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Spin injection from a ferromagnet into a semiconductor in the case of a rough interface

R. C. Roundy and M. E. Raikh
Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA

The effect of the interface roughness on the spin injection from a ferromagnet into a semiconductor
is studied theoretically. Even a small interface irregularity can lead to a significant enhancement of
the injection efficiency. When a typical size of the irregularity, a, is within a domain λF � a� λN ,
where λF and λN are the spin-diffusion lengths in the ferromagnet and semiconductor, respectively,
the geometrical enhancement factor is ∼ λN/a. The origin of the enhancement is the modification
of the local electric field on small scales ∼ a near the interface. We demonstrate the effect of
enhancement by considering a number of analytically solvable examples of injection through curved
ferromagnet-semiconductor interfaces. For a generic curved interface the enhancement factor is
∼ λN/R, where R is the local radius of curvature.

PACS numbers: 72.15.Rn, 72.25.Dc, 75.40.Gb, 73.50.-h, 85.75.-d

I. INTRODUCTION

In a seminal paper Ref. 1 the efficiency of spin injection
from a ferromagnet into a normal metal was quantified.
As it was demonstrated in Ref. 1, the crucial property
of a ferromagnet, which makes the injection possible, is
the difference in conductivities, σF↑ and σF↓ , of the ma-
jority and the minority carriers, respectively. It is due to
this difference that the chemical potentials, µF↑ (x), µF↓ (x),
of spin-up and spin-down carriers inside the ferromag-
net get separated near the boundary, as illustrated in
Fig. 1. The separation of the chemical potentials, µN↑ (x)
and µN↓ (x), inside a normal metal adjusts to match the
separation of chemical potentials in ferromagnet. The
spatial regions where these separations develop are the
spin-diffusion lengths, λF and λN .

Deep into the normal metal, the currents, jN↑ and jN↓ , of
the spin-up and spin-down carriers equilibrate, see Fig. 1.
According to Ref. 1, the degree of spin polarization in-
jected from the ferromagnet is related to the difference

FIG. 1: (Color online) Illustration of the spin injection
through a planar interface, Ref. 1, in the presence of a fer-
romagnetic cylinder with a small radius a � λN located at
distance, x0, such that a� x0 � λN from the F/N interface.
The behaviors of the chemical potentials for up and down
spins is shown schematically.

of jN↑ and jN↓ right at the interface as follows

P =
jN↑ − jN↓
jN↑ + jN↓

=

σN
(

1

σF↓
− 1

σF↑

)
γ

2 + σN
(

1

σF↓
+

1

σF↑

)
γ

, (1)

where the parameter γ is defined as

γ =
λF
λN

. (2)

It follows from Eq. (1) that the injection is efficient
when the conductivities of the ferromagnet and the nor-
mal metal are of the same order. And indeed, in subse-
quent experiments2–4 the injection was demonstrated for
the contacts of ferromagnets with paramagnetic metals.

By the year 2000 it became apparent that applications
of the spin-injection effect in the information technology
require the injection from a ferromagnet into a semicon-
ductor. Thus the subsequent experimental studies, see
e.g. Refs. 5–8, were focused on achieving this goal. The
detailed account of the results on spin-injection devices
based on ferromagnet-silicon contacts can be found in a
recent review Ref. 9.

It was first pointed out in Ref. 10 that the large ratio
of conductivities σF/σN ∼ 104 constitutes a fundamen-
tal obstacle for the spin injection limiting it to ∼ 0.1
percent10. To circumvent this “conductivity mismatch”
problem it was proposed11,12 to introduce a tunnel bar-
rier between the ferromagnet and semiconductor, see the
review Ref. 13 for comprehensive literature. In fact, the
idea to use a spin-dependent barrier for spin filtering,
see Ref. 14, was proposed even earlier. Note however,
that Eq. (1) also suggests that the additional source of
weakness of injection is the the smallness of the param-
eter γ, Eq. (2). While the spin diffusion length in the
ferromagnet is typically λF ∼ 10 nm, the length λN is
much larger. From the experiment on injection into InN
nanowires6 the value λN ∼ 200 nm was inferred. Even
higher values of λN between 5 and 50 µm have been re-
ported for spin injection into GaAs wires15,16.
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The main message of the present paper is that, with
small value of γ, the polarization of the injected cur-
rent can be strongly enhanced by the roughness of the
ferromagnet-semiconductor interface with a spatial scale
∼ λF . On the qualitative level, this enhancement is due
to the local enhancement of electric field near a curved
surface. Note that this effect could not be uncovered in
the earlier theories of spin transport17–22 in multilayered
structures, where it was implicit that the chemical po-
tentials change along one dimension only.

In Sections II and III we will illustrate our message for
some toy models which allow a rigorous analytical solu-
tion. In Sect. IV we will consider the enhancement of
injection due to interface inhomogeneities for more real-
istic geometries. Sect. V concludes the paper.

