnetic dopants, or in proximity
to a magnetic insulator.60–63 Intrinsic SOC and intrinsic
Rashba SOC could be controlled by structural deforma-
tion through applied strains.31 Furthermore, the candi-
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date material is not limited to those with 2D honeycomb
lattice structure. Any multi-valley systems are possible.
Therefore, although fine-tuning the various parameters
to achieve the VQAH phase is a challenging task, with
the advance in discovering new 2D materials and in de-
veloping new technique to control interactions at submi-
cron scale, as demonstrated in the recent realization of
QAH phase, it is promising to also achieve the fascinating
VQAH phase in the future.

In summary, we investigated in detail the novel VQAH
phase in single layer and bilayer systems. We provide a
clear physical picture of the topological phase transition
from conventional QAH phase to the VQAH phase. We
studied the transport properties of the edge channels.
With short-range disorders, pairs of counter-propagating
edge channels (one from each valley in a pair) could be
destroyed. However, at moderate scattering strength,
the transport coefficients exhibit a plateau on which
the transport is fully valley-filtered, leading to a VQAH

Anderson insulator phase. This remarkable effect could
be used for designing valley filters for valleytronic
applications. Much richer phase diagrams are shown
for the bilayer system with multiple VQAH phases. We
demonstrate the controllability of the topological phase
transition by tuning the system parameters, especially
the interlayer bias potential. The study presented here
endows the valley transport with topological protection,
which is very important for realizing robust performance
of information processing based on valley degree of
freedom.
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