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Abstract 

We present a comprehensive study of single-point kinetic energy density functionals 

(KEDFs) to be used in orbital-free density functional theory (DFT) calculations. We 

first propose a new form of KEDFs based on a pointwise Kohn-Sham (KS) kinetic 

energy density (KED) and electron localization function (ELF) analysis. We find that 

the ELF and modified enhancement factor have a very strong and transferable 

correlation with the reduced density in various bulk metals. The non-self-consistent 

kinetic energy errors predicted by these new KEDF models are decreased greatly 

compared to previously-reported generalized gradient approximation (GGA) KEDFs. 

Second, we perform self-consistent calculations with various single-point KEDFs and 

investigate their numerical convergence behavior. We find striking numerical 

instabilities for previous GGA KEDFs; most of the GGA KEDFs fail to converge and 

show unphysical densities during the optimization. In contrast, our new KEDFs 

demonstrate stable convergence, and their self-consistent results of various bulk 
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properties agree reasonably well with KSDFT. A further detailed KED analysis 

reveals an interesting bifurcation phenomenon in defective metals and alloys, which 

may shed light on directions for future KEDF development. 

I. Introduction 

An excellent balance between accuracy and efficiency has made Kohn-Sham (KS) 

density functional theory (DFT)1 the most powerful and commonly used first 

principles quantum mechanical method in science and engineering today. KSDFT 

introduces one-electron wavefunctions to precisely calculate the non-interacting 

electron kinetic energy, Ts. It leaves only a small portion of the total energy, namely 

the exchange-correlation (XC) energy, to be approximated by density functionals. In 

so doing, the KSDFT formalism generally produces reliable predictions for a wide 

range of systems, particularly with simple local density approximations or generalized 

gradient approximations (GGAs) for the XC energy. However, the computational cost 

of standard KSDFT typically scales cubically with system size (N) due to the 

introduction of orbitals, which prevents its application to many large-scale (>103 

atoms) systems and phenomena.  

Consistent with the original Hohenberg-Kohn formalism,2 orbital-free (OF) DFT3 

instead uses the electron density as the sole variable to calculate total energies, 

including Ts. Consequently, the variational degrees of freedom are reduced from 3N to 

only 3 in OFDFT, and the computational cost can be made to scale quasilinearly with 

N, i.e., O(NlogN), with a small prefactor. This extraordinary numerical efficiency is 
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one of its most attractive features; OFDFT simulation of over a million atoms was 

already feasible more than five years ago.
4 However, a tradeoff exists between 

efficiency and accuracy. Approximating Ts using density functionals is more difficult 

than approximating XC energies. The magnitude of the kinetic energy is on the same 

order as the total energy, which can be hundreds of times larger than XC energies. 

The major source of error in OFDFT therefore originates from the error in kinetic 

energy density functionals (KEDFs). In recent decades, numerous KEDFs have been 

proposed, which can be roughly categorized into two general types: two-point 

(nonlocal) KEDFs, featuring a double-integral form; and single-point 

(local/semi-local) KEDFs, which only contain a single integral. 

Two-point KEDFs (e.g., the Chacon-Alvarellos-Tarazona,5-7 Wang-Teter,8 and 

Wang-Govind-Carter (WGC)9, 10 KEDFs) are generally based on Lindhard linear 

response theory.11, 12 Because this theory reflects the response of a perturbed uniform 

electron gas, these KEDFs can achieve accuracy comparable to KSDFT for 

nearly-free-electron-like systems, such as main group metals. A number of studies 

have demonstrated their promising ability to simulate large-scale scientific 

problems.13-26 Advanced two-point KEDFs have recently enabled OFDFT to describe 

systems with localized electrons as well, such as covalent27-31 and transition metal 

systems.32-34 

Despite the success of two-point KEDFs, researchers have continued to study 

single-point KEDFs for two major reasons: first, two-point KEDFs are mostly 
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confined to describing condensed matter, and thus we need different KEDFs for other 

systems, such as isolated atoms and molecules; and second, single-point KEDFs are 

usually numerically more efficient than two-point KEDFs, which is potentially 

advantageous for large-scale and molecular dynamics simulations. The history of 

single-point KEDFs can be traced back to the earliest KEDF approximation derived 

by Thomas and Fermi (TF)35-37
 as well as the well-known von Weizsäcker (vW) 

KEDF.38 A large number of single-point KEDFs were subsequently proposed during 

the many decades of KEDF development.39-41 

However, the development of single-point KEDFs is still rather limited. In 

contrast to two-point KEDF studies where self-consistent calculations are usually 

conducted, most single-point KEDF investigations report non-self-consistent results 

(i.e., KSDFT ground-state densities are input to OFDFT, and one-shot kinetic 

energies are calculated). Some recent studies, such as refs. 42 and 43, are notable 

exceptions for including some self-consistent results. Although self-consistent 

calculations are more demanding, they are also essential for practical applications 

(computation of forces, etc.). Additionally, single-point KEDF studies are usually 

confined to isolated systems. Development of accurate single-point KEDFs for 

condensed matter is still limited, although some recent studies42-44 have investigated 

their performance for bulk metals (vide infra).  

Most single-point KEDFs adopt a gradient-corrected form similar to GGA XC 

functionals. Enforcing certain limits, satisfying scaling requirements, and conjecturing 
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conjointness are widely used strategies to design the enhancement factors for these 

GGA KEDFs.39-41 However, we note that most single-point KEDF studies (as well as 

two-point KEDF ones) focus exclusively on reproducing the total (kinetic) energy as 

an integrated value or derived bulk properties. Although some investigations45, 46 have 

analyzed the pointwise kinetic energy density (KED or τ) and computed average KED 

errors, very few47, 48 have attempted to analyze the KED distribution for the purpose 

of designing new KEDFs. While studying pointwise quantities is more difficult than 

calculating Ts as an integrated value, it can reveal interesting problems. As an 

example, the sole variable in the enhancement factor of many GGA KEDFs is the 

reduced gradient ( 3/4/)( ρρ∇=rs ). However, the KSDFT KED is not a 

single-valued function of s (vide infra), which calls into question the use of 

enhancement factors dependent on s alone. Their integrated total energy thus may 

involve considerable error cancellation to achieve accuracy comparable to KSDFT. 

The aim of this work is consequently twofold. First, we propose a new form of 

single-point KEDFs based on a pointwise quantity analysis. In addition to the most 

fundamental pointwise quantity KED, we also investigate other closely-related 

quantities, such as the electron localization function (ELF).49, 50 The ELF also 

contains a key quantity (noted as G in this paper), which is defined as the difference 

between the KED and local vW KED normalized by the local TF KED (see Equation 

(8) in Sec. II). Note that this quantity is used in recently proposed meta-GGA XC 

functionals.51 Since the local TF and vW KEDs can easily be computed, calculating 

the ELF/G using density functionals is equivalent to calculating the KED. However, 



6 
 

compared to the total kinetic energy or KED, G provides more information, such as 

bond types.51 Similarly, the ELF (solely dependent on G) can also give more physical 

meaning in terms of electron localization or delocalization; its distribution is largely 

determined by the system type and crystal structure. We will therefore focus on 

studying KED/ELF/G distributions, aiming to find a strong and transferable 

correlation between these distributions and electron density variables, and construct 

accordingly OF KED/ELF/G and thus corresponding KEDFs. We will show that our 

new KEDFs can produce reasonable non-self-consistent as well as self-consistent 

results for various materials, indicating great improvement over previous single-point 

GGA KEDFs. 

Second, we provide a systematic test of single-point KEDFs’ performance for 

condensed matter within pseudopotential schemes (only containing valence electrons), 

which has been missing in literature until now. We test various previous GGA KEDFs 

and our new single-point KEDFs by comparing both non-self-consistent kinetic 

energies and self-consistent bulk properties against KSDFT benchmarks. As 

mentioned above, most GGA KEDF studies have only reported non-self-consistent 

results; the difficulty in performing self-consistent GGA KEDF calculations is related 

to singularities near nuclear positions in all-electron calculations40, 44 (to be fair, some 

successful self-consistent calculations for several GGA KEDFs with pseudopotentials 

have been reported).44 However, we will show that most GGA KEDFs cannot obtain 

stable and physically reasonable self-consistent results, even within the 

pseuodopotential approximation. 
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The paper is organized as follows. We present our new single-point KEDF 

formalism in Sec. II and provide computational details in Sec. III. We then test our 

models in Sec. IV against representative single-point and two-point KEDFs on 

metallic systems. Non-self-consistent results, instability issues with GGA KEDFs, 

self-consistent results, a detailed KED distribution analysis, and possible future 

improvements are discussed. Finally, conclusions are given in Sec. V. 