II. FERROMAGNETIC GRAIN NEAR THE
INTERFACE

A. Planar boundary

Two principle aspects of the derivation of Eq. (1) in
Ref. 1 rely heavily on the fact that the F/N boundary was
presumed planar. Firstly, the conditions of continuity of
spin-up and spin-down current densities

jF↑ = σF↑
∂µF↑
∂x

∣∣∣∣
x=0−

= jN↑ = σN
∂µN↑
∂x

∣∣∣∣
x=0+

,

jF↓ = σF↓
∂µF↓
∂x

∣∣∣∣
x=0−

= jN↓ = σN
∂µN↓
∂x

∣∣∣∣
x=0+

, (3)

were imposed at the plane x = 0, as well a the continuity
condition of the chemical potentials

µF↑ − µF↓
∣∣
x=0−

= µN↑ − µN↓
∣∣
x=0+

. (4)

Secondly, it was assumed that the spin-up and spin-
down chemical potentials satisfied one-dimensional dif-
fusion equations

d2

dx2
(
µF↑ − µF↓

)
=
µF↑ − µF↓
λ2F

,
d2

dx2
(
µN↑ − µN↓

)
=
µN↑ − µN↓
λ2N

.

(5)
To derive Eq. (1) the authors used the explicit solutions
of Eq. (5)

µF↑ = µF0 (x) +A↑e
x/λF , µN↑ = µN0 (x) +B↑e

−x/λN , (6)

µF↓ = µF0 (x) +A↓e
x/λF , µN↓ = µN0 (x) +B↓e

−x/λN , (7)

in which µF0 (x) and µN0 (x) are the linear functions with
slopes proportional to the net current, j; the ratio of the
slopes is (σF↑ + σF↓ )/2σN .

The four unknown constants, A↑, A↓, B↑, and B↓, in
the solutions Eq. (6) are related to each other via the

conditions Eqs. (3), (4) in the following way

σF↑

(
j

σF↑ + σF↓
+
A↑
λF

)
= σN

(
j

2σN
− B↑
λN

)
= jN↑ , (8)

σF↓

(
j

σF↑ + σF↓
+
A↓
λF

)
= σN

(
j

2σN
− B↓
λN

)
= jN↓ , (9)

A↑ −A↓ = B↑ −B↓. (10)

The above relations together with total current conserva-
tion, jN↑ + jN↓ = j, lead directly to the expression Eq. (1)
for the polarization of the injected current.

In order to generalize Eq. (1) to the case of a curved in-
terface, one should treat the chemical potentials µF↑ , µ

F
↓ ,

µN↑ , and µN↓ as functions of all three spatial coordinates,

and thus, replace d2/dx2 in the diffusion equations by the
Laplacian. Also, the conditions Eqs. (3), (4) should re-
quire the local continuity along the normal to the curved
boundary. It turns out that the most prominent effect
of the curved interface stems from 3D rather than 1D
decay of the solutions Eq. (6) away from the interface.
The model example of a grain near a flat boundary, con-
sidered in the next subsection, provides the most striking
demonstration of this effect.

B. Grain with cylindrical cross section

Assume that a ferromagnetic cylinder of radius, a, is
embedded into a semiconducting region at distance, x0,
from the interface. The distance x0 is much bigger than
a but much smaller than the spin diffusion length λN , see
Fig. 1. The presence of the cylinder modifies the current
distribution in semiconductor. In principle, this modifi-
cation depends on σF↑ and σF↓ , but when both conduc-
tivities are bigger than σN , the correction to the current
density depends only on the distance, ρ, to the center of
the cylinder

jN(ρ) = j0 − j0
a2

ρ2
+

2a2(j0 · ρ)ρ

ρ4
. (11)

This textbook result emerges from matching the tangent
components of electric field and normal components of
current at the surface of the cylinder. Our goal is to
derive the relation similar to Eq. (11) for the spin current
density

js = j↑ − j↓. (12)

In the absence of the cylinder, this density is given by
js = Pj0 exp(−x/λN), with P defined by Eq. (1). To
achieve this goal, one has to find the functions µN↑ and µN↓
from the diffusion equation Eq. (5) and match them and
the normal components of current with the corresponding
solutions of the diffusion equation for µF↑ and µF↓ inside
the cylinder.
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For distances, x0, in the domain a � x0 � λN the
solutions for µN↑ and µN↓ still have the “dipole” form

µN↑ = α↑ + β↑ρ cos θ +
F

ρ
cos θ, (13)

µN↓ = α↓ + β↓ρ cos θ +
G

ρ
cos θ. (14)

Here, the constants α↑, α↓ are the values of µN↑ and µN↓

at x = 0. Similarly, β↑ and β↓ are
dµN↑
dx and

dµN↓
dx at x = 0,

which can be cast in the form

β↑(↓) =
j0

2σN
(1± P) . (15)

With the same accuracy as Eq. (11), this specification
of β↑ and β↓ is valid when x0 � a, i.e. when the feed-
back of the cylinder on µN↑ and µN↓ near the boundary is
negligible.

With regard to the net current distribution, the cur-
rent density is constant inside the cylinder. This is, how-
ever, not the case for the spin density distribution, where
µ↑ and µ↓ should be found from the diffusion equation,
Eq. (5). It appears that in cylindrical coordinates we
can, similarly to Eq. (11), keep only the solutions corre-
sponding to the zeroth and the first angular momenta

µF↑ − µF↓ = AI0

(
ρ

λF

)
+BI1

(
ρ

λF

)
cos θ, (16)

where I0(z) and I1(z) are the modified Bessel func-
tions. Eq. (16) describes the decay of spin imbalance
upon approaching the center of the cylinder. On the
other hand, it follows from the local current conservation,
∇ · (j↑ + j↓) = 0, that the combination of σF↑ µ

F
↑ + σF↓ µ

F
↓

does not decay, i.e.

