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The electron number-parity of the ground state of a semiconductor narowire proximity-coupled to a bulk
superconductor can alternate between the quantised values ±1 if parameters such as the wire length L, the
chemical potential µ or the magnetic field B are varied inside the topological superconductor phase. The parity
jumps, which may be interpreted as changes in the occupancy of the fermion state formed from the pair of
Majorana modes at opposite ends of the wire, are accompanied by jumps δN in the charge of the nanowire,
whose values decrease exponentially with the wire length. We study theoretically the dependence of δN on
system parameters, and compare the locations in the µ-B plane of parity jumps when the nanowire is or is not
proximity-coupled to a bulk superconductor. We show that, despite the fact that the wave functions of the Majo-
rana modes are localised near the two ends of the wire, the charge-density jumps have spatial distributions that
are essentially uniform along the wire length, being proportional to the product of the two Majorana wave func-
tions. We explain how charge measurements, say by an external single-electron transistor, could reveal these
effects. Whereas existing experimental methods require direct contact to the wire for tunneling measurements,
charge sensing avoids this issue and provides an orthogonal measurement to confirm recent experimental devel-
opments. Furthermore, by comparing density of states measurements which show Majorana features at the wire
ends with the uniformly-distributed charge measurements, one can rule out alternative explanations for earlier
results. We shed light on a new parameter regime for these wire-superconductor hybrid systems, and propose a
related experiment to measure spin density.

PACS numbers: 74.78.Na, 73.63.Nm, 74.78.Fk

I. INTRODUCTION

The isolation of zero-energy Majorana modes is an essen-
tial step in various proposals to perform topologically pro-
tected quantum computation [1]. The existence of localised
Majorana modes has been predicted in several condensed mat-
ter systems, although definitive detection of such modes re-
mains an open challenge [2–9], and in cold atom systems [10].

A promising physical system for realizing these modes
consists of a one-dimensional (1D) semiconductor wire with
strong Rashba spin-orbit coupling, coupled to a bulk s-wave
superconductor (SC), and with a strong applied magnetic
field [11 and 12]. Under appropriate conditions, this sys-
tem can enter a “topological” state, which would exhibit iso-
lated Majorana fermions at the wire ends. The condition for a
wire with strong spin-orbit interaction to enter this topological
regime, is E2

Z > ∆2 + µ2, where EZ is the Zeeman energy,
proportional to the applied magnetic field B, while ∆ is the
induced superconducting pair potential in the wire, and µ is
the chemical potential of the wire, measured relative to the
electron energy at wave vector k = 0 when EZ = ∆ = 0.

For an infinitely long wire in the topological regime, the
wire has two possible ground states which are perfectly de-
generate. The Majorana modes appear at the ends of the wire
as zero-energy mid-gap states in the Bogoliubov-deGennes
(BdG) spectrum. Moreover, in this limit the charge density
distribution is precisely the same in the two ground states. For
a long but finite wire, the two lowest-energy states of the wire
will generally not be perfectly degenerate, but will be split by
a small amount, which decreases exponentially as the wire be-
comes long. Similarly, the charge density distributions in the

two states will differ by a small amount.
Since fermion number is conserved mod 2 in the Hamilto-

nian of the system, the number parity is a good quantum num-
ber, which differs in the two competing ground states. We can
classify the parity by the eigenvalue of the number parity op-
erator, ±1, and we call these even/odd respectively. If param-
eters such as B or µ or the length L of the system are varied,
the energies of the even and odd-parity states can cross, so the
parity of the true ground state can jump discretely between
even and odd.

Since the total charge on the nanowire is not conserved, it
is not a good quantum number, and its expectation value, in
general, will not be an integer as the ground state will be a
superposition of components with different electron number.
For a finite wire, there will be a small but non-zero jump in the
total electron number, whenever the parity changes, but the
size of the jump can be much less than one electron charge.
Between these jumps, the average number of electrons will
vary continuously with the system parameters.

Although the quantum operators for Majorana modes do
not obey the commutation relations of a normal Dirac fermion
creation or annihilation operator, one can construct a proper
annihilation operator from a linear combination of the two
Majorana operators at opposite ends of the wire. Following
a BdG description, the difference between the even and odd
parity many-body ground states is equivalent to whether the
fermion state corresponding to this annihilation operator is
occupied or not. Moreover, the energy difference between
the two ground state energies is just the BdG energy of this
single fermion state. Since eigenstates of the BdG equation
occur in pairs with energies that differ by a sign, we may say
that the degenerate zero-energy state is split in the finite wire,
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into states of positive and negative energy, due to a small over-
lap between the Majorana wave functions localised at the two
ends. Jumps in the parity of the ground state occur when this
energy splitting passes through zero. The charge difference
between the even and odd parity ground states is equal to the
net charge carried by the BdG fermion state, which can be
non-zero when the constituent Majorana wave functions over-
lap.

The purpose of the present paper is to explore in some de-
tail the regions in the phase diagrams where parity jumps are
expected, as well as the size of the jumps in electron charge
expected at these transitions. We also compute the spatial dis-
tribution of the jumps in charge density. Although the Majo-
rana wave functions, and hence the tunneling density of states,
are peaked at the wire ends, we show that the discontinuity
in charge density arising from the overlap of the Majorana
wave functions is spread essentially uniformly along the wire.
Changes in total charge and charge density can be measured
experimentally using charge sensing techniques.

We note that the number parity of the nanowire can change
when a parameter is varied on laboratory time scales, even
though the model Hamiltonian conserves parity, even in the
absence of coupling to a normal lead. This is due to the pres-
ence of a small number of thermally activated quasiparticles
in the bulk superconductor. These can be excited across the
gap of the SC, or might result form hopping between localised
states within the bulk SC.

In an important portion of the topological regime (see
Sec. III below), it is predicted that the energy splitting of the
Majorana modes will vary as δE ∼ exp(−L/ξ) cos(kFL),
where ξ is the induced superconducting coherence length, kF
the Fermi wavevector, and L the length of the wire [13 and
14]. Theoretically, the easiest way to probe this oscillatory
splitting might be to vary L, bringing the ends closer together.
In practice, however, the wire has a fixed length. It can be
effectively shortened in discrete steps by depleting pieces of
it using external gates, but local gating may lead to other un-
foreseen consequences.