II. Theory and formalism 

GGA KEDFs have the general form:  

[ ] ∫= rdsFT )(TFs τρ , (1) 

where τTF is the TF KED, s is the reduced gradient, and F(s) is the enhancement factor. 

Here, we take an alternative point of view to propose a slightly different KEDF form. 

To begin, recall that the total kinetic energy is by definition an integral of the KED: 

rr dTs ][)(][ ρτρ ∫= , (2) 

where the local KED (τ) is in general a functional of the total electron density, such as 

the orbital-based KED within the KS method. We can further write the KED as 

][)()()( ρτττ GTFvW rrr += , (3) 

where 3/5
TFTF ρτ C= , 3/22

TF )3(10
3 π=C , and 

)(
)(

8
1

2

vW r
r

ρ
ρ

τ
∇

= . As a result, we 

write the general form of KEDF as 
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rdGTT TFs ][][ vW ρτρ ∫+= . (4) 

This form is very similar to the GGA form; we simply subtract the vW term out and 

note that GFF += vW , where 
TF

2

vW 8C
sF =  is the enhancement factor of the vW 

KEDF. There are some subtleties and advantages of this new form. First, up to this 

point, Equation (4) is exact: G should be a functional of the electron density instead of 

a function of s. Although s is a very important quantity, it does not provide all the 

information necessary to build an accurate KEDF. In KSDFT, the KED or G is 

calculated with orbitals that can be considered as a functional of the electron density. 

Furthermore, one can think of two-point functionals as having a functional form of G. 

For example, 

∫+= r'r'
r
r dG )(
)(
)(1][

TF
WGC

β
α

α ωρ
τ
ρρ , (5) 

or 

∫+= r'r'
r
r dG )(
)(
)(1][

TF
WGC

αβ ωρ
τ
ρρ

β

, (6) 

or normalized linear combinations of these two (KS KED or G also has multiple 

definitions, as discussed below), where ω is the kernel function and α and β are 

constants. Second, the form of Equation (4) is closely related to the idea of the Pauli 

term (given by the total kinetic energy minus the vW term), as discussed in several 

previous papers.40, 52 Since TvW is separated out, the positive-definite property of the 

remaining term (namely the Pauli term), as well as its pointwise Pauli potential,40, 52 



9 
 

can be relatively easily checked and guaranteed when constructing G. Finally and 

most importantly, we note that G by definition is naturally connected to the ELF as 

TF

vWG
τ

ττρ −=][ , (7) 

22 1
1

1

1)(
G

ELF

TF

vW
+

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+

=

τ
ττ

r , (8) 

and thus, 

11 −=
ELF

G . (9) 

By substituting Equation (9) into Equation (4), we have 

rd
ELF

TT TFs 1
][

1][ vW −+= ∫ ρ
τρ , (10) 

which can connect some studies of OF-ELF53 to KEDF development. However, no 

approximation has been made up to this point, and the fundamental problem still 

exists: can we approximate G using solely the electron density?  

 We next employ a different approach from many previously proposed KEDFs to 

determine G. Instead of designing our KEDF to match integrated quantities, such as 

KSDFT total energies or bulk properties, we construct KEDFs based on pointwise 

quantities (e.g., the KED). In the following, we investigate pointwise local 

KED/ELF/G distributions from KSDFT, and their dependence on different density 

variables (e.g., the electron density, s, and the reduced Laplacian). Clearly, if we can 
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obtain accurate KED values at every point in space, then the total kinetic energy (an 

integrated quantity) will be inherently accurate. 

We employ KSDFT data as our benchmark because it gives the exact 

non-interacting KED values needed. The G value can be easily computed for each 

point in space using Equation (7). However, an issue may arise from the ambiguous 

definition of the KSDFT τ. Two definitions, 2/2
KSDFT ∑ ∇=

k
kkf ϕτ  and 

ρϕϕϕτ 222
KSDFT 4

12/
2
1 ∇−∇=∇−= ∑∑

k
kk

k
kkk ff ,54 are commonly used in the 

literature, where k refers to the index of the KS orbitals and fk is the occupation 

number. Moreover, one can prove that any divergence of periodic functions (e.g., 

ρ∇⋅∇ ) can be added and has no contribution to the total kinetic energy. For 

example, 

 ρϕτ 22 2/ ∇⋅+∇=∑ x
k

k , (11) 

has also been used,45, 46 where x can be an arbitrary number. We will however mainly 

adopt  2/2∑ ∇=
k

kkf ϕτ  in this work (all results shown use this definition unless 

stated otherwise) due to its positive-definite property. Moreover, this definition of τ 

enforces the pointwise version of the vW lower bound criterion for the kinetic energy, 

and is consistent with the ELF definition.  

We next aim to investigate the relation between KSDFT KED/ELF/G and various 

density variables. We first examine the dependence of the ELF on the reduced density 

d (ρ/ρ0, where ρ0 is the average density in the unit cell) in several bulk metals. Figure 
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1 shows the ELF vs. d along the bond axis in face-centered cubic (fcc) Al, 

hexagonal-close-packed (hcp) Mg, and body-centered-cubic (bcc) Li at their 

equilibrium volumes. Remarkably, we see a nearly single-valued function relating the 

ELF and d. Furthermore, when d=ρ/ρ0=1, the ELF is approximately 0.5, which is the 

correct limit for the uniform electron gas. The use of the reduced density in KEDFs is 

uncommon, especially in single-point KEDFs. However, the positive correlation 

between the ELF and d does make physical sense. Qualitatively, the electron density 

will be large when electrons are localized, and, thus, larger d will correspond to 

higher ELF values. For sure, this correlation is not exact; a very simple 

counterexample is any single-orbital system (e.g., Li2 in a pseudopotential formalism) 

where the ELF is constantly 1 but the reduced density cannot be flat (for isolated 

systems, ρ0 is actually ill-defined but the dimensionless quantity ρ/ρmax may be used 

instead). However, this approximate correlation between the ELF and d generally 

works well for condensed matter. Our earlier work29 also supports the use of d to 

determine the level of electron localization in covalent systems (see Figure 1 in ref. 

29).  

According to Equation (9), the ELF has a one-to-one mapping to G. Since the 

ELF features a nice correlation with d, we expect d to be a good descriptor for G as 

well. Moreover, predicting G directly would be more convenient and straightforward 

for use in a KEDF. Figure 2 therefore shows G vs. d from all spatial points (on a 

numerical grid) in the unit cell of bcc Li (the curves are very similar for other phases). 

Figure 3 then displays G vs. d data along the bond axis in different phases of Al, Mg, 
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and Li at equilibrium volumes and under deformations. Several appealing properties 

emerge: (1) The data from all systems collapse onto the same curve, indicating good 

transferability on a pointwise level for the KED within these metallic phases. (2) The 

data form a well-defined single-valued function of d. This is important because 

approximating G as a function of any independent variable would make sense only if 

G is a well-defined, single-valued function of the independent variable. We will later 

see that G vs. s does not share this behavior. (3) G is approximately 1 ( 0.5ELF≈ ) 

when d=1. For the uniform electron gas ( 0ρρ ≡ , 1≡d , and 0vW ≡τ ), 1≡G  then 

leads to the pure TF KEDF, which is the correct limit we hope to preserve.  

Based on the strong and transferable correlation found between G and d, we 

propose several simple KEDF models by approximating G as a function of d. Note 

that although G depends on only d, the corresponding traditional enhancement factor 

GFF += vW  is a function of both d and s. We can either directly fit G vs. d (Figure 3) 

to obtain G(d), or fit ELF vs. d (Figure 1) and use Equation (10) to calculate Ts. For 

our first KEDF model, we conduct a linear fitting for ln(G) vs. ln(d) (Figure 4) using 

data along the bond axis in fcc Al, bcc Li, and hcp Mg at their respective equilibrium 

volumes. This leads to  

 )( bdadG ⋅= , (12) 

with a = 0.9892 and b = -1.2994. We refer to this model as vWGTF1 (τvW plus G 

times τTF) below. For our second KEDF model, we propose the following analytical 

form of ELF(d), 
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( ) 2)(tanh1)( /-pdpdELF q⋅+= , (13) 

and numerically determine the parameters using a least squares fitting. The final 

parameters are p=5.7001 and q=0.2563. Equation (13) guarantees the ELF bound 

within 1 when d approaches infinity, and ELF(1) is 0.5 by construction. The ELF raw 

data and fitted analytical function are plotted in Figure 5. This KEDF is referred to as 

vWGTF2. 