σF↑ µ
F

↑ + σF↓ µ
F

↓ = (σF↑ + σF↓ )C +Dρ cos θ. (17)

The constants C, D together with the constants A and B
should be found from the boundary conditions at ρ = a.
Matching µN↑ and µF↑ at ρ = a yields

C +
σF↓

σF↑ + σF↓
AI0

(
a

λF

)
= α↑, (18)

Da

σF↑ + σF↓
+

σF↓ B

σF↑ + σF↓
I1

(
a

λF

)
= β↑a+

F

a
. (19)

Similar equations originate from matching µN↓ and µF↓ .

The condition, σF↑
∂µF↑
∂ρ

∣∣∣∣
ρ=a

= σN
∂µN↑
∂ρ

∣∣∣∣
ρ=a

, of the conti-

nuity of the radial current results in

σF↑ σ
F
↓

σF↑ + σF↓

A

λF
I ′0

(
a

λF

)
= 0, (20)

σF↑D

σF↑ + σF↓
+

σF↑ σ
F
↓

σF↑ + σF↓

B

λF
I ′1

(
a

λF

)
= σN

(
β↑ −

F

a2

)
.

(21)

Eqs. (19), (21) express the continuity of the cos θ terms
in µ↑ and j↑. The corresponding conditions for µ↓ and
j↓ read

Da

σF↑ + σF↓
−

σF↑ B

σF↑ + σF↓
I1

(
a

λF

)
= β↓a+

G

a
, (22)

σF↓D

σF↑ + σF↓
−

σF↑ σ
F
↓

σF↑ + σF↓

B

λF
I ′1

(
a

λF

)
= σN

(
β↓ −

G

a2

)
.

(23)

Note now, that the four conditions Eqs. (19), (21), (22),
and (23) form a closed system of equations for the vari-
ables D,B,F, and G. Note also, that it is these four vari-
ables which are responsible for the spin current. Solving
this system yields

jNs (ρ) = j0

s −
(
a2
Pcyl

P

)(
j0
s

ρ2
− 2

(j0
s · ρ)ρ

ρ4

)
, (24)

where Pcyl is defined as

Pcyl =

σN
σF↑ − σF↓
σF↑ σ

F
↓

γcyl

1 +
σN

σF↑ σ
F
↓

(
σF↑

2 + σF↓
2

σF↑ + σF↓

)
γcyl.

, (25)

and the constant γcyl is given by

γcyl =

λF
a

I1

[
a
λF

]
I ′1

[
a
λF

]
 . (26)

Equation Eq. (24) represents the spin analog of the
charge-current distribution Eq. (11). We see that the
spin “polarizability” of a ferromagnetic cylinder exceeds
the electrical polarizability, a2, by a factor Pcyl/P. For
σN � σF this factor simplifies to

Pcyl

P
≈ γcyl

γ
=
(λN
λF

)
γcyl =

λN
a

I1

[
a
λF

]
I ′1

[
a
λF

] , (27)

where γcyl, defined by Eq. (26), depends only on the
ratio a/λF . Thus, for λN � λF , which is the case for
a ferromagnet-semiconductor interface, we find that the
spin polarizability of the embedded ferromagnetic cylin-
der exceeds substantially the electrical polarizability.

The above finding can be interpreted as follows. For
σN � σF↑ , σ

F
↓ the expression Eq. (1) for polarization of

the injected current can be viewed as a ratio of two re-
sistances, one having the resistivity 1/σN and the length
λN , and the other having the resistivity

(
1/σF↑ − 1/σF↓

)
and the length λF . Then the enhancement of spin po-
larization predicted by Eq. (24) can be viewed as a re-
placement of γ = λF/λN by the effective ratio γ = λF/a,
i.e. the replacement of the length of a “semiconductor”-
resistor by the radius of the cylinder, a. This replacement
has an origin in inhomogeneity of the electric field on the
spatial scale ∼ a, similar to the effect of the “spread re-
sistance”.
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FIG. 2: (Color online) The spin polarizability of a ferromag-
netic cylinder and a sphere exceed the electrical polarizabil-
ity by λN

λF
γcyl and λN

λF
γsphere, respectively. The functions γcyl

(blue) and γsphere (purple) are plotted versus the dimensionless
radius, a/λF , from Eqs. (26), (31).

C. Spherical grain

Generalization of Eqs. (11) and (24) to the case of
a ferromagnetic sphere of a radius, a, embedded into a
semiconductor is straightforward. The textbook result
for the current density distribution reads

jN(r) = j0 − j0
a3

r3
+ 3a3

(j0 · r)r

r5
, (28)

while the spin-current density distribution is given by

jNs (ρ) = j0

s −
(
a3
Psphere

P

)(
j0
s

r3
− 3

(j0
s · r)r

r5

)
, (29)

where the induced spin-dipole moment has a form

Psphere =

3
2σ

N
σF↑ − σF↓
σF↑ σ

F
↓

γsphere

1 + 2
σN

σF↑ σ
F
↓

(
σF↑

2 + σF↓
2

σF↑ + σF↓

)
γsphere.