Alternatively, an experiment can vary kF to access the oscil-
lations, and ξ to exhibit the exponential envelope. Both kF and
ξ depend on the chemical potential, which can be controlled
with a global backgate, and on the applied external magnetic
field. It has therefore been suggested in [13] to look for signa-
tures of this dependence. We demonstrate that charge-sensing
measurements could reveal such oscillations, and thus may be
a natural next step in the search for experimental verification
of the elusive Majorana end modes.

Many recent experiments [15–21] have probed these one-
dimensional semiconductor-superconductor hybrid systems
by studying electron transport through the nanowire. Such
transport experiments are very promising, but other physical
mechanisms have been offered as explanations for the ob-
served effects [22–27]. In particular, end effects, including
Kondo physics [28], can cause zero-bias peaks similar to the
ones observed. The alternate explanations suggest that the
transport measurements may be sensitive to other effects be-
yond the possible Majorana modes predicted to exist at the
ends of the wire. Furthermore, recent studies suggest that con-

tact with a normal metal lead reduces the induced pair poten-
tial in the wire [29].

An alternative experiment, using capacitive coupling to a
wire buried in a semiconductor heterostructure and designed
to measure the global density of states by harmonic generation
from high-frequency electric excitation, was proposed in [30]
and is the basis of ongoing experiments Still another experi-
ment, examining two coupled nanowires in a microwave cav-
ity, is presented in [31], while a technique using an oscillating
electrode is discussed in [32], and a proposal to use a resistive
lead for tunneling measurements appears in [33].

Lin et. al. [34] proposed an alternate experiment to probe
the Majorana states by charge sensing using a single elec-
tron transistor (SET). As addressed above and assumed in our
discussion, such a measurement does not require tunneling
to a normal lead, which could avoid some of the complica-
tions encountered in previous experiments. Although the au-
thors of [34] present numerical calculations that illustrate the
charge density jumps associated with Majorana states in var-
ious cases, we present here a more detailed analysis of these
features.

While we employ a simplified model of the physical sys-
tem, in which we neglect the Coulomb interactions between
electrons in the nanowire, we believe that results presented
hold for real systems, and the effect should be visible in a re-
alistic experiment. We address the effects of interactions in
section VIII below. Various regimes in parameter space are
discussed. We also address how to extract relevant system pa-
rameters using this technique, demonstrating that this experi-
mental technique has other applications beyond the intended
goal of detecting split Majorana end states.

We stress that a scanning charge measurement showing the
additional charge spread across the wire, combined with a
scanning tunneling measurement, can rule out alternative ex-
planations of end effects for the previously observed features
of Majorana physics.

The rest of this paper is structured as follows. In Sec. II,
we present the model and relevant parameters. We then dis-
cuss the spectrum and number parity of systems with and
without induced superconductivity in Sec. III. We address the
charge of the wire in three sections, beginning with an ana-
lytic analysis of the split Majorana modes in Sec. IV, followed
by a numerical calculation of the total change in charge in
Sec. V, and then a discussion of the spatial distribution of the
charge along the wire in Sec. VI. We end with an analysis of
jumps in spin density in Sec. VII, a discussion of the effects of
electron-electron interactions and screening in Sec. VIII, and
an overview of future experiments in Sec. IX.

II. MODELING

We model the wire using a standard BdG Hamiltonian:

HBdG =

(
− ∂2x

2m
− µ(x)

)
τz + EZσzτz+

+ iα∂xσyτz + ∆σyτy (1)



3

where α is the Rashba spin orbit parameter, and E Z =
−gµBB/2 is the Zeeman energy in an applied magnetic field
B, with g-factor g, and µB the Bohr magneton [35]. We have
chosen the pair potential, ∆, proximity induced from the su-
perconductor, to be positive and real. If tunneling between the
SC and nanowire is strong, ∆ can approach ∆SC , the gap of
the bare SC, whereas if the tunneling is weak, ∆ can be arbi-
trarily small. The τj and σj are Pauli matrices in particle-hole
and spin space respectively. We choose µ(x) = µ constant
along the length of the wire.

We find the eigenvalues, εν , and the corresponding eigen-
functions,

ψν(x) ≡
(
uν↑ , u

ν
↓ , v

ν
↑ , v

ν
↓
)T
. (2)

We can then compute the average charge density at each site
at finite temperature, with f(ε) the Fermi-Dirac distribution:

〈ρ(x)〉T =
∑
ν,σ

|uνσ(x)|2f(εν) + |vνσ(x)|2f(−εν), (3)

where the sum is over states with εν > 0. We can tune B and
µ, and calculate the induced change of the charge.

To apply our model numerically, we rewrite the Hamil-
tonian on a 1D lattice with total length 2µm. For Figs. 1-
3, we use 80 sites, and for Fig. 4 we use 160 sites. Both
give a band-width larger than all other energy scales, as de-
sired for numerical accuracy. The figures shown in this paper
were computed using realistic parameters that might be ap-
propriate for an InSb wire such as in the experiments in ref-
erence [15], namely: ∆ = 0.25meV, α = 0.2eVÅ, g = 50,
m = 0.013m0, where m0 is the electron mass. For complete-
ness, we also tested the model for the system parameters from
the Weizmann experiment [16], but all figures were plotted
with the parameters defined here.

III. SPECTRUM AND PARITY

We begin by examining the case of a wire without a super-
conductor, to gain intuition of what one should expect before
adding the superconductor. The system we consider consists
of a semiconducting nanowire with large Rashba spin orbit
(SO) coupling sitting on an insulating substrate with a global
back-gate below, as shown in Fig. 1a. The substrate is re-
quired to break inversion symmetry for Rashba SO, and the
back-gate allows for control of the chemical potential. Notice
that we have a wire sitting on an insulator with no other con-
tacts, not to be confused with the case of a wire connected to
a metal whose superconducting gap is reduced, say by a mag-
netic field. If we think of ∆ in the wire as being dependent
on ∆SC of a superconductor and the tunneling between the
wire and the superconductor, this is equivalent to taking the
tunneling to zero while keeping ∆SC fixed. We nonetheless
refer to this case as ∆ = 0. Fig. 1c shows the spectrum for a
wire without a superconductor as a function of magnetic field,
calculated from Eq. 1. The spectrum is not gapped, and the
discrete states crossing the Fermi level are due to the finite
length of the isolated wire.