 The vWGTF1 and vWGTF2 KEDFs are fundamentally similar; the former fits G 

directly while the latter fits the ELF first, and then uses the exact relation between G 

and ELF, i.e., Equation (9). Fitting G is more straightforward and naturally forces the 

ELF to satisfy the bound between 0 and 1. Furthermore, the positive-definite property 

of the Pauli energy and the pointwise Pauli potential can be more easily guaranteed 

when directly fitting G. Simple calculations confirm that the vWGTF1 model indeed 

guarantees the positive-definite property for both the Pauli energy and its potential 

with any electron density. The vWGTF2 KEDF guarantees positive definiteness for 

the Pauli energy; however, the Pauli potential can be negative with large d values 

(d~2). Nevertheless, we still propose the vWGTF2 model because it highlights the 

connection between the ELF and G. We think the ELF contains deeper physical 

meaning than G, and it is well-established and studied in literature. Fitting the ELF 

thus connects KEDF development to those ELF studies. 

We have thus far approximated G as a function of d. Strictly speaking, the 

resulting vWGTF KEDFs are not single-point functionals, as ρ0 in d depends 
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non-locally on the whole system. This may lead to size-consistency issues for 

non-homogenous systems, such as surfaces and interfaces. Generally, when deploying 

KEDFs (such as the WGC) that involve ρ0, we take ρ0 to be the average of the density 

but only over the space where densities are larger than a threshold, such as the 

minimum density in the corresponding bulk system (e.g., bulk fcc Al for fcc Al 

surface calculations). This method largely eliminates a potential size-consistency 

problem for surfaces modelled in a periodic cell (energies should not depend on the 

thickness of the vacuum layer). However, this approach may not always work for the 

heterogeneous interface case. For this reason, it could be more desirable to use purely 

local variables. We thus next consider using s (purely local) as the independent 

variable instead. Unfortunately, we fail to observe a well-defined correspondence 

between G and s, namely a single-valued function G(s). Figure 6 shows G vs. s in fcc 

Al calculated with KSDFT. Multiple branches exist with various possible x values in 

Equation (11), i.e., we have multiple corresponding G values for each s. Consequently, 

it is not sensible to predict G using only s. Since G and F are basically equivalent 

under the current approximation (the difference being FvW), this multivalued character 

calls into question the validity of the GGA’s F(s). However, this does not mean that s 

cannot be included in G or F. A combination with other density variables, or 

multi-variate G functions/functionals including s, might very possibly improve the 

model. 

The density Laplacian ρ2∇  is another informative and important quantity when 

constructing KEDFs, as it helps to determine bond types55 and is a strong indicator of 
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electron accumulation or depletion. We observe a much better relationship between G 

and the reduced Laplacian ( 3/52 / ρρ∇=l ) than with s, though it is not as good as G 

vs. d. However, inclusion of l complicates the kinetic potential and makes 

self-consistent optimizations unstable (see discussion in Sec. IV). For simplicity, we 

will consider the G function using only d. We will however highlight the importance 

of l in Sec. IV when discussing cubic diamond (CD) Si. 

III. Computational details 

We study Al, Mg, and Li bulk phases, as well as MgAl'' 3−β , CD Si, and the 

singlet state of the P2 molecule using KSDFT and OFDFT. We carry out all KSDFT 

calculations with the ABINIT package56 and OFDFT calculations with our PROFESS 

3.0 code.57-59 The Perdew-Burke-Ernzerhof (PBE) GGA XC functional60 is employed 

in all calculations. Bulk-derived local pseudopotentials28, 61, 62 are used in both 

KSDFT and OFDFT. A 900 eV KE cutoff is used in KSDFT calculations for the 

plane-wave basis to converge the total energy to within 1 meV/atom. 20×20×20 

k-point grids are used for all crystals. k-point meshes were generated with the 

Monkhorst-Pack method.63 1 k-point is used for P2. Fermi-Dirac smearing is used for 

all Al, Mg, Li, and Al3Mg calculations, with a smearing width equal to 0.1 eV. No 

smearing is used for CD Si or P2 calculations.  

In self-consistent OFDFT calculations, the ground-state energy is obtained by 

optimizing the electron density (see details in ref. 57). The optimizations are all 

derivative-based, and the kinetic potential can be calculated via functional derivative 
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calculations. However, we find some analytically equivalent expressions can lead to 

different numerical behavior; we discuss this issue in Sec. IV B. In our 

implementations, we apply the general analytical formula for all GGA KEDF 

potentials: 

( )⎟⎟⎠
⎞

⎜⎜
⎝

⎛
∇∂
∂⋅

∂
∂⋅∇−

∂
∂⋅

∂
∂⋅+⋅

∂
∂=

ρρ
τ

ρ
τ

δρ
δ s

s
Fs

s
FsFT

TF
TFs )( , (14) 

where 3/2
TF

TF

3
5 ρ

ρ
τ C=
∂

∂
, 

ρρ
ss

3
4−=

∂
∂

, ( ) 3/83/4 ρ
ρ

ρρ
ρ

ρ ⋅
∇=

∇
∇=

∇∂
∂

s
s , and each GGA 

KEDF has its corresponding 
s
F

∂
∂ . In plane-wave-based PROFESS, numerical 

gradient and divergence operations are all realized via the fast Fourier transform 

(FFT). Specifically,  

}~{ˆ)( 1 fiFf ⋅=∇ − gr , (15) 

and 

}~~~{ˆ)( 1
zzyyxx figfigfigF ++=⋅∇ −rf , (16) 

where f~  is the Fourier transform of any integrable function f, g is the reciprocal 

(momentum space) vector, and 1ˆ −F  is the inverse Fourier transform operator. 

In all OFDFT calculations, the kinetic energy cutoff is set at 1600 eV. However, 

many GGA KEDFs are numerically unstable; they cannot be converged even with 

very high kinetic energy cutoffs, as demonstrated by both their total energies and 

unphysical densities (see Sec. IV B). The 1600 eV kinetic energy cutoff converges the 

total energy to within 1 meV/atom for the GGA functionals that are numerically 
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stable, the WGC99 (hereafter just referred to as WGC) KEDF,10 and the new vWGTF 

KEDF models proposed in this work.  

We test TF, vW, TFλvW with λ equal to 1/5,64-68 1/9,69 and 1,68 Lee-Lee-Parr 

(LLP),70 DePristo-Kress (DK),71 DK87,72 Ou-Yang-Levy 1 (OL1),73 OL2,73 

Perdew-Wang 86 (PW86),74, 75 PW91,76 Lembarki and Chermette (LC94),77 

Tran-Wesolowski (TW02),78 PBE2,79 E00,80 P92,81 Becke 86A (B86A),82 Becke 86B 

(B86B),83 and Thakkar (Thak)84 GGA functionals, with the parameters proposed in 

their original papers. Their corresponding G can be calculated simply as G=F-FvW. 

The two-point WGC KEDF contains, in addition to TF and vW terms, a 

double-integral nonlocal term: 

( ) r'rr'r'rr'rr ddE )(),()(WGC
NL

βα ρξωρ∫ ∫ −= , (17) 

where the kernel ω is determined by recovering the exact Lindhard linear response for 

the perturbed uniform electron gas, and ξ is a two-point Fermi wavevector that is thus 

double-density-dependent: 
γγγ

ξ
/1

2
)()(),( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ += r'rr'r FF kk
with ( ) 3/12 )(3)( rr ρπγ =Fk . 

Furthermore, to remain quasi-linear scaling via using FFTs, the density-dependent 

kernel is Taylor-expanded around the center ρ*. In this work, the optimal parameters 

6/)55( −=α , αβ −= 3/5 , ρ*=ρ0, and γ=2.7 are used in all WGC KEDF 

calculations,9, 10 except for CD Si for which γ=3.6 is used in order to guarantee 

numerical convergence with large density fluctuations present.85 Parameters of 

vWGTF1 and vWGTF2 KEDFs are given in Sec. II above. 
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Non-self-consistent kinetic energy errors are simply calculated using 

converged KSDFT densities output from ABINIT. For self-consistent results, we 

calculate equilibrium volumes (V0) and bulk moduli (B) for fcc, hcp, bcc, and simple 

cubic (sc) Al, Mg, Li, and MgAl'' 3−β . The equilibrium structures are obtained by 

relaxing ion positions and cell lattice vectors with default force and stress thresholds 

in ABINIT. In OFDFT calculations, the equilibrium volume is found by expanding 

and compressing unit cells and finding the total energy minimum. The c/a ratio in hcp 

structure is obtained by manually scanning the ratio; there are no degrees of freedom 

in atom positions or cell lattice vectors in other structures. The bulk modulus is 

calculated with Murnaghan’s equation86 to fit total energy vs. volume data within a ±2% 

range around the equilibrium volume. In addition, the phase energy differences are 

calculated for various Al, Mg, and Li phases as the total energy differences between 

phases at their equilibrium volumes.  