, (30)

with γsphere defined as

γsphere =

λFa
i1

[
a

λF

]
i′1

[
a

λF

]
 . (31)

Here i1(z) is the modified spherical Bessel function.

FIG. 3: Schematic illustration of spin injection from a ferro-
magnet into a semiconductor in cylindrical and wedge geome-
tries. The outside radii are much bigger than the radius, a,
of the ferromagnetic core.

Numerically, the functions γcyl and γsphere, plotted in
Fig. 2, are practically identical. For a � λF , they are
equal to 1, suggesting that the spin polarization of cur-
rent at the surface of a small cylinder or a small sphere
is given by Eq. (1) with the geometrical factor, γ, equal
to 1 instead of λF/λN . For a � λF both γcyl and γsphere

fall off as λF/a which correspond to γ ∼ λF/a.

Summarizing the consideration in the above two sub-
sections, the spin polarizability of a grain of a radius a
exceeds the charge polarizability, a2. For a big grain,
a � λF , the spin polarizability is ∼ λNa, while for a
small grain it is equal to λN

λF
a2.

III. INJECTION FROM AN ELECTRODE WITH
A CURVED INTERFACE

In this Section we will consider three toy models of
spin injection through the interface of finite area. These
models allow exact analytical treatment of a non-planar
interface. They will help us later for the analysis of spin
injection from a ferromagnet into a semiconductor in the
presence of interface roughness.

A. “Radial” injection from a cylinder

By cylindrical geometry we mean the arrangement of
ferromagnet and semiconductor shown in Fig. 3a. The
cross section of the ferromagnet is a circle with radius
a. Most importantly, the current flows in the plane of
the figure rather than along the axis of the cylinder, see
Fig. 3a. Obviously, in this geometry, Eq. (5) should be
solved in the polar coordinates. Namely, if we search for
µF and µN in the form of the combination of harmonics,
exp(imθ), then the corresponding radial functions which
ensure regular behavior at ρ → 0 and at ρ → ∞ are the
modified Bessel functions Im and Km, respectively. Thus
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we write

µF↑(↓) = µF0 +
∑
m

Am↑(↓)Im(ρ/λF )eimθ, (32)

µN↑(↓) = µN0 +
∑
m

Bm↑(↓)Km(ρ/λN)eimθ, (33)

Here µF0 and µN0 are responsible for the non-polarized
part of the current. Similar to the case of an embed-
ded cylinder, the boundary conditions of the continuity
of chemical potentials and radial currents should be im-
posed only on the amplitudes of harmonics. They assume
the form

(A↑ −A↓) Im(a/λF ) = (B↑ −B↓)Km(a/λN), (34)

σF↑
λF
I ′m(a/λF )A↑ =

σN

λN
K ′m(a/λN)B↑, (35)

σF↓
λF
I ′m(a/λF )A↓ =

σN

λN
K ′m(a/λN)B↓. (36)

It easily follows from the system Eq. (34) that, for any
given m, the degree of polarization has a standard form
Eq. (1) with the factor γ replaced by γrcyl, which is defined
as

γrcyl(m) = −
(
Im(a/λF )

I ′m(a/λF )

)(
K ′m(a/λN)

Km(a/λN)

)
γ. (37)

Consider first the case m = 0. Then Eq. (37) illus-
trates the main message formulated in the Introduction.
Namely, when the perimeter, 2πa, of the F/N boundary
exceeds both λF and λN , then the first ratio in Eq. (37)
is equal to 1, while the second ratio becomes −1, so that
we get γrcyl = γ, i.e. the curvature of the boundary has
no effect on injection.

Consider now an intermediate domain λF � a � λN .
Then the argument in the first factor is big, while the
argument in the second factor is small. Using the small-
z asymptote of K0(z) we find

γrcyl

∣∣∣
λF�a�λN

=

(
λN

a ln λN
a

)
λF
λN

=
λF

a ln λN
a

. (38)

We conclude that in the intermediate domain the injec-
tion efficiency is enhanced essentially by λN/a. Note that
the above result matches, with logarithmic accuracy, the
result Eq. (26) for the different geometry in which the ex-
ternal charge and spin currents flow not from, but rather
through the ferromagnetic cylinder.

For a very small contact area a � λF the arguments
of the Bessel functions in both factors in Eq. (37) are

small. From the asymptote I0(z) ≈ 1 + z2

4 we find

γrcyl

∣∣∣
a�λF�λN

=

(
2λNλF

a2 ln λN
a

)
λF
λN
∼ λ2F
a2
. (39)

In the previous Section we have already realized that
large spin diffusion length, λN , disappears from the in-
jection efficiency. Eqs. (38), (39) essentially illustrate

0 2 4 6 8
0

5

10

15

FIG. 4: (Color online) The enhancement factor of the injected
spin polarization is plotted for λN = 10λF from Eq. (37)
versus the dimensionless radius, a/λF , of the ferromagnetic
cylinder for angular momenta m = 0 (blue), m = 1 (purple),
and m = 6 (gold). The decay of the enhancement factor
corresponds to a

λF
∼ m.

the same message and reaffirm the above picture that for
large λN the spin resistance of the semiconductor should
be replaced by the spread resistance.