(a) (b)

(c) (d)

FIG. 1: (a)/(b) Schematic of geometry. Semi-conducting
nanowire sits on an insulating substrate (white), above a
global backgate. Superconductor (in black) present in (b) but
not (a). (c)/(d) Quasiparticle energy spectrum as function of
Zeeman field EZ for setups (a)/(b), with length L = 2µm,
and other parameters µ = 0, α = 0.2eV Å, m∗ = 0.013m0,
as defined in the text. Levels closest to zero are marked in
red. In (c) we see discrete states from confinement. In (d),
once in the topological regime EZ >

√
µ2 + ∆2, we see the

mid-gap degenerate Majorana states, which then split and
oscillate (pair potential ∆ = 0.25meV).

The number-parity of the wire is plotted as a function of
µ and B, in Fig. 2a, with black regions corresponding to odd-
parity states. In this case, the parity is calculated directly from
the electron number in the wire, since it is well defined with-
out superconductivity. The boundaries between regions of
constant parity correspond to energy states crossing the Fermi
level, as in Fig. 1c. These boundaries are the locus of points
at which the system is compressible, and the charge changes
discretely across these points as we fill each newly available
state. We therefore refer to these parity plots as charging dia-
grams.

At B = 0, we see degenerate Kramer’s pairs of opposite
spin states, and thus no odd parity region. As we increase
B these states are spin-split, and at high enough fields, all
states at a given µ are spin-polarized. For intermediate B
— i.e. 0 < EZ < µ — we see figure-eight patterns in
the charging diagram where states avoid each other at some
values of µ and EZ and cross at others. These can be seen
more clearly in Fig. 2c, which focuses on a region of Fig. 2a.
The avoided crossings (red dashed line in Fig. 2c) are due to
spin-orbit coupling, and the degenerate points (red arrow in
Fig. 2c) occur because the Rashba spin-orbit interaction only
mixes opposite-spin states between wavefunctions with differ-
ent spatial parity.

To see this, note that the Hamiltonian is a system of linear
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(a) (b)

(c) (d)

FIG. 2: Electron-number parity of the system, for (a) wire
without a superconductor to gain intuition, and (b) wire
proximity coupled to a SC with a topological regime. (c)/(d)
Zoom on upper-right part of (a)/(b). Arrow highlights a
double degeneracy. Dotted line marks an avoided crossing.
System parameters: g = 50, α = 0.8eV Å, L = 2µm, ∆ = 0
in (a)/(c), and ∆ = 0.25meV in (b)/(d).

equations which mix the two spin species. Since, for ∆ = 0,
HBdG commutes with Pσz , where P is the spatial inversion
operator, it follows that states with different eigenvalues of
Pσz have vanishing matrix elements. Equivalently, by writing
the wave function for each spin expanded in Fourier modes, it
is obvious that mixing of opposite spins occurs only when the
Fourier modes have opposite spatial parity. We calculate the
spacing between avoided levels n and m, where level n is the
nth Kramer pair counting from µ = 0, in a wire of length L.
We find

∆En,m =

∣∣∣∣ αnm

L(n2 −m2)

∣∣∣∣ , (4)

where B is implicitly included in the equation since larger
|n − m| means states only approach each other at higher B.
The avoided crossings can be used as another means to extract
the value of α, the spin-orbit strength. Note that the spin-
polarised states at high-B and the avoided-crossing figure-
eights are the only two distinct regimes in this ∆ = 0 case.

Although it is not shown in the figures, we may also con-
sider rotating the magnetic field from along the length of the
wire, to the spin-orbit direction. When the applied B is par-
allel to the spin-orbit field, it is qualitatively equivalent to set-
ting α = 0, although α does provide a quantitative shift to the
result. Indeed, the Zeeman split states no longer avoid each

other, and just evolve linearly with B. We note that an experi-
ment in which the magnetic field is rotated (see [36]) until the
avoided crossings completely disappear provides a clear mea-
surement of the spin-orbit direction. As discussed below, this
can also be done for the wire-SC hybrid systems.

With these insights from the non-superconducting case, we
consider a wire proximitised by a SC. This is similar to the
above setup, although the wire is now coupled to a large su-
perconductor, which we treat as a bath as in Fig. 1b. We as-
sume that the wire and superconductor are in thermal equilib-
rium, such that fermion parity can change on the time-scales
of the experiment. In Fig. 1d, we show the spectrum for this
case, under the same conditions as the non-superconducting
case. At low B, the system is gapped, and as a function of
magnetic field the crossover from a non-topological state to a
topological state is clear at EZ =

√
∆2 + µ2 where the gap

closes. Within the topological regime, we see the two mid-
gap states oscillating, with energy crossings that correspond
to parity changes of the wire. The splitting depends exponen-
tially on the length of the wire, and goes approximately as
exp (−L/ξ) cos(kFL), where ξ is the superconducting coher-
ence length in the wire, and kF the Fermi wave vector. Note
that the splitting increases with increasing Zeeman field, since
ξ increases with B [13, 14, and 16].

We calculate the number parity in the wire with induced
superconductivity, and plot it as a function of µ and B, in
Fig. 2b. The method used to calculate the parity is discussed
in the Appendix. The theoretical boundary between the topo-
logical and non-topological regimes corresponds to the curve

EZ = Ec ≡
√
µ2 + ∆2, (5)

and in the limit L → ∞, the parity is constant below this
curve. Below this boundary, the number of particles fluctu-
ates as Cooper pairs are interchanged with the superconductor,
but there are no changes in the parity. Within the topological
regime, EZ > Ec, the mid-gap states have net spin polar-
isation and evolve linearly in the µ-B plane, similar to the
wire without a superconductor. Between parity flips, the den-
sity varies continuously. Comparing the parity flips in Fig. 2b
with the oscillations in the BdG spectrum – Fig. 1d – we see
that the flips correspond precisely to the degeneracy points be-
tween the Majorana modes. This confirms that the parity flips
are a signature of the split Majorana states crossing the Fermi
energy.

We note that in an experiment, by fitting the outermost
parity-flip, corresponding to the topological boundary, to the
hyperbola EZ =

√
∆2 + µ2 for small B and µ, the value of

the induced pair potential ∆ can be obtained. This is an impor-
tant system parameter, whose value has an important effect on
interpretation of experiments. Although ∆ has been measured
through transport measurements, independent confirmation is
important, especially given the recent discussion of soft gaps
due to leads [29]. However, this fitting procedure can be diffi-
cult, since at large B and µ, the topological boundary is only
weakly dependent on ∆; we show an alternate way to extract
∆ at the end of Sec. V below.