We also calculate vacancy formation energies in fcc Al, hcp Mg, and bcc Li. A 

2×2×2 supercell (31 atoms), 3×3×2 supercell (35 atoms), and 2×2×2 supercell (15 

atoms) with one atom removed at the origin are used for fcc Al, hcp Mg, and bcc Li 

vacancy calculations, respectively. The structures are not relaxed in either KSDFT or 

OFDFT calculations, since we only aim to compare KSDFT and OFDFT under 

identical situations; in our experience, relaxation will not lead to large differences for 

these simple metals. The vacancy formation energies are then calculated using 

Gillan’s expression:87 
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NNEEvf , (18) 

where ),,( ΩmNE  is the total energy for a cell with volume Ω , N atoms, and m 

defects. 

The primitive unit cell of MgAl'' 3−β  is employed to model the bulk alloy. The 

alloy formation energy per atom is then calculated as  

4/)3( MgAMgAlf 3
EEEE l −−=Δ , (19) 

where MgAl3
E  is the total energy per primitive cell of MgAl'' 3−β , while EMg and EAl 

are total energies per atom in hcp Mg and fcc Al at their respective equilibrium 

volumes. 

 Finally, only the nonmagnetic (MS=0) state is examined in P2 KSDFT 

calculations. Two atoms are set up in the center of a 101020 ××  Å3 cell, aligned 

along the longest direction. The equilibrium bond length (re) is obtained by varying 

the bond length in a wide range and finding the total energy minimum. All data shown 

in Sec. IV are computed at re. 

IV. Results and Discussion 

A. Non-self-consistent results 

Here we discuss non-self-consistent OFDFT results, i.e., using the KSDFT density 

directly in OFDFT calculations to calculate the kinetic energy without further density 

optimization. This is considered the standard test in most of the earlier GGA KEDF 
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studies. Although the focus of this work is on single-point KEDFs, we include 

two-point WGC KEDF results for comparison because it is thus far the most 

successful KEDF for the systems studied here. 

In Table I, kinetic energy errors (in %) compared to KSDFT benchmarks, 

computed with various KEDFs, are given for different bulk main group metal phases. 

First, using the vW KEDF alone produces extremely inaccurate results. Since these 

particular metals have density distributions close to the uniform-electron-gas limit, the 

TF performs much better than the vW but the former still significantly underestimates 

the kinetic energy. Most of the GGA KEDFs produce rather poor results, with mean 

absolute errors (MAEs) around 3-6%. The parameters in those KEDFs were fit to data 

from isolated atoms or molecules, so their unsatisfactory performance in these bulk 

metals is somewhat expected. A large group of KEDFs behave very similarly in their 

underestimation of the kinetic energy, e.g., the TF1/9vW, PW91, TW02, etc. Those 

functionals feature similar asymptotic behavior around s=0 (e.g., see Table I in ref. 

79); they consequently behave quite similarly with the metals considered here, where 

s is relatively small.  

On the other hand, the PBE2 and TFvW are different from other GGA KEDFs, as 

they both overestimate the kinetic energy compared to KSDFT benchmarks. This can 

also be attributed to their similar small s behavior.79 Their vW parts have much larger 

coefficients than other GGA KEDFs when expanding around s=0, which tends to 

over-correct the kinetic energy. Moreover, among all the GGA KEDFs, TFvW is the 
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best based on these kinetic energy errors. Theoretically, this form does not have 

strong physical justification as a simple combination of two best-known functionals. 

However, its accuracy for these systems is not surprising, since the TF and vW 

KEDFs are the leading terms in the WGC KEDF, which is known to be accurate for 

such systems (as also shown in Table I), and also the nonlocal term is usually not 

large. In contrast to GGA KEDFs, our new vWGTF KEDFs exhibit considerably 

improved accuracy for all test cases. The MAEs of vWGTF KEDFs are much smaller 

than 1% and just a bit larger than the WGC KEDF, which is the best for all metals, as 

expected. Given that the parameters in the vWGTF KEDFs are fit using only 

ground-state phases and data points strictly along the bond axis, the results here show 

quite reasonable transferability, at least in the metallic phases considered. 

We also test vacancy structures for fcc Al, hcp Mg, and bcc Li and for one alloy 

Al3Mg (Table II). The mean absolute errors incurred when describing vacancies 

decrease slightly for most of the GGA KEDFs, while the WGC KEDF error increases 

modestly, which nevertheless is still very accurate (with errors much less than 1%). 

The vWGTF models still exhibit errors within 1%, much smaller than all the GGA 

KEDFs (mostly above 4%).  

B. Numerical convergence in self-consistent calculations 

Self-consistently solving the Euler equation is required to use OFDFT in real 

applications,57 which is more demanding both physically and numerically than 

non-self-consistent calculations. Only simultaneously guaranteeing correct kinetic 
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energies and potentials can lead to accurate energetics, as well as correct ground-state 

densities. Many GGA KEDFs have unphysical kinetic potentials,40 and consequently 

suffer from either numerical instabilities or produce unphysical results after 

self-consistent density optimization. In this section, we provide a systematic test of 

convergence stability in self-consistent calculations for different KEDFs.  

We first find significant numerical difficulties when solving self-consistently for 

almost all GGA KEDFs, except for TFλvW, E00, and P92. The difficulties of 

self-consistent OFDFT calculations with GGA KEDFs for all-electron calculations 

were discussed in ref. 44. The singular and unphysical behavior of the kinetic 

potential around the nucleus makes self-consistent calculations unstable and hard to 

solve.40, 44 The pseudopotential approximation should remove the singularity issue, 

and one may expect better stability. In fact, in ref. 44, self-consistent results were 

reported for bulk Li and Al phases calculated with a modified version of PROFESS. 

However, we find that the pseudopotential approximation does not ensure 

convergence with GGA KEDFs; most of the GGA KEDFs continue to be extremely 

numerically unstable, although the simple metallic systems investigated here feature 

rather small density fluctuations. For the PW91, TW02, PBE2, LC94, PW86, B86A, 

and B86B KEDFs, we can obtain energy minima after density optimizations but their 

total energies cannot be converged with respect to the plane-wave basis kinetic energy 

cutoff (they change greatly as the energy cutoff increases). Consequently, the 

resulting energy vs. volume curves are not smooth at all. For example, Figure 7 shows 

fcc Al energy vs. volume curves calculated with the PBE2 KEDF with different 
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kinetic energy cutoffs. When the kinetic energy cutoff is 500 eV, the curve looks 

smooth, the same as shown in ref. 44. However, when the kinetic energy cutoff 

increases, we can no longer obtain meaningful energy vs. volume curves, and the 

energies are clearly not converged with respect to the kinetic energy cutoff (even up 

to 20,000 eV, a huge kinetic energy cutoff, as we tested but not shown here). Other 

GGA KEDFs, including the OL1, OL2, LLP, Thak, DK, and DK87, feature even 

worse behavior during self-consistent optimizations; optimizers usually cannot find 

any energy minima, as their energies diverge to unphysical, extremely negative values 

during the optimization.  

Analyzing electron densities during the optimization illuminates the instability 

issue further. In Figure 8, the density distributions of fcc Al after self-consistent 

optimization are plotted for many different KEDFs. For those GGA KEDFs that can 

achieve robust self-consistent results, such as the TFvW, TF1/5vW, and E00 KEDFs, 

their final densities are smooth and physical, although some of them are not close to 

the KSDFT benchmark. However, for the other GGA KEDFs, we find that their 

densities are frequently trapped in unphysical states, which may be the origin of the 

convergence problem. Specifically, for the likes of PBE2 and TW02, their densities 

around nuclei become unphysically small. With increasing kinetic energy cutoffs, the 

local density can decrease to less than 10-100
 bohr-3, which should not appear in fcc Al. 

The densities then abruptly increase to large values around 2 bohr from the nuclei 

(around 0.2 in normalized units in Figure 8). We also observe sharp density 

oscillations for the PW91 and PBE2 KEDFs. Those step-function-like extremely 
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rapidly changing densities cannot be described accurately using a plane wave basis, so 

convergence and stability issues during self-consistent calculations should be 

anticipated.  