For higher azimuthal harmonics, m, the enhancement
of the injection efficiency is less pronounced as it is illus-
trated in Fig. 4. On the other hand, for larger m, the
enhanced injection efficiency persists over a wider domain
of the contact perimeters, 2πa.

B. Injection in the wedge geometry

Additional insight into the geometrical enhancement of
the spin injection can be inferred from the wedge-like ar-
rangement of the F/N boundary illustrated in Fig. 3b.
A novel feature present in Fig. 3b is that both the ferro-
magnetic injector and semiconductor are surrounded by
vacuum with σ = 0. Then in addition to the conditions
Eqs. (3), (4) we must also require that the normal com-
ponent of the current at the boundary with the vacuum
is zero. This condition imposes the following angular de-
pendence of the potentials,

µ↑ − µ↓ ∼ cos
nπθ

ϕ
, (40)

where ϕ is the opening angle of the wedge. It can be
easily checked that the dependence Eq. (40) translates
into the following form of the enhancement factor

γwedge = −

(
Inπ
ϕ

(a/λF )

I ′nπ
ϕ

(a/λF )

)(
K ′nπ

ϕ
(a/λN)

Knπ
ϕ

(a/λN)

)
γ. (41)

It is easy to see that the small opening angle, ϕ, is com-
pletely equivalent to the angular momentum m = π

ϕ in

Eq. (37). We have seen above that, for large m, the en-
hancement is λN

λF
and falls off with a slowly, see Fig. 4. In

this sense, high values of m are desirable, but the modes
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d

FIG. 5: Schematic illustration of the size-quantization effect
in spin injection. The modes, corresponding to oscillating
distributions of ∆µ in radial direction, decay along x with
decrements larger than λF and λN , see Eqs. (43), (44). The
behavior of ∆µ(ρ) for n = 1 is illustrated schematically.

with high m are hard to excite. The wedge geometry
“simulates” high-m values due to the small opening an-
gle.

C. Injection with “size quantization”

In this subsection we study the enhancement of po-
larized injection for a more realistic situation when the
ferromagnet and semiconducting materials contact each
other over a finite area, πa2, as illustrated in Fig. 5a. We
restrict consideration to axisymmetric solutions, m = 0.
Then ∆µ, e.g. in ferromagnet, satisfies the equation

1

ρ

∂

∂ρ

(
ρ
∂

∂ρ
∆µF

)
+

∂2

∂z2
∆µF =

∆µF

λ2F
. (42)

The enhancement in this geometry emerges from the fact
that the condition of absence of current through the sides
of the cylinder imposes “size quantization” of the ra-
dial dependencies of the chemical potentials µF and µN .
Namely, ∆µF and ∆µN behave with ρ as a zero-order
Bessel function, J0

(
αρ
a

)
, where the constant α is fixed

by absence of radial current at ρ = a, i.e. J ′0(α) = 0.
Thus the values of α are the roots, α1n, of the first-order
Bessel function.

What is most important for the enhancement of the
injection is that the solutions corresponding to different
n have different decay decrements along z. Indeed, from
Eq. (42) we get (

1

λ(n)

F

)2

=
1

λ2F
+
α2
1n

a2
, (43)

for the ferromagnet and similarly(
1

λ(n)

N

)2

=
1

λ2N
+
α2
1n

a2
, (44)

for the semiconductor. The modification of λF and λN
modifies the effective spin-resistances and thus the injec-
tion efficiency. This modification amounts to a replace-
ment of λF , λN in the geometrical factor γ in Eq. (1) by
λ(n)

F and λ(n)

N , respectively. Overall we get

γn(a) =

(√
a2 + α2

1nλ
2
N

a2 + α2
1nλ

2
F

)
γ. (45)

Again, for a � λF , λN we reproduce the infinite-area
result γn(a) = γ. For λF � a� λN the result becomes

γn(a) =

(
α1nλN
a

)
γ ∼ λF

a
. (46)

Similar to Eq. (38) the largest spin-diffusion length λN
drops out of the spin-injection efficiency. In other words,
the spin-resistance of the semiconductor is determined by
a cylinder of diameter a and height ∼ a.

It is seen from Eq. (46) that the bigger is n the stronger
is the enhancement. On the other hand, similar to the so-
lutions with high angular momentum, the solutions with
large radial number are hard to excite. In the absence
of inhomogeneity in the ρ-direction, the dominant solu-
tion is ∆µ = const(ρ), and hence no enhancement of the
injection.