An interesting new parameter regime to examine is large B
and µ, outside the topological region, i.e. Ec > EZ > ∆, the
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upper right side of Fig. 2b, and enlarged in Fig. 2d. Here we
see parity flips, but they evolve quite differently from those
within the topological region. In this non-topological regime,
B is so strong that the wire is almost gapless, and the changes
in parity are discrete and due to the finite length of the wire.
At large enoughB, this is true on both sides of the topological
boundary. The figure-eight like patterns from the ∆ = 0 case
are no longer present, as the double degeneracy points have
now become avoided crossings.

For completeness, we may consider turning off the spin-
orbit interaction, killing the mid-gap Majorana states. Setting
α = 0 in our model, one finds that the system has even parity
for all µ andEZ < ∆. WhenEZ > Ec, the alternating parallel
parity stripes we saw in the other cases are present. For ∆ <
EZ < Ec, one finds a checkerboard pattern of constant parities
formed by the two spin-states evolving in opposite directions
with EZ. Although this behaviour for EZ < Ec distinguishes
the α = 0 case from the α > 0 case, we stress that both show
very similar behaviour when EZ > Ec.

For a “topological” wire with ∆ > 0 and α > 0, if the
applied magnetic field is rotated so that it has a component
along the direction of the spin-orbit-field, the system begins
to behave as if it has no spin-orbit interaction (α = 0). This
is analogous to the avoided crossings disappearing when the
field is rotated in the ∆ = 0 case, as discussed above. When
this perpendicular magnetic field component becomes strong
enough compared to the axial field, the charging diagram and
the peak heights look like the α = 0 case. The spin-orbit does
not couple opposite spins, and just adds to the Zeeman field.
It therefore no longer makes sense to discuss a topological
regime. Rotating the field perpendicular to both the wire and
the spin-orbit direction has no effect on the charging diagrams.

In all of the above discussion, the parity-transitions indicate
that the system is compressible at these points in parameter
space — it is possible to add charge. In particular, we can
calculate the change in charge as we cross these boundaries.
So far, it seems that in the three cases we have examined – the
topological case, ∆ = 0, and α = 0 – there are spin-polarised
parity flips in the regimeEZ > Ec, each qualitatively indistin-
guishable from the other cases. In order to identify split Ma-
jorana fermions, we need to distinguish between these three
cases. To do so, we take a closer look at the size of the dis-
crete charge jump across these parity-boundaries. This change
in charge can be detected through compressibility measure-
ments.

IV. JUMPS IN CHARGE DENSITY

In this section we show that while the Majorana wave func-
tions are localised at the two ends of the wire, the jumps in
the charge density are roughly uniform across the wire. We
show that this happens because, roughly speaking, the differ-
ence in the charge density of the even and the odd ground
states is given by δρ(x) = |u(x)|2 − |v(x)|2 with 2u(x) =
uR(x) + iuR(L − x) and 2v(x) = uR(x) − iuR(L − x),
where uR/L(x) is an exponentially decaying (real) function
peaked at the right/left end of the wire. One therefore obtains

that δρ(x) = −uR(x)uR(L − x) is roughly uniform as the
two exponential factors cancel each other. We derive here the
expression for δρ(x) by calculating the full expression for the
wave-functions u(x) and v(x).

Following the supplementary material of reference [13], we
note that in the bulk of the wire, there are generally eight
linearly independent solutions of the BdG differential equa-
tions at the energy E = 0. There are four solutions in which
the spinor u = (u↑, u↓)

T is pure real and in spinor notation,
v = u∗ = u, and four in which u is pure imaginary, and
v = u∗ = −u. The two classes are labeled, respectively by
an index λ = ±1. The general solution for a fixed λ can be
written as

uλ(x) =

4∑
n=1

ane
−znxρn, (6)

where zn are roots of the quartic equation

(
z2

2m
+ µ2)2 − E2

z + (zα− λ∆)2 = 0, (7)

and ρn are two component spinors, independent of x, whose
explicit forms are given in reference [13].

For λ = −1, if the system parameters are in a topologi-
cal superconductor phase, the quartic equation will have two
complex conjugate solutions, denoted by (z1, z2) = z± which
have positive real parts, one positive real solution, denoted
z3 = w, and one negative solution, which we denote z4 = s.
The spinors ρn may be chosen such that both components of
ρ3 and ρ4 are real, while ρ1 = ρ∗2. Then, to obtain a solution
with pure imaginary uλ , we must choose a3, a4 to be pure
imaginary, and a2 = −a∗1.

For λ = 1, the solutions of Eq (7) will be written as
z′n = −zn, where zn are the solutions for λ = −1 and the
corresponding spinors are given by ρ′n = ρn. In the non-
topological phase, there will be two solutions with positive
real parts and two with negative real parts for both choices of
λ.

For a semi-infinite wire, defined in the region 0 < x < ∞,
we impose boundary conditions that u = 0 at x = 0 and
that u → 0 for x → ∞. For the case λ = −1, the second
requirement is satisfied if and only if we choose a4 = 0. This
leaves us three real parameters, a3 and the real and imaginary
parts of a1. As the boundary condition at x = 0 imposes only
two additional conditions on u, we can always find a nonzero
choice of the coefficients an to satisfy all requirements. This
defines the wave function for a zero-energy Majorana mode
localised near x = 0.

For the case λ = 1, the requirements that the wave func-
tion decay for x → ∞ means that three coefficients must be
chosen equal to zero, corresponding to n =1, 2, and 3, leav-
ing only one coefficient to adjust. Clearly this will not allow
us to satisfy the boundary condition at x = 0. In the non-
topological regime, there are two adjustable coefficients for
either choice of λ, which means that one cannot find a nonzero
solution of the equations in either case.