We find that a similar problem exists not only for those GGA KEDFs with 

complicated F but even for the simple vW KEDF. Analytically equivalent expressions 

may exhibit different numerical behavior. For example, as mentioned earlier two 

commonly used definitions exist for the vW KEDF: ∫
∇

= rdE
ρ
ρ

8

2

vW  and 

∫ ∇−= rdE ρρ 2
vW 2

1 . Analytically, these two definitions are exactly the same, 

since they simply differ by a term proportional to the Laplacian of the density (they 

have identical kinetic potentials). However, they are not identical numerically. In 

most calculations where densities stay physically reasonable, these two definitions 

indeed behave similarly. When using the first definition, however, densities 

occasionally are unphysical (extremely small density regions or sharp changes) and 

energies can no longer converge. In contrast, the latter implementation generally 

guarantees a physical solution in our tests. Further testing shows that even when 

unphysical densities are provided for the initial guess, the second expression can 

recover from divergences and converge to a physically reasonable answer. Moreover, 

with unphysical densities, two theoretically identical total energies are vastly different 

from each other. These observations imply that at least one of the definitions is not 

calculating the quantity correctly (presumably the first one). They also indicate that 

we may need to use different analytically equivalent expressions for the other GGA 
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kinetic potentials. Unfortunately, it is hard to systematically find equivalent and more 

numerically stable expressions than Equation (14) for various GGA KEDFs, 

especially for those with complicated enhancement factors. We have tried several 

alternatives for the PBE2 and TW02, but all lead to similar convergence problems. 

With these unphysical densities, we believe that the numerical evaluation is not 

calculating the real functionals, just as we confirmed in the vW case. We therefore 

tested some other methods, such as adding penalty terms and providing exact KSDFT 

or WGC KEDF self-consistent densities as initial guesses, aiming to prevent densities 

from going into unphysical states during the optimization. However, none of these 

attempts worked and hence it is still unknown how the “correct” self-consistent results 

can be obtained for these GGA KEDFs. Thus, another obstacle to developing KEDFs 

arises, in that one has to consider if the KEDF is numerically stable in self-consistent 

calculations. Indeed, this numerical instability exhibited by many of the GGA KEDFs 

may be the reason why so few self-consistent calculations were reported in previous 

work. 

By contrast, the vWGTF KEDFs can be converged self-consistently. The 

difference in numerical stability should not be due to using G instead of F, since 

fundamentally any KEDF using F can be rearranged to the form with G. Instead, we 

think the convergence issue of many GGA KEDFs is related to use of the reduced 

gradient or Laplacian.  As mentioned above, even the vW KEDF can show 

numerical instability when using a different implementation. The E00 and P92 
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KEDFs do converge, but usually require much more iterations. Furthermore, when we 

include the Laplacian in the vWGTF models, the numerical convergence also 

becomes unstable. 

C. Self-consistent results 

We compare material properties from self-consistent calculations in this section. 

In Tables III-V, equilibrium volumes, bulk moduli, and phase ordering energies for 

different bulk phases of Al, Mg, and Li are listed, respectively. Only those 

convergeable GGA KEDF (TFλvW, E00, and P92) results are included due to the 

issue discussed above. Among said GGA KEDFs, the TFvW model again appears to 

be the best, though large errors still exist compared to KSDFT. The E00 and P92 

share the same conjointness form, which may be the reason why both KEDFs can 

converge. The P92 has the second order gradient expansion approximation asymptotic 

behavior (TF plus 1/9vW) when s is around 0, and it consequently leads to very 

similar results as TF1/9vW. Overall, these GGA KEDFs give rather unsatisfactory 

results, greatly overestimating equilibrium volumes, underestimating bulk moduli, 

and producing inaccurate energy differences. 

On the other hand, our new vWGTF KEDFs show very good agreement with 

KSDFT benchmarks for both electron densities (Figure 8) and energetics. The 

vWGTF densities almost overlap with the KSDFT benchmark. Furthermore, almost 

all equilibrium volumes have less than 3% error, corresponding to <1% errors for 

lattice constants. In addition, their bulk modulus predictions are very accurate for Mg 
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and Li phases, while the vWGTF1 KEDF overestimates (by ~10 GPa) the bulk 

moduli of most Al phases. The phase orderings are correct overall, and energy 

differences are fairly close to KSDFT benchmarks, except for the Al hcp structures 

where the energy difference from fcc is within just tens of meV/atom. Considering the 

relative accuracy of OFDFT and the simple model used here, all the bulk properties of 

the vWGTF models agree quite well with KSDFT results, and are the best among all 

single-point KEDFs. The results further demonstrate the transferability of the vWGTF 

KEDFs from the perspective of total energies and bulk properties, in addition to the 

pointwise KED perspective (Figure 3).  

The WGC KEDF is not surprisingly the best among all KEDFs, producing almost 

identical results as KSDFT. However, the accuracy shown by vWGTF KEDFs is still 

impressive, and their computation time is 3-4 times faster than WGC KEDF 

calculations. When performing large-scale molecular dynamics simulations that may 

take weeks or months, this efficiency increase is considerable. To put these 

comparisons in context, the simple TFλvW KEDF is only ~5 times faster than the 

WGC KEDF; the bare TF can be ~15 times faster (for each energy and potential 

calculation), but it is highly inaccurate and requires many more iterations to converge 

due to its unphysical description of the system. Other convergable single-point 

KEDFs (like E00 and P92) usually take much longer than the WGC KEDF due to 

large number of iterations needed. We thus consider the efficiency of the vWGTF 

KEDFs to be fairly reasonable, being only ~1.5 times slower than the TFλvW KEDFs. 
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Thus, switching from TFλvW to vWGTF KEDFs can offer much better accuracy 

while sacrificing little in efficiency. 

 To further test single-point KEDFs, we consider less uniform cases, such as 

vacancies in fcc Al, hcp Mg, and bcc Li (Table VI), as well as a simple alloy Al3Mg 

(Table VII). For these systems, we only show KSDFT, WGC, and vWGTF results, 

since all other KEDFs either produce very poor results or fail to converge. The WGC 

KEDF again predicts very accurate results compared to KSDFT benchmarks. The 

vWGTF models still give fairly reasonable but larger errors for Al3Mg bulk properties 

and the bcc Li vacancy formation energy, respectively. However, the vWGTF KEDFs 

fail to reasonably describe vacancies in fcc Al and hcp Mg, giving rise to negative 

vacancy formation energies. Furthermore, they greatly overestimate the magnitude of 

the Al3Mg alloy formation energy, although they give the correct negative sign. The 

failure of vWGTF models on these defective and alloy materials show their 

insufficient transferability beyond perfect, single-element bulk metals. In the next 

section, we further analyze the reason of their failure from a pointwise KED point of 

view. 

D. Pointwise analysis 

All results shown above are based on total (kinetic) energies. As mentioned in 

previous sections, pointwise quantities, such as the KED, ELF, or G provide more 

rigorous and illuminating information than total energies. In this section, we will 
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compare different KEDFs on a pointwise level, with a particular focus on G vs. d 

distributions.  

We have already shown that the WGC KEDF can accurately describe various 

metals on an integrated level (Sec. IV A and C, respectively). We next want to 

investigate how it performs for more demanding pointwise quantities. However, as 

mentioned in Sec. II, the definition of GWGC is not unique, since it is a two-point 

KEDF. Two natural ways to define GWGC are Equation (5) and Equation (6), 

depending on which local coordinates are chosen, while the linear combination of 

these two definitions, ])[)1(][
WGCWGC

ρρ αβ GcGcGWGC ⋅−+⋅= , is also a valid definition. 

In the following, we employ a simple average definition with c=1/2, i.e.,

2/])[][(
WGCWGC

ρρ αβ GGGWGC += . We find that while each of these definitions produces 

somewhat different G values, the general characteristics of the corresponding G vs. d 

distributions are similar. As a result, we emphasize qualitative behavior rather than 

absolute values in the following G vs. d analysis.  

In Figure 9, we plot G vs. d data for fcc Al calculated by KSDFT and OFDFT 

with the WGC, vWGTF, and some representative GGA KEDFs. The WGC curve is 

very close to the KSDFT data. The absolute errors are a bit larger in the small d 

region, but here they have smaller contributions to the total kinetic energy (τTF is 

small). These results may not be surprising, since the WGC KEDF is designed to 

describe such a metal; the results are, however, still amazing because previous results 

showed only accurate total energies without examining anything on a pointwise level. 
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Turning to single-point KEDFs, all vWGTF data are very close to those of KSDFT. 