IV. REALISTIC GEOMETRIES

A. Rough interface: stalactites

We will consider two models of the F/N interface
roughness, see Fig. 6. In the first model the ferromagnet
penetrates in a stalactite fashion into the semiconductor.
We will assume that the height, H, and the diameter, a,
of a typical stalactite is much bigger than λF but much
smaller than λN . We start from the simplest case H = a.
It follows from the above consideration that even when
the surface density, N , of stalactites is small, Na2 � 1
their presence might cause a strong net enhancement of
the spin injection. As it was explained above, the origin
of the enhancement is that for σF↑ , σ

F
↓ � σN the force

lines of electric field are normal to the curved F/N inter-
face and the magnitude of the induced field decays at a
scale ∼ a away from the interface. For the purposes of
the spin injection it is also important that at distances
from the stalactite surface also ∼ a the field lines become
straight. This ensures that the contributions to the net
spin polarization from the plane region of the interface
and from the stalactites are additive. The last crucial
observation is that, as long as the distance from the in-
terface remains smaller than λN , the polarization of the
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a

b

FIG. 6: (Color online) Two models of a rough interface are
depicted schematically; (a) interface roughness is modeled as
a system of “stalactites” with surface density, N , and linear
sizes H and a. For H � a the current is injected radially
from the stalactite surface, so that the enhancement factor is
given by Eq. (38). At distance ∼ H from the top of the sta-
lactite the current distribution is homogeneous. (b) a model
of an interface roughness with characteristic period, H, and
amplitude h � H. Due to smallness of the ratio h/H the
characteristic radius of curvature R = H2/h is much bigger
than H.

current injected from the surface of the stalactite remains
the same. Summarizing all the above arguments, we can
present the average polarization as

Pinjected = P
(

1 +N
Pstal

P
a2
)

(47)

≈ σN
(

1

σF↓
− 1

σF↑

)
λF
λN

(
1 +Na2

γstal

γ

)
, (48)

where Pstal and γstal in the second term in the brackets
stand for the spin polarizability and the enhancement fac-
tor of the stalactite, respectively. In the case of a sphere
and a cylinder, and all the cases considered thereafter,
we obtained that, with accuracy of a numerical factor,
the result for the enhancement factor is the same. For
this reason we set γstal/γ ∼ λN/a. This leads us to the
final result

Pinjected = σN
(

1

σF↓
− 1

σF↑

)
λF
λN

(1 +NaλN) . (49)

It is seen from Eq. (49) that the stalactites dominate
the injection when the distance between the neighbors is
smaller than (λNa)1/2. This condition is compatible with
the assumption that this distance is bigger than a.

We now turn to the limit H � a. In this limit, the
condition, σF � σN leads to the field enhancement near

the stalactite interface, in order to turn the field lines to
from vertical to horizontal, see Fig. 6. As a result the po-
larized current is injected in the radial direction. Thus
for λF � a we can use Eq. (38) for the enhancement
factor. Since the current from the stalactites is injected
radially, while from the rest of the interface it is injected
normally, it is convenient to calculate the average polar-
ization using the cross section a distance ∼ H below the
stalactites. Indeed, at a distance ∼ H below the stalac-
tites the net current becomes homogeneous. A nontrivial
element of the calculation is that, at such distances, the
current lines, emanating from a given stalactite, occupy
the area ∼ H2. In other words, the current injected from
the area 2πaH, which is the surface area of the stalactite,
spreads out into the area ∼ H2. This is indeed the case,
since, due to enhancement near the interface, the radial
electric field exceeds the field away from the interface by
∼ H/a. Basing on the above remarks, we conclude that
the generalization of Eq. (47) to the case H � a reads

Pinjected = P
(

1 +N
Pstal

P
H2

)
(50)

≈ σN
(

1

σF↓
− 1

σF↑

)
λF
λN

(
1 +NH2 γstal

γ

)
. (51)

Substituting γstal from Eq. (38), we arrive at the final
result

Pinjected = σN
(

1

σF↓
− 1

σF↑

)
λF
λN

(
1 +N

H2λN
a

)
. (52)

Note that, while the condition Na2 � 1 ensures that
the neighboring stalactites do not overlap, Eq. (52) is
only valid for N . 1/H2. The physical reason for this
is that for higher densities the field enhancement takes
place only within the distance ∼ N−1/2 from the tips of
stalactites. This is because the stalactites screen the ex-
ternal field collectively23. Thus for N & 1/H2 the result
Eq. (52) saturates.

B. Rough interface: small roughness amplitude

In the second model of a rough F/N interface the in-
terface profile is sinusoidal, see Fig. 6 with character-
istic amplitude, h, and the period, H. To find the γ-
parameter, γsin, for this model, we notice that the effec-
tive radius of curvature corresponding to a given element
of the interface is R = H2/h. As illustrated in Fig. 6b,
one can view the injection from this element as a radial
injection from the surface of a cylinder with radius R.
This suggests that we can estimate γsin with the help of
Eq. (38) in which the radius a is replaced by R. This
yields

γsin ∼
λFh

H2
=
λF
R
. (53)

The corresponding expression for polarization of the in-
jected current reads
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Psin = σN
(

1

σF↓
− 1

σF↑

)
λFh

H2
= σN

(
1

σF↓
− 1

σF↑

)
λF
R
.

(54)
Note that the result Eq. (38) pertained to the inter-

mediate domain of the radii, a, namely λF � a � λN .
With a replaced by R, this domain turns out to be
(λFh)1/2 � H � (λNh)1/2. The first inequality suggests
that γsin is small. As the period, H, gradually decreases
and reaches (λFa)1/2, the value γsin reaches 1 and satu-
rates upon further decrease of H.