Returning to the topological case, and following [13], we
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may write

z1 = −ikF + κ, (8)

where kF and κ are positive and kF reduces to the Fermi wave
vector of the normal wire in the limit where the pairing poten-
tial ∆ is small. The envelope of the Majorana wave function
will decay exponentially for x → ∞ with a decay length ξ,
given by

ξ−1 = min(κ,w) (9)

In the limit where EZ tends to the critical value Ec =√
∆2 + µ2 for the transition to the non-topological phase, so

the energy gap vanishes at k = 0, one finds that w → 0, and
hence ξ = w−1. However, for magnetic fields such that EZ

is larger than a second value E2, one finds w > κ, so that
ξ = κ−1. In this regime, the large distance behavior of the
Majorana wave function may be written

u(x) ∼ e−κx sin(kFx+ φ), (10)

where the phase shift φ will itself be small for large values of
EZ. As was noted in [13], the crossover fieldB2 is fairly close
to the critical value Bc for nanowires such as InSb.

In the case of a long but finite wire, we must replace the
boundary condition at infinity by the condition that the two
components of u should vanish at x = L. For a finite wire,
we no longer require a4 = 0. Since a4 must be real, however,
this gives us only one additional parameter to choose, and one
cannot find a non-trivial zero-energy solution for general val-
ues of the control parameters µ,B and L. On the other hand,
zero-energy solutions could exist on discrete surfaces of co-
dimension unity in the control parameter space.

In the regime of parameters where Eq. 10 applies, for the
semi-infinite system, we expect to find these zero energy solu-
tions on surfaces close to the points where LkF (µ,B) = nπ,
where n is an integer.

If L/ξ is large compared to unity, then the magnitude of a4
necessary to satisfy the boundary conditions at x = L will
be of order e−L(w+κ). The non-zero value of a4 requires a
correction to a1, a2 and a3 in order to continue to satisfy the
boundary conditions at x = 0, but this correction is obviously
small when L is large.

If a non-zero wavefunction ψL(x) is obtained in this man-
ner for λ = −1, it can be used to construct a zero energy
Majorana operator, γL, which will have maximum weight at
the left end of the wire, and decrease exponentially for large
L. We define

γL =
∑
σ

∫ [
uLσ (x)Ψσ(x) + vLσ (x)Ψ†σ(x)

]
dx (11)

In order to satisfy the requirement (γL)2 = 1, the wave
function must be normalized so that

2
∑
σ

∫ L

0

|uLσ (x)|2dx = 1 (12)

In order to have a precise definition one must still introduce
a convention with regard to the overall sign of the wave func-
tion. Here, we adopt the convention that the sign of −iu(x)
should be positive for x slightly greater than zero, for the spin
component aligned with the applied magnetic field. For large
magnetic field values, such that κ < w, this implies that

−iuL↓ (x) ≈ Cκ1/2e−κx sin(kFx), (13)

where C is a constant of order unity.
Following a similar procedure for the case λ = 1, we can

construct a Majorana operator γR associated with the right
end of the wire. Again there is an arbitrariness of an over-
all sign, however, we can fix the sign by choosing the wave
function as

uR(L− x) = −iuL(x) , vR(L− x) = ivL(x). (14)

It is easy to show that uR satisfies the necessary equations and
boundary conditions for λ = 1, and that the corresponding
wave function ψR is orthogonal to ψL under the BdG metric.
This means that {γR, γL} = 0.

We may now form a BdG fermion annihilation operator
Γ = (γR + iγL)/2, with the corresponding BdG wave func-
tion ψ = (ψR + iψL)/2. Although the charge density is zero
for all x in the Majorana states ψR or ψL, the charge density
associated with the wave function ψ is given by

〈ρ(x)〉ψ =
|vR(x) + ivL(x)|2 − |uR(x) + iuL(x)|2

4

= −uR(x)uR(L− x), (15)

which is generally not zero. Specifically, 〈ρ(x)〉ψ is the dif-
ference in charge density when the state ψ changes from un-
occupied to occupied.

Let L and B be fixed at specified values, and let µ0 be a
value of the chemical potential µ for which there exist zero
energy states for the given L and B. Let us now consider a
chemical potential µ = µ0 +δµ, where |δµ| is small. The sys-
tem Hamiltonian will therefore be modified by the addition of
a term −δµ

∫
ρ(x)dx. Then the wavefunction ψ constructed

above is no longer an exact solution of the BdG equations. To
lowest order in δµ, however, it remains a solution of the BdG
equations, and the energy of the state is given by first order
perturbation theory as Eψ = −δµ δNψ , where

δNψ = −
∫ L

0

uR(x)uR(L− x) dx, (16)

which we may interpret as the net number of electrons associ-
ated with the zero-energy level ψ.

For δµ 6= 0, the ground state of the system will have ψ oc-
cupied if and only if Eψ < 0. The relation Eψ = −δµ δNψ
implies that if δµ changes from a value slightly smaller than
zero to a value slightly larger than zero, the total electron
charge will always jump by a positive amount, given by the
absolute value |δN |. It also follows that the value of the jump
is given by the slope of the energy curve for δµ→ 0+:

δN ≡ |δNψ| = lim
µ→µ+

0

∂Eψ
∂µ

(17)
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In the case of large B and κL > 1, one finds for the zero
energy state at µ = µ0:

〈ρ(x)〉ψ ∼ κe
−κL sin2(kFx)(−1)n+1 (18)

where n = kFL/π. The net charge associated with the state
is given by δNψ ≈ (−1)n+1κLe−κL .

V. NUMERICAL CALCULATIONS OF TOTAL CHARGE

FIG. 3: Jumps in electron number in the wire, δN , as a
function of EZ for µ = 0. Inset: peaks corresponding to the
zeros of the spectrum in the topological regime. Red dashed
line is at EZ = ∆. Main figure: trace of the maximum of the
peaks with interpolation. Solid red - α > 0, ∆ > 0; blue
dash-dot - α = 0, ∆ > 0 ; black dashed - α = 0, ∆ = 0.

We now calculate δN numerically, using Eq. 3, and exam-
ine its dependence on the applied magnetic field. The features
described in Sec. III can be traced to the cosine term in the
splitting between the Majorana states. The magnitude of the
change in charge allows us to probe the e−κL factor of Eq. 18,
which also enters the energy splitting. From this information,
we can distinguish between topological charging events and
non-topological states.