The accuracy here is expected because our vWGTF models were fit to generate 

accurate G values, and we have confirmed their transferability already. The G 

distributions of other GGA KEDFs are generally very different from KSDFT, 

indicating that they will predict rather poor local quantities, such as the KED. 

Furthermore, one can expect them to demonstrate inaccurate pointwise kinetic 

potentials from Sec. IV B because during a self-consistent optimization, the density 

changes greatly starting from the KSDFT density initial guess and finally falls into an 

unphysical state. By contrast, both WGC and vWGTF OFDFT calculations converge 

in just a few iterations, with final densities very close to KSDFT (Figure 8). This also 

suggests the pointwise kinetic potentials of the WGC and vWGTF models are 

accurate.  

Thus far, we have excellent agreement of the WGC and vWGTF KEDFs 

compared with KSDFT on an integrated and a pointwise level for bulk metals. We 

next inspect defective and alloyed metals for which we observed failures in the 

previous section for the vWGTF KEDFs while the WGC KEDF remained accurate. In 

Figure 10, we first plot G vs. d curves for the hcp Mg vacancy structure. In the 

benchmark KSDFT data, the original single-valued curve (in perfect hcp Mg) 

bifurcates into two branches, and the width of each branch is slightly wider than in the 

hcp Mg case. Notice that the upper branch corresponds to the original curve in hcp 

Mg and contains the majority of the data. The lower branch thus corresponds to the 

local vacancy region. The results for both fcc Al and bcc Li vacancy structures (not 
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shown) are very similar to the results for hcp Mg. We test Al3Mg and again find a 

similar two-branch feature (Figure 11): G vs. d curve bifurcates, with neither of the 

two branches corresponding to the ones in pure fcc Al and hcp Mg, respectively. The 

bifurcation phenomenon explains the failure of vWGTF models, which have a 

one-to-one mapping between d and G. By contrast, the WGC KEDF successfully 

reproduces the bifurcation feature in all cases, which we find rather amazing and 

inspiring. Based on its well-known outstanding performance for simple metals, one 

may have conjectured its accurate KED as well. However, after many tests and 

applications of the WGC KEDF, studies of the KED on a pointwise level were 

lacking. The results here confirm that the WGC KEDF is accurate both on a pointwise 

level and an integrated level. This also highlights the importance of studying local 

quantities rather than just total kinetic energies. 

We next explore other systems for which the WGC KEDF is insufficient, such as 

CD Si. In Figure 12, similar curves are plotted for CD Si. We again observe two main 

branches in the G vs. d distribution in KSDFT and the WGC KEDF surprisingly 

preserves this feature. However, we notice a bit larger discrepancy of absolute G 

values in this system. This may be one of the reasons why the WGC KEDF is not 

accurate for Si, when compared to KSDFT. Furthermore, the similar bifurcation 

structure in Si also indicates that the pointwise approach may be general and 

promising for materials other than simple metals, such as CD Si here. Analyzing and 

reproducing the bifurcation feature should be a key to make new KEDFs more 

accurate and transferable. 
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Finally, we expect isolated systems to possess a completely different character 

from extended systems. As an example, we examine the singlet state of the P2 

molecule. Since the WGC KEDF cannot converge in this case, only KSDFT data are 

presented. Moreover, the average density in the definition of d is not well-defined. 

Here, we use ρmax instead of ρ0; this will not change any key properties since both are 

just constants. In Figure 13, we observe that the G values are more scattered and it is 

hard to sort out any structures or patterns. We also tried plotting G vs. other density 

variables, but found no further insight. 

E. Discussion and future work 

In this section, we discuss possible improvements, which we hope this current 

work will inspire. In the previous section, we displayed the bifurcation feature in G vs. 

d distributions in various systems. We concluded that it is impossible to use only d to 

predict G in such situations. Our simple vWGTF models fail because they are all 

based on a one-to-one mapping between G and d. We questioned GGA KEDFs in an 

earlier section for a similar failure, but for the independent variable s instead of d. We 

have over-simplified when approximating G, which ought to be a functional of the 

electron density. Even when simplifying G to a function, more density variables (such 

as s and l) should be included in G. We find that G vs. l distributions feature relatively 

well-defined distributions (by contrast, G vs. s distributions generally have more 

complicated structures; see Figure 6 for example). For instance, the bifurcation occurs 

in l vs. d (Figure 14) and in G vs. l (Figure 15) distributions for CD Si and the Mg 
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vacancy structure, respectively. Moreover, we found that branches correspond 

perfectly: data points in the upper branch of G vs. d plot also lie in the upper branch 

of the l vs. d plot. This strongly suggests using both d and l to predict G. One way to 

do this is to combine d and l to form a new density variable, which can uniquely 

determine corresponding G values, i.e., two branches can be unified if plotting G 

against this new density variable. Unfortunately, after several attempts, we were still 

unable to find such a variable, even after trying to include s, as well.  

Another way is to define a multivariate function, such as G(d,l). For this, we try to 

average two branches of G(d) with the weights depending on l. More specifically, we 

design lluu WdGWdGldGG ⋅+⋅== )()(),( , where Gu(d) and Gl(d) are determined by 

the upper and lower branches, respectively. Wu and Wl take the form as 

 )/( luuu wwwW += and  )/( lull wwwW += , where wu and wl are rapidly decaying 

functions such as ( )2)(dLl
u

uew −−=  and ( )2)(dLl
l

lew −−= , with Lu(d) and Ll(d) defined 

similarly as Gu(d) and Gl(d), respectively. Using this function, G is determined with 

the correct function of d by making use of the local l value. We tested this model on 

CD Si, metal vacancies, and the Al3Mg alloy, and found that non-self-consistent 

kinetic energy errors are greatly reduced to within 0.5%. However, the G(d) and L(d) 

branch functions are not transferable for different systems. Furthermore, we again 

encountered convergence issues when carrying out self-consistent calculations with 

this multivariate G function. Adding s or l into KEDFs generally leads to numerical 

difficulties in self-consistent optimizations, which makes developing accurate 

single-point KEDFs more difficult. 
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This work is also closely related to the recently proposed density decomposition 

method.29 On one hand, the quality of the density decomposition depends on the scale 

function, which aims to distinguish and separate localized and delocalized electron 

densities. An accurate pointwise-based KEDF and its corresponding OF-ELF 

(Equation (8)) may help to construct a better scale function. On the other hand, 

accurate single-point KEDFs are needed for the localized KEDF and the KEDF 

interaction terms (see ref. 29 for details). We are now testing different GGA KEDFs, 

as well as our new vWGTF models, for these terms as a means of further improving 

the density decomposition method for KEDF development. 

V. Conclusions 

Previous KEDF assessments of quality have mostly focused on the integrated 

total (kinetic) energy or resultant physical properties. Here, we argued that accurate 

pointwise quantities are important and useful criteria for constructing KEDFs. We 

first proposed a new KEDF development scheme based on a pointwise KED analysis. 

We investigated the relationship between G and the reduced density d, reduced 

gradient s, and reduced Laplacian l in KSDFT. For various simple metals, in 

particular bulk Al, Mg, and Li, we found a strong correspondence between G and d; 

data points from different phases formed a well-defined single-valued function. In 

contrast, G vs. s was usually multi-valued, which calls into question the validity of 

using s as the sole variable when constructing enhancement factors. Through fitting a 

small set of data for G vs. d or ELF vs. d, the resulting models significantly improved 



35 
 

non-self-consistent kinetic energies with MAEs within 1%. The WGC KEDF 

produced the best results (<0.1%), while previously proposed GGA KEDFs generally 

led to errors of about 3-6%.  

 We also performed a thorough test of self-consistent optimizations with our 

models and various GGA KEDFs. Unfortunately, most GGA KEDFs had serious 

convergence problems. The optimized densities showed unphysical distributions: 

extremely small densities around the nuclei, as well as sharp density changes. The 

numerical evaluation of gradients or Laplacians using FFTs was no longer reasonable 

for these unphysical densities. Consequently, we believe that the self-consistent 

results obtained could not be considered as the real physical outcomes of these GGA 

KEDFs. We therefore concluded that self-consistent optimizations are rather 

cumbersome when density gradients are involved. In contrast, our new vWGTF 

models converged readily and gave reasonable self-consistent results for all perfect 

bulk systems. Errors for equilibrium volumes and bulk moduli were within 5%, and 

phase ordering energies also agreed well with KSDFT benchmarks. 