C. Injection via a ferromagnetic pillar

Assume that a ferromagnetic pillar of a radius, a, is in
contact with a semiconductor surface, as shown in Fig.
7a. Since the conductivity in the lower half-space, ex-
cept for the interior of the pillar is zero, the current lines
near the interface between a semiconductor and non-
conducting medium are almost horizontal. In general,
the electric field inside the semiconductor behaves as a
field of a charge distributed over the F/N interface. At
distances & a from the contact this charge can be re-
placed by a point charge, so that electric field falls off
with distance r from the pillar as 1/r2. This knowl-
edge is sufficient to deduce the electrical spread resis-
tance of the contact to be 1/2πσNa. Naturally, the spin
resistance is the same. The spin resistance of the ferro-
magnet is calculated taking into account that the cross
section area is πa2, and the length is λF , yielding the

value
(

1
σF↓
− 1

σF↑

)
λF
πa2 . Then the spin polarization of the

injected current calculated as a ratio of the two spin re-
sistances reads

Ppillar = σN
(

1

σF↓
− 1

σF↑

)
λF
2a
. (55)

Note that this result is in line with the above expressions
for P, e.g. Eq. (38), if we treat a as a radius of curvature.
Like in previous examples, Eq. (55) applies when the
ratio λF/a is small. As λF exceeds a, the ratio should be
replaced by 1.

D. Spin valve with two rough F/N interfaces

The quantity calculated throughout the paper is the
polarization, P, of the current injected through a single
F/N interface. Below we discuss how the surface rough-
ness affects the efficiency of a spin valve, representing
a normal layer sandwiched between two ferromagnets.
This efficiency is conventionally quantified via magne-
toresistance defined as a dimensionless ratio,

MR =
R↑↓ −R↑↑
R↑↑

, (56)

a b

FIG. 7: (a) Schematic illustration of spin injection through
a nanopillar with radius a � λF . The force lines of electric
field a curved within a distance ∼ a from the interface; (b) A
typical nonlocal geometry employed for measurement of spin
injection. Ferromagnetic injector and detector of width, w,
are separated by distance, L, on top of a semiconduction wire
with radius, a. It is presumed that the sizes are ordered as
follows: λF � a� w � L� λN .

of the sandwich resistances for antiparallel, ↑↓, and par-
allel, ↑↑, orientations of magnetizations of the electrodes.

For flat F/N interfaces, the quantities R↑↑, R↑↓ were
calculated in Refs. 17, 24, 10 for different domains of
thicknesses of electrodes and normal layers. The most
rigorous consideration can be found in Ref. 19. We will
elaborate on the result of this paper in the same limit,
σF � σN , the assumption used throughout the present
paper. In this limit, the magnitudes of both resistances
are dominated by the N -layer, so that

R↑↓ ≈ R↑↑ ≈
2x0
σN

, (57)

where 2x0 is the thickness of the normal layer. The spin-
dependent corrections to R↑↑, R↑↓ are given by19

R↑↑ =
2x0
σN

+
σF↑ σ

F
↓ λF

2(σF↑ + σF↓ )

(
1

σF↓
− 1

σF↑

)2

− 2

(
1

σF↓
− 1

σF↑

)2
σNλ2F
λN

coth
x0
λN

, (58)

R↑↓ =
2x0
σN

+
σF↑ σ

F
↓ λF

2(σF↑ + σF↓ )

(
1

σF↓
− 1

σF↑

)2

− 2

(
1

σF↓
− 1

σF↑

)2
σNλ2F
λN

tanh
x0
λN

. (59)

Generalization of the above expressions to the case of
rough interfaces is most straightforward when the thick-
ness is big, x0 � λN . This is because in this limit the
two electrodes are practically decoupled with respect to
the spin injection. The difference, R↑↓−R↑↑, in this limit
can be simplified to

R↑↓ −R↑↑ ≈ 16

[(
1

σF↓
− 1

σF↑

)
λF

]
P exp

[
−2x0
λN

]
. (60)
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We see that the difference R↑↓−R↑↑ represents the prod-
uct of three factors: the spin resistance of the ferromag-
net, the polarization Eq. (1) of current injected through
a single interface, and the factor exp(−2x0/λ

N ) describ-
ing the degree to which two interfaces “feel” each other.
Due to the smallness of this factor, generalization to the
curved interfaces amounts to replacement of P by the
corresponding polarization calculated above. For differ-
ent types of roughness this polarization is given either by
Eq. (52) or by Eq. (54). As it was discussed above, the
polarizations Eq. (52) and Eq. (54) do not depend on λN
when the enhancement of the injection is strong. Sum-
marizing, in the domain x0 � λN the enhancement of the
MR due to the interface roughness is the enhancement of
the injection efficiency.

In the opposite limit, x0 � λN , the result for MR is
different depending on whether x0 is bigger or smaller
than the curvature radius, R. In both cases the main
contribution to R↑↓ − R↑↑ comes from R↑↑. The ratio
1
λN

coth x0

λN
in R↑↑ can be interpreted as a log-derivative

of antisymmetric solution of the 1D diffusion equation
taken at the interface x = x0. For λN � x0, the dif-
fusion equation turns into the Poisson equation. Then
the generalization of the log-derivative to the case of the
rough interface reduces to the problem of enhancement
of the electric field near the interface. For R � x0, due
to this enhancement, the log-derivative transforms from
1/x0 into 1/R (with logarithmical accuracy). For exam-
ple, when we discussed the injection from the cylinder
with radius, a, we found for this log-derivative the value
1/a ln(λN/a), see Eq. (38). Then we get