In particular, consider a plot of δN in the wire at µ = 0 as
a function of EZ, as shown in the inset in Fig. 3. The height
of the peaks shows the magnitude of change in total charge
in the wire. The positions of these peaks correspond to the
parity flips at µ = 0 as seen in Fig. 2b. At large B, the split-
Majorana states saturate to one, since at high B the splitting
becomes comparable to ∆, and the peaks represent discrete
single-particle states. The main part of Fig. 3 traces and in-
terpolates between the maxima of these peaks for the various
parameter regimes discussed, all at µ = 0. For a wire with-
out an induced superconducting gap – regardless of the pres-
ence of spin-orbit interaction – the peak height is constant and

peaks are visible all the way down to B = 0 (black dashed
line in Fig. 3). This is as expected for a system without a gap,
in which every charging event corresponds to the addition of
an electron. For a system with finite induced ∆ and α = 0,
we find that there are no peaks visible for EZ < ∆, as ex-
pected when the system is gapped and there are no mid-gap
states. At large EZ >> ∆, the discrete charging events corre-
spond to the addition of electrons, and δN = 1. As seen from
the height of δN , when EZ ∼ ∆, the peaks correspond to a
change in charge of less than one electron.

Although the peaks in our calculations have zero width, we
note that in a real experiment, finite temperature and long
parity-breaking time will both lead to larger widths for the
peaks. Additionally, if we allow tunneling to a normal metal,
peak width could change.

When α > 0, the topological case, peaks begin to appear at
EZ ∼ E2 > ∆, and the magnitude has the form of the prefac-
tor in Eq. 18. Since κ ∼ 1/EZ for EZ > E2 (see [13 and 37]),
the dependence on the Zeeman field, solid red line in Fig. 3, is
roughly exp(−L/EZ)/EZ. The shape of the curve is closely
linked to the overlap – and splitting – of the Majorana modes.
The difference between the different traces of the amplitude
height is a useful tool to distinguish between the oscillations
in an experiment.

The calculations shown here are done at T=0. At finite tem-
peratures, we expect the discrete jumps to be smeared. Since,
at µ = 0, E2 ∼ Ec = ∆, an experiment can extract a value
for ∆ from a plot such as Fig. 3.

VI. NUMERICAL CALCULATIONS OF THE CHARGE
DISTRIBUTION

Having established that the charge in the wire changes
whenever the split Majorana states are degenerate, we now
examine how the charge is distributed along the wire. Since
the discrete charging events within the topological regime cor-
respond to the mid-gap state (as in Eq. 18), we examine the
wave-function and charge of that state alone. In the BdG
basis chosen above, we calculate the amplitude |ψ(x)|2 =
|u|2 + |v|2 and the charge 〈ρ(x)〉ψ = |u|2 − |v|2 as a func-
tion of position along the wire. As in previous works ([37
and 38]), we see that the Majorana state is concentrated on
the edges, as shown in the upper panel of Fig. 4. However,
the charge corresponding to this state – when the wires over-
lap – is spread out along the wire (bottom of Fig. 4). Sim-
ilar results may be seen in Fig. 6 of reference [34]. Fig. 4
is calculated at a degeneracy point in the spectrum at µ = 0
and EZ ∼ 0.69meV, well inside the topological regime, with
EZ > E2. Near this point, the splitting decays and oscillates,
as discussed in [13]. The charge is distributed sinusoidally
across the wire, implying that a measurement of the charge
does not need to be done near the end of the wire. Further-
more, the fact that the charge is distributed along the whole
wire can be used to distinguish between the various explana-
tions of the zero-bias conductance peak seen in transport mea-
surement, since any non-topological causes should not have a
uniform charge distribution.
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FIG. 4: Top: Intensity |ψ(x)|2 = |u|2 + |v|2 of the
wavefunction for a Majorana-pair state whose energy crosses
zero at a degeneracy point in the spectrum (EZ ∼ 0.69meV).
As expected, the wavefunction is concentrated at edges, and
decays toward the centre. Bottom: The change in charge
density, 〈ρ(x)〉ψ = |v|2 − |u|2, when this state becomes
occupied. The charge is small but not zero, and is spread
uniformly along the wire length.

VII. JUMPS IN SPIN DENSITY

Jumps in parity will generally be accompanied by jumps in
the electron spin density as well as the charge density. The
jump in total spin δ < ~S > will be given by〈

δ~S
〉

= ±b̂ ∂Eψ
∂EZ

, (19)

where b̂ is a unit vector in the direction of ~B and the sign
in front is given by the sign of δNψ . The ratio between

|
〈
δ~S
〉
| and δN is fixed by the Clausius-Clapyron relation

which states δ
〈
~S
〉
/δN is equal to the slope of dµ/dEZ of

the locus of parity jumps in the µ-EZ plane. The discontinuity
in spin density should be uniformly spread along the length of
the wire in a manner similar to the jumps in charge density.

VIII. EFFECTS OF ELECTRON-ELECTRON
INTERACTIONS

Although our calculations, so far, have been based on
a model with non-interacting electrons, we present here a
brief discussion of the modifications one might expect due to
Coulomb interactions in a real system.

In general, one would expect that electron-electron interac-
tions will renormalise parameters of the model, so that, e.g.,

µ and ∆ may depend in a non-trivial way on the applied mag-
netic field and on the voltage applied to a nearby gate. How-
ever, we expect that a renormalised single-particle description
will remain valid at low energies. Therefore, we expect that
interactions will change the positions in the magnetic field and
gate voltage where jumps in the number parity occur, but will
not have a major effect on the size of the associated jumps in
the charge of the nanowire, provided that the size is computed
with a decay length ξ appropriate to the renormalised values
of ∆ and the Fermi velocity. Our argument that the charge
jump due to change in occupancy of a zero-energy Majorana
pair should be roughly uniform along the length of the wire
should be unchanged. At the same time, a parity jump due
to a change in occupancy of, say, a localised impurity state,
would produce a charge-density change in the nanowire that
would remain at least partially localised in the vicinity of the
impurity. We note that due to screening by the adjacent super-
conductor, the effective interaction between electrons on the
nanowire will be relatively short-ranged.

Of course, screening by the superconductor will reduce the
charge sensitivity of a nearby SET. However, we argue, using
a simple model, that this effect should not be drastic. There-
fore, we expect that SET measurements could be used to study
the size of charge jumps in a real experiment, and could be
used to distinguish a jump that is uniform along the wire from
one that is concentrated at an impurity or at the ends of the
nanowire.