 However, the vWGTF models showed unfortunate failures when calculating 

defective or alloyed systems. Plotting KSDFT G vs. d distributions in these samples 

showed a clear two-branch bifurcation feature. This feature therefore demonstrated 

the inadequacy of the current vWGTF models which approximated G as a simple 

function of d. The WGC KEDF, however, accurately reproduced the bifurcation 

feature, which also explained its accurate total energies and bulk properties for these 
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types of materials. We thus expect a single-point KEDF that can predict this 

bifurcation feature will provide more accurate kinetic energies and material properties 

than the current vWGTF models. We hope this study inspires more ideas for 

developing new KEDFs and thus further advance OFDFT, both theoretically and 

practically. 
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Tables 

Table I. KEDF non-self-consistent total kinetic energy errors and MAEs (in %) with respect to KSDFT 

benchmarks for bulk Al, Mg, and Li in the fcc, bcc, hcp, and sc structures at KSDFT equilibrium 

volumes. 

KEDF fcc Al hcp Al bcc Al sc Al hcp Mg fcc Mg bcc Mg sc Mg bcc Li fcc Li hcp Li sc Li MAE 

vW -91.75 -91.96 -92.02 -85.52 -90.30 -90.57 -90.87 -88.08 -93.39 -93.34 -93.34 -93.47 91.22 
Thak -5.77 -5.92 -6.18 -7.19 -6.14 -6.26 -6.04 -8.28 -5.16 -5.22 -5.23 -5.15 6.05 
TF -5.24 -5.35 -5.57 -7.47 -5.89 -6.05 -5.89 -8.13 -4.79 -4.84 -4.85 -4.80 5.74 
DK -4.44 -4.57 -4.79 -5.92 -5.04 -5.22 -5.10 -6.98 -4.12 -4.16 -4.17 -4.14 4.89 

PW86 -4.39 -4.53 -4.76 -5.98 -4.87 -5.06 -4.91 -6.96 -4.13 -4.18 -4.18 -4.15 4.84 
TF1/9vW -4.32 -4.46 -4.69 -5.86 -4.81 -5.00 -4.87 -6.81 -4.05 -4.10 -4.10 -4.07 4.76 

P92 -4.32 -4.46 -4.68 -5.86 -4.81 -5.00 -4.87 -6.80 -4.05 -4.10 -4.10 -4.07 4.76 
TW02 -4.27 -4.40 -4.63 -5.66 -4.83 -5.02 -4.90 -6.72 -4.02 -4.06 -4.07 -4.05 4.72 
PW91 -4.25 -4.39 -4.62 -5.55 -4.84 -5.02 -4.91 -6.66 -3.99 -4.04 -4.04 -4.02 4.69 
B86B -4.24 -4.37 -4.60 -5.59 -4.80 -4.99 -4.87 -6.67 -3.99 -4.04 -4.04 -4.02 4.69 
LC94 -4.24 -4.38 -4.60 -5.58 -4.80 -4.99 -4.87 -6.66 -3.99 -4.03 -4.04 -4.02 4.68 
LLP -4.23 -4.37 -4.59 -5.57 -4.81 -5.00 -4.89 -6.66 -3.98 -4.03 -4.03 -4.01 4.68 

B86A -4.23 -4.37 -4.59 -5.60 -4.78 -4.97 -4.85 -6.67 -3.99 -4.04 -4.04 -4.02 4.68 
E00 -4.20 -4.34 -4.57 -5.72 -4.59 -4.78 -4.65 -6.63 -3.92 -3.97 -3.97 -3.94 4.61 
OL1 -4.12 -4.25 -4.47 -5.52 -4.62 -4.82 -4.71 -6.52 -3.89 -3.94 -3.95 -3.92 4.56 
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DK87 -4.12 -4.26 -4.50 -5.32 -4.62 -4.81 -4.69 -6.51 -3.88 -3.92 -3.93 -3.90 4.54 
OL2 -3.72 -3.85 -4.06 -5.15 -4.27 -4.49 -4.40 -6.13 -3.58 -3.63 -3.63 -3.62 4.21 

TF1/5vW -3.59 -3.74 -3.98 -4.58 -3.95 -4.16 -4.06 -5.75 -3.46 -3.51 -3.51 -3.49 3.98 
PBE2 3.20 2.88 2.63 8.31 3.30 2.88 2.67 4.13 1.89 1.89 1.88 1.73 3.12 
TFvW 3.01 2.69 2.41 7.01 3.82 3.38 3.25 3.79 1.83 1.83 1.82 1.73 3.05 

vWGTF1 -0.05 -0.25 -0.30 0.68 0.42 0.18 0.11 0.09 -0.52 -0.53 -0.54 -0.52 0.35 
vWGTF2 0.35 0.19 0.21 0.24 0.66 0.46 0.41 0.32 0.11 0.10 0.09 0.14 0.27 

WGC 0.01 -0.02 -0.02 -0.03 0.20 0.10 0.07 -0.03 -0.07 -0.08 -0.06 -0.05 0.06 

 

 

 

Table II. KEDF non-self-consistent total kinetic energy errors and MAEs (in %) with respect to 

KSDFT benchmarks for fcc Al, hcp Mg, and bcc Li vacancy structures, as well as Al3Mg, at KSDFT 

geometries. 

KEDF Al3Mg Al Vac Mg Vac Li Vac MAE 

vW -89.46 -91.09 -89.58 -92.49 90.66 
Thak -6.07 -5.70 -6.19 -5.52 5.87 
TF -5.74 -5.28 -6.02 -5.04 5.52 
DK -4.69 -4.40 -5.09 -4.27 4.61 

PW86 -4.69 -4.35 -4.93 -4.31 4.57 
TF1/9vW -4.57 -4.29 -4.87 -4.21 4.49 

P92 -4.57 -4.29 -4.86 -4.21 4.48 
TW02 -4.47 -4.22 -4.87 -4.15 4.43 
PW91 -4.42 -4.20 -4.87 -4.12 4.40 
B86B -4.43 -4.19 -4.84 -4.12 4.40 
LC94 -4.42 -4.19 -4.85 -4.10 4.39 
LLP -4.42 -4.19 -4.84 -4.11 4.39 

B86A -4.43 -4.18 -4.82 -4.12 4.39 
E00 -4.42 -4.16 -4.64 -4.08 4.33 
OL1 -4.30 -4.07 -4.67 -4.01 4.26 

DK87 -4.29 -4.05 -4.64 -4.01 4.25 
OL2 -3.90 -3.68 -4.31 -3.65 3.89 

TF1/5vW -3.63 -3.50 -3.94 -3.54 3.65 
PBE2 5.25 3.88 3.97 2.69 3.95 
TFvW 4.80 3.63 4.40 2.47 3.83 
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vWGTF1 -0.61 -0.63 0.06 -0.96 0.57 
vWGTF2 -0.87 -0.65 -0.01 -0.62 0.54 

WGC 0.05 0.03 0.22 -0.09 0.10 

 

 

 

 

 

Table III. Equilibrium volumes (V0), bulk moduli (B), and equilibrium total energies (Emin) for various 

Al phases calculated by self-consistent KSDFT and OFDFT. Only OFDFT results for numerically 

stable KEDFs are reported (see Sec. IV B for details); same for Tables IV and V. 

fcc hcp bcc sc 

V0 (Å3) 

KSDFT 16.575 16.733 17.025 19.937 
WGC 16.590 16.657 16.839 20.368 

vWGTF1 16.859 16.859 16.882 20.715 
vWGTF2 16.872 16.871 16.876 23.486 

TFvW 17.452 17.418 17.464 19.258 
TF1/5vW 19.024 18.884 19.234 22.112 
TF1/9vW 21.951 22.420 22.311 26.569 

E00 21.291 21.511 21.553 24.935 
P92 21.928 22.377 22.283 26.144 

B (GPa) 

KSDFT 77 75 70 57 

WGC 75 73 70 57 
vWGTF1 85 84 83 50 
vWGTF2 76 76 75 26 

TFvW 106 115 106 88 
TF1/5vW 46 44 44 32 
TF1/9vW 23 16 23 13 

E00 29 24 29 20 
P92 23 17 23 15 

Emin (eV/atom) KSDFT -57.202 0.024 0.081 0.334 
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WGC -57.188 0.016 0.074 0.324 
vWGTF1 -57.231 -0.004 0.042 0.472 
vWGTF2 -57.119 -0.006 0.053 0.232 

TFvW -56.716 -0.004 0.021 0.799 
TF1/5vW -59.036 0.001 0.015 0.250 
TF1/9vW -59.983 0.000 0.003 0.106 