MR =

(
1

σF↓
− 1

σF↑

)2
(σNλF )2

Rx0
. (61)

Finally, for x0 � R, the roughness of the interface does
not curve the current lines. Then the solution of the
Poisson equation is a linear function10 of x, so that the
log-derivative is equal to 1/x0. Naturally, in this limit,
substitution of Eqs. (58), (57) into Eq. (56) reproduces
the result of Refs. 10, 19

MR =

(
1

σF↓
− 1

σF↑

)2 (σNλF
x0

)2
. (62)

While the crossover from the enhanced magnetoresis-
tance Eq. (61) to the standard magnetoresistance
Eq. (62) takes place at x0 ∼ R, the situation is more
delicate for the disorder in the form of stalactites consid-
ered in the Section IV. A. For this disorder realization,
the interface is flat except for the regions occupied by the
stalactites. Each stalactite disturbs the electric field in
the area ∼ H2 around it, see Fig. 7. Thus, the MR is the
sum of two contributions. The first is given by Eq. (62),
while the second is a contribution of a single stalactite
times the areal portion of the stalactites, ∼ NH2. As we
have already established, the value of log-derivative for
one stalactite is ∼ 1/a, where a is the stalactite radius.

Then the “weighted” log-derivative is ∼ NH2/a, leading
to the following expression for the MR

MR =

(
1

σF↓
− 1

σF↑

)2
(σNλF )2NH2

ax0
. (63)

This result applies when the injection is dominated by the
stalactites. The crossover from Eq. (63) to the standard
result Eq. (62) takes place at x0 . a/NH2.

V. DISCUSSION

• The main outcome of our study is that for a curved
F/N interface the ratio λF/λN in the seminal ex-
pression, Eq. (1), for the polarization of the in-
jected current should be replaced by λF/R, where
R is the local curvature of the interface. Naturally,
this replacement is appropriate when R is smaller
than λN .

In our study we focused on a single F/N boundary.
Note that, shortly after the publication of the paper
Ref. 1, it was proposed25 to measure the spin injec-
tion in a non-local geometry where the ferromag-
netic injector and detector are spatially separated
in the lateral direction. Nowadays this geometry is
absolutely common in experimental studies of the
spin transport, see e.g. recent papers Refs. 6–8. At
the same time, the theories, see e.g. Refs. 4, 26–
28, used to describe these non-local spin-injection
setups are, essentially, “one-dimensional.” More
specifically, they assume that the injection takes
place along x while the subsequent propagation of
spin-polarization happens along y, so that these
two processes are decoupled.

To emphasize this point, in Fig. 7b. the nonlocal
geometry is illustrated schematically, and all rele-
vant sizes are indicated. Theories 4, 26–28 treat
the injection in this geometry by dividing it into
two F/N junctions in sequence. In particular the
spin resistance of the wire part in Fig. 7b. is set to
be proportional4 to the wire length, L.

We argue that such approach completely neglects
the curving of the current paths upon injection
from the ferromagnet into the wire, and that this
curving changes dramatically the injected polar-
ization. Our answer for this polarization contains
λF/w and does not depend on L. This is because
the field lines turn 90 degrees over the distance∼ w,
so that w plays the role of the radius of curvature.

In fact, the importance of curving of the current
paths in nonlocal geometry for for calculation of
nonlocal electrical resistance was pointed out in
Refs. 29, 30.

• The idea that decreasing the contact area between a
ferromagnet and a semiconductor can enhance the
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efficiency of the spin injection was previously ex-
pressed in Refs. 31, 32. In particular, the geometry
considered in Ref. 31 was a ferromagnetic nanopil-
lar with a radius 2 nm. Numerical simulations31

suggest that constricting the injector to a small-
radius cylinder leads to the enhancement of polar-
ization from 10−3% to ∼ 1% for certain parameters
of a ferromagnet and semiconductor. Surprisingly,
in interpreting the simulation results the authors
of Ref. 31 contend that the spread resistance sup-
presses the injection. In Ref. 32 the numerical
simulations were also performed for a nanopillar-
injector geometry. In addition to Ref. 31 the au-
thors traced a gradual enhancement of injection
with decreasing the nanopillar area. However, an-
other numerical finding reported in Ref. 32, that
the efficiency increases with increasing of the semi-
conductor thickness, seems counterintuitive.

• Experimental results of Ref. 33 seem to offer a
partial support of our predictions. In Ref. 33 it
was demonstrated that the performance of the ver-
tical organic spin valves consisting of an organic

layer of thickness D ∼ 100 nm sandwiched between
two ferromagnets, Co/Alq3/LSMO, can be signifi-
cantly improved by covering the Co electrodes by
a closely packed layer of Co nanodots. These nan-
odots represented spheres of a radius ≈ 1 nm which
is smaller than λF ≈ 59 nm for Co, the value ac-
cepted in the literature6. Incorporation of nanodots
allowed the authors to increase the magnetoresis-
tance from ∼ 10% to ∼ 300%. Their explanation
was that the layer of nanodots eliminates the “ill-
defined” organic spacer layer34,35. According to ar-
guments presented above, the increase of injection
efficiency due to the curvature of surface of nan-
odots is ∼ D/λF .
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