Let us consider the voltage V (y, z) measured at a point
(x, y, z), which is a distance R =

√
y2 + z2 from the axis

of the nanowire, at a position x along the length of the wire,
with rw << R << L, where rw is the radius of the nanowire.
The electrostatic potential V at the specified point should have
the form

V (x, y, z) =

∫ L

0

dx′ρ(x′)K(x′, x, y, z), (20)

where ρ is the charge density in the nanowire and the kernelK
depends on the detailed geometry. We expect that V should be
most sensitive to the charge density at points where |x′−x| ≤
R, so as a crude approximation we may write

V (x, y, z) ≈ ρ̃(x)C(y, z) (21)

where ρ̃(x) is an average of the charge density over the region
|x′ − x| ≤ R and C(y, z) again depends on the geometry of
the system.

We may now envision an experiment with, say, three SETs,
localised at different positions x but the same distanceR from
the wire. We may position one SET at the centre of the wire
(x = L/2) and the other two near the ends, x = x0, and
x = L − x0, where x0 is larger than R but smaller than the
superconducting decay length ξ. The prediction of our analy-
sis, combined with the approximation (21), is that a charging
event due to a change in the occupation of a zero energy Majo-
rana pair should cause a voltage jump with the same strength
at all three detectors. By contrast, if the charging event were
concentrated at the two wire ends in the same way as the Ma-
jorana wave function itself, one would expect the voltage sig-
nal to be larger at the two ends than at the central SET. If the
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charging event were associated with an impurity at an arbi-
trary point in the wire, the voltage signals would in general
be different on all three SETs, and might vary randomly from
one event to another.

More properly, one should not use the approximation (21)
but rather the non-local relation (20) to analyse the charge dis-
tribution in the nanowire. However, if the kernel K is known,
either from a calculation or from experimental calibrations, it
should be relatively easy to distinguish between the different
charge distributions considered above.

In order to estimate the coefficient C(y, z), we consider a
simplified model. We suppose that the superconductor is rep-
resented by a perfect conductor of radius rs, parallel to the
nanowire, with an axis displaced from that of the nanowire by
a distance D which is of the order of rw + rs. We assume that
the point x is far from the ends of the wire compared to R, so
we may treat the wires as infinite. Further, we approximate
the nanowire as a uniform line charge with a fixed density ρ̃,
located on the line y = z = 0.

Under these assumptions, we expect an image line charge
a distance d above the infinite semiconducting wire, and we
expect it to lie within the cylindrical SC. For two wires (charge
and image charge), we have the potential at a point (x, y, z):

V (y, z) =
ρ̃

4πε0

[
ln(y2 + z2)− ln(y2 + (z − d)2)

]
+

+ ηρ̃, (22)

where η is the value of the potential at infinity. We want the
potential to vanish on the surface of the SC. Setting the poten-
tial to zero, we find that the potential vanishes on a circle, and
by setting the radius to be rs, we can solve for

d =
2rwrs + r2w
rs + rw

, (23)

and

η = − 1

2πε0
ln

[
1 +

rw
rs

]
. (24)

This gives

C(y, z) =
1

4πε0

[
ln(y2 + z2)− ln(y2 + (z − d)2)

]
−

− 1

2πε0
ln

[
1 +

rw
rs

]
. (25)

The analysis above may be extended to the case where the
charge density on the nanowire has the form

ρ(x) = ρq cos qx, (26)

where the wave vector q is assumed small compared to 1/rw.
In this case, the charge on the superconductor will not pre-
cisely cancel the charge on the nanowire, and there will be
a component of the potential which depends logarithmically
on R, in the region rw < R < 1/q, while the potential falls

to zero for R � 1/q. More precisely, for q 6= 0, one finds
V (x, y, z) = Kqρ(x), with

Kq ≈ η
[
1− ln(R/rw)

ln(qrw)

]
(27)

in the region rw < R < 1/q, where η is the quantity given by
Eq. (24). Thus, Kq reduces to our previous result for C(y, z),
in the limit q → 0, with R/rw fixed but large. For an infinite
wire, the dependence of the kernel K(x′, x, y, z) on the sepa-
ration x′−x may be obtained by taking the Fourier transform
of Kq . The logarithmic dependence of Kq means that K will
not fall off very rapidly for |x′ − x| � R.

For R >> d, taking rs = 2rw and ρ̃ = 0.1e/L where e is
the electron charge and L = 2µm, we find V (R) ∼ 60µV ,
which should be detectable with a SET.

So far, we have assumed implicitly that there is just a single
contributing mode in the nanowire. In the case of a multi-
mode wire, any charge inhomogeneity due to a localised im-
purity state will be further screened by the additional modes in
the wire, which will tend to spread the resulting charge more
uniformly along the wire. This will reduce the differences in
the voltages measured by SETs at different positions along the
wire, but it should not affect the average voltage signal. The
extra modes should not affect the signal induced by a spatially
uniform charge jump, such as predicted due to the change in
occupancy of a zero-energy Majorana pair.

IX. EXPERIMENT

As we have argued above, charge jumps in the semicon-
ductor nanowire should be observable using a single electron
transistor (SET) as a sensitive charge detector[34, 39, and 40],
assuming that the wire length L is not too much longer than
the coherence length ξ. Furthermore, measurements at sev-
eral positions either through multiple or scanning SETs can
be done to confirm the uniform charge distribution.

We note that this measurement technique can be applied to
other systems expected to have Majorana end states. In partic-
ular, Majorana states in wires made from other materials, or
created within 2D topological insulators (e.g. HgTe quantum
wells [41] ), if realised, can hopefully be observed with an
SET. Furthermore, in these systems, multiple-band concerns
might be alleviated.

The results presented assume a clean system. A real system
will include some amount of disorder. We have checked that
small amounts of disorder shift the parity transitions slightly,
but do not change the qualitative results. Adding a large
amount of disorder wipes out all the effects discussed. The
effects of disorder on Majorna end states in one-dimensional
wires are discussed in [42 and 43].

An important experimental parameter which we hold fixed
in our discussion is the wire length. For the case of a long
wire, the Majorana end states are present, but the splitting be-
tween the two states is exponentially suppressed, and there-
fore the number-parity oscillations are harder to observe. Si-
multaneously however, a longer wire means smaller level
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spacing, and therefore more oscillations with respect to B be-
fore the splitting reaches the size of the gap. We thus con-
clude that there is an intermediate range ideal for experiments,
where the exact length desired depends on the other system
parameters. For a non-topological wire – α = 0 or ∆ = 0 –
the level spacing decreases with wire length, until the system
is compressible everywhere in the µ-B plane. Our calcula-
tions are consistent with these expectations.