E00 -59.487 0.000 0.006 0.133 
P92 -59.979 -0.002 0.003 0.107 

 

 

Table IV. Equilibrium volumes (V0), bulk moduli (B), and equilibrium total energies (Emin) for various 

Mg phases calculated by self-consistent KSDFT and OFDFT. 

hcp fcc bcc sc 

V0 (Å3) 

KSDFT 22.899 23.073 22.839 27.107 
WGC 23.083 23.082 22.967 27.278 

vWGTF1 23.875 23.877 23.773 26.819 
vWGTF2 23.570 23.472 23.469 26.896 

TFvW 25.172 25.221 25.121 27.189 
TF1/5vW 23.870 23.874 23.656 27.017 
TF1/9vW 24.806 24.813 24.465 29.113 

E00 24.955 24.958 24.633 28.772 
P92 24.802 24.809 24.453 29.096 

B (GPa) 

KSDFT 38 38 38 24 
WGC 37 37 37 23 

vWGTF1 38 38 38 27 
vWGTF2 37 37 37 24 

TFvW 38 37 38 31 
TF1/5vW 28 28 28 18 
TF1/9vW 22 22 21 11 

E00 23 23 22 13 
P92 22 22 21 11 

Emin (eV/atom) 

KSDFT -24.246 0.013 0.029 0.408 
WGC -24.217 0.007 0.020 0.391 

vWGTF1 -24.221 0.001 0.011 0.396 
vWGTF2 -24.184 0.002 0.013 0.387 

TFvW -24.006 -0.001 0.006 0.414 
TF1/5vW -25.069 -0.001 0.010 0.249 
TF1/9vW -25.473 -0.001 0.012 0.185 
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E00 -25.187 -0.001 0.011 0.193 
P92 -25.471 -0.001 0.012 0.185 

 

 

 

Table V. Equilibrium volumes (V0), bulk moduli (B), and equilibrium total energies (Emin) for various 

Li phases calculated by self-consistent KSDFT and OFDFT. 

bcc fcc hcp sc 

V0 (Å3) 

KSDFT 19.397 19.308 19.324 19.932 
WGC 19.402 16.658 19.328 19.978 

vWGTF1 19.490 19.400 19.416 20.082 
vWGTF2 19.515 19.423 19.439 20.120 

TFvW 20.197 20.109 20.119 20.906 
TF1/5vW 17.644 17.460 17.488 18.684 
TF1/9vW 16.947 16.708 16.757 18.176 

E00 17.251 17.024 17.071 18.410 
P92 16.952 16.713 16.759 18.178 

B (GPa) 

KSDFT 16 17 17 17 
WGC 16 17 17 17 

vWGTF1 16 17 17 17 
vWGTF2 16 17 17 17 

TFvW 16 16 16 29 
TF1/5vW 18 18 18 18 
TF1/9vW 18 19 19 19 

E00 18 18 18 19 
P92 18 19 19 19 

Emin (eV/atom) 

KSDFT -7.550 -0.001 0.000 0.136 
WGC -7.543 -0.001 0.000 0.137 

vWGTF1 -7.559 -0.001 -0.001 0.136 
vWGTF2 -7.537 -0.001 -0.001 0.137 

TFvW -7.499 0.000 0.000 0.132 
TF1/5vW -7.748 -0.004 -0.004 0.125 
TF1/9vW -7.836 -0.006 -0.005 0.117 

E00 -7.778 -0.005 -0.004 0.119 
P92 -7.836 -0.006 -0.005 0.117 
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Table VI. Vacancy formation energies (Evf) for fcc Al, hcp Mg, and bcc Li calculated by self-consistent 

KSDFT and OFDFT with the WGC and vWGTF KEDFs. 

Evf (eV) fcc Al hcp Mg bcc Li 

KSDFT 0.722 0.945 1.028 
OFDFT-WGC 0.808 0.983 1.019 

OFDFT-vWGTF1 -4.886 -0.811 0.753 
OFDFT-vWGTF2 -10.426 -2.539 0.509 

 

Table VII. Equilibrium volume (V0), bulk modulus (B), and alloy formation energy (Efm) for Al3Mg 

calculated by self-consistent KSDFT and OFDFT, with the WGC and vWGTF KEDFs. 

 B (GPa) V0 (Å3) Efm (eV/atom) 

KSDFT 63 71.828 -0.019 
OFDFT-WGC 64 71.812 -0.016 

OFDFT-vWGTF1 67 74.292 -0.174 
OFDFT-vWGTF2 57 75.078 -0.384 
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Figures 

 

Figure 1. ELF vs. the reduced density (d) in fcc Al, hcp Mg, and bcc Li at equilibrium volumes 

calculated by KSDFT. Data points are taken only along the bond axis, i.e., <110> for fcc Al, < 0211 > 

for hcp Mg, and <111> for bcc Li.  
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Figure 2. G vs. d in bcc Li at the equilibrium volume calculated by KSDFT. Data points are taken from 

all spatial points (on a numerical grid) in the unit cell.  
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Figure 3. G vs. d in fcc Al, hcp Al, bcc Al, hcp Mg, and bcc Li at equilibrium volumes, as well as fcc 

Al, hcp Mg, and bcc Li at volumes changed %2±  around equilibrium volumes calculated by KSDFT. 

Data points are taken only along the bond axis, similar to Figure 1. 
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Figure 4. ln(G) vs. ln(d) in fcc Al, hcp Mg, and bcc Li at equilibrium volumes calculated by KSDFT 

and the linear model. Data points are taken only along the bond axis, similar to Figure 1. 
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Figure 5. ELF vs. d for fcc Al, hcp Mg, and bcc Li at equilibrium volumes calculated by KSDFT, the 

analytical model (Equation 13), and the numerical interpolation model. Data points are taken only 

along the bond axis, similar to Figure 1. 
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Figure 6. KSDFT G vs. s with τ calculated according to Equation (11) with multiple x values, (a) at a 

large scale and (b) at a fine scale. Data points are taken from all spatial points (on a numerical grid) in 

the unit cell of fcc Al at the KSDFT equilibrium volume. 
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Figure 7. Total energies vs. volume per atom for fcc Al calculated by OFDFT with the PBE2 KEDF 

with (a) 500 eV kinetic energy cutoff and (b) 500, 1600, and 3000 eV kinetic energy cutoffs for the 

planewave basis. 
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Figure 8. Self-consistent electron densities of fcc Al (at the KSDFT equilibrium volume) plotted along 

the <110> bond direction between two neighboring atoms (horizontal axis normalized to 1 and two Al 

atoms are at 0 and 1). KSDFT and OFDFT with the WGC and vWGTF models, as well as TFvW, 

TF1/5vW, E00, TW02, PBE2, B86A, and PW91 results are displayed. OFDFT calculations employ an 

increased energy cutoff (6000 eV) to achieve denser grids. 



57 
 

 

Figure 9. G (Equation (7)) vs. d (ρ/ρ0) in fcc Al (at the KSDFT equilibrium volume) calculated by 

KSDFT and OFDFT with the WGC, vWGTF1, vWGTF2, PW91, and PBE2 KEDFs. The following 

conditions are applied in Figure 9 through Figure 12: OFDFT G values are non-self-consistently 

calculated using the self-consistently optimized KSDFT density; data points are taken from all spatial 

points (on a numerical grid) in the unit cell.  
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Figure 10. G vs. d in the Mg vacancy structure (at the KSDFT geometry) calculated by KSDFT and 

OFDFT with the WGC and vWGTF1 KEDFs.  
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Figure 11. G vs. d in Al3Mg (at the KSDFT equilibrium volume) calculated by KSDFT and OFDFT 

with the WGC and vWGTF1 KEDFs.  
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Figure 12. G vs. d in CD Si (at the KSDFT equilibrium volume) calculated by KSDFT and OFDFT 

with the WGC and vWGTF1 KEDFs.  
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Figure 13. G vs. ρ/ρmax in singlet P2 at the KSDFT equilibrium bond length and using the density 

calculated by KSDFT. Data points are taken from all spatial points (on a numerical grid) where density 

is larger than 0.005 bohr-3. 
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Figure 14. Reduced Laplacian l vs. d in (a) CD Si (at the equilibrium volume) and (b) Mg vacancy 

structure, calculated by KSDFT. Data points are taken from all spatial points (on a numerical grid) in 

the unit cell. 

 

Figure 15. G vs. l in CD Si at the equilibrium volume calculated by KSDFT. Data points are taken from 

all spatial points (on a numerical grid) in the unit cell. 