To estimate the ideal wire length, we begin by relating the
energy gap and coherence length to known system parameters.
For EZ >> ∆, the gap at kF is Egap = 4∆

√
ESO/EZ, where

ESO = α2m∗ is the spin-orbit energy scale. Using the Fermi
velocity (for µ ∼ 0) vF = pF/m

∗ = 2/lSOm
∗ = 4ESOlSO,

with lSO the spin-orbit length, we find the coherence length
ξ = vF/Egap = lSO

√
ESOEZ/∆. To observe the splitting, we

need a wire length such that the splitting between the midgap
states, ε0 ∼ Egape

−L/ξ, is larger than a typical temperature,
say T ∼ 100mK ' 10µeV , and also ε0 << ESO. For typical
values of EZ = 750µeV , ESO = 50µeV and lSO = 200nm,
we find Egap ∼ 250µeV . If we choose ε0 ∼ 1

5Egap >> T ,
we find L ∼ 250nm.

A related possible experiment is to measure the jumps in
the spin of these wires. The split Majorana states carry spin
in addition to their electric charge. This spin is considerably
smaller than the spin of a single electron, and therefore very
difficult to detect using available experimental techniques [44
and 45]. However, recent advances suggest that such measure-
ments might not be so far off [46 and 47]. With an extremely
sensitive magnetometer, we can hope to pick out the oscilla-
tions in the magnetisation of the system as a function of µ and
B, as discussed for the charge.

X. CONCLUSION

In short topological wires, the predicted zero-energy Majo-
rana end modes are split due to the significant overlap of their
wavefunctions. The split states carry charge, which can be de-
tected in experiments. Whereas the tunneling density of states
measured in transport experiments is only an end effect, the
charge of the split Majoranas is uniformly distributed along
the wire. Comparing both charge and tunneling experiments
at the end and bulk of a wire can thus resolve remaining unan-
swered questions in the field.
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Appendix A: Methods for Calculating Number Parity

We discuss two equivalent numerical methods for calculat-
ing the number parity when ∆ > 0. The plots in Fig. 2 were
actually obtained using the second method, but both methods
were checked against each other.

The first option is to follow the energy eigenvalues along a
curve in the µ-B plane, starting at a point with B = 0, and
ending at the desired point (µ,B). We know that the number
parity must be even when B = 0, and the number parity will
flip when and only when an energy level crosses zero. There-
fore, the number parity at (µ,B) is equal to (−1)n, where n is
the number of zero-energy crossings along the curve. Numer-
ically, some care must be taken to correct for errors where two
consecutive zeros are so close to each other that they appear
as one, resulting in the wrong parity being recorded beyond
the second of the close points.

As an alternative, we have used a new method, which to
our knowledge has not been previously discussed in the lit-
erature. For a spinful system on a lattice with N sites, write
H = ~ψ†HBdG ~ψ, with ~ψ = (a1, ..., a2N , a

†
1, ..., a

†
2N )T . Then

HBdG = UDU†, where U =

(
u v
v∗ u∗

)
is a unitary matrix

and D is a diagonal matrix ordered so that the the first 2N
elements are the positive energy eigenvalues. We thus have:

H = ~ψ†UDU† ~ψ
= ~η†D~η, (A1)

with ~η = (η1, ..., η2N , η
†
1, ..., η

†
2N )T . We claim that the parity

of the system is P = (−1)q , where q = rank(v) mod2. We
have checked this numerically for ∆ ≥ 0, and prove it for
∆ = 0, along with a slightly different version of the claim
for the case ∆ > 0. In particular, for ∆ > 0, we will show
that det(v) 6= 0 if and only if the system is in an even-parity
state, subject to the following assumption, which we find com-
pelling. Specifically, since the pairing term in the Hamiltonian
does not conserve electron number, we assert that a ground
state with even number parity should contain some admixture
of states with every possible even electron number between
zero and 2N , including the single basis state with 2N elec-
trons present. Thus, we shall assume that if the ground state
|G〉 has even number parity, then

〈G| a†1 · · · a
†
2N |0〉 6= 0. (A2)

Proof for ∆ = 0. In the absence of a pairing potential an oc-
cupied eigenstate ofHBdG corresponds to a vanishing column
in u and a non-zero column in v, whereas for an unoccupied
eigenstate the converse is true. This means that the number
of occupied states nocc simply equals the number of non-zero
columns in v which, since U is unitary, are all linearly inde-
pendent. One then has by definition that nocc = rank(v), and
in particular q = rank(v) mod2 as claimed.

Proof for ∆ > 0. Consider the state

|G′〉 ≡ η2N · · · η1 |0〉 . (A3)
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Since any ηi operating on this state annihilates it, |G′〉must be
proportional to the ground state, unless it is identically zero.
That is, |G′〉 = C |G〉, for some constant C. Furthermore,
if we transform the ηi’s in (A3) back to the electron operator
basis, it is straightforward to show that the term a†1 · · ·a

†
2N |0〉

occurs with a coefficient equal to det(v). According to our as-
sumption (A2), this term cannot have zero weight in the even-
parity ground state, and therefore det(v) 6= 0, which further
implies that v must have maximal rank.

Conversely, if det(v) = 0, then the system does not have
a component containing 2N electrons, so by our assertion, it
cannot be an even-parity state. We thus have that det(v) 6= 0
if and only if the number parity of the ground state is even.

Although this result is sufficient for our purposes, if we

make an assumption analogous to (A2) for the case where the
ground state has odd number parity, namely that the 2N − 1
electron state must have non-zero weight in the ground state,
we see that the pre-factor in the expansion from (2N −1) ηi’s
to the electron operator basis must be non-zero. In particular,
one can show that the pre-factor of the leading term is now a
weighted sum of the first minors of the matrix v, and by the
same argument as above it cannot vanish. A vanishing deter-
minant with a non-vanishing first minor implies that a matrix
has rank one less than its maximal rank, and so for the odd
case, rank(v) = 2N − 1. Since v has size 2N × 2N , we see
that the ground state number parity is given by P = (−1)q ,
where q = rank(v) mod2, as claimed.
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