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We use cellular dynamical mean field theory with the continuous-time quantum Monte Carlo
solver to study the Kane-Mele-Hubbard model supplemented with an additional third-neighbor
hopping term. For weak interactions, the third-neighbor hopping term drives a topological phase
transition between a topological insulator and a trivial insulator, consistent with previous fermion
sign-free quantum Monte Carlo results [H.-Hung et al. Phys. Rev. B 89, 235104 (2014)]. At finite
temperatures, the Dirac cones of the zero temperature topological phase boundary give rise to a
metallic regime of finite width in the third-neighbor hopping. Furthermore, we extend the range
of interactions into the strong coupling regime and find an easy-plane anti-ferromagnetic insulating
state across a wide range of third-neighbor hopping at zero temperature. In contrast to the weak
coupling regime, no topological phase transition occurs at strong coupling, and the ground state is
a trivial anti-ferromagnetic insulating state. A comprehensive finite temperature phase diagram in
the interaction-third-neighbor hopping plane is provided.

PACS numbers: 71.30.+h, 75.10.-b, 05.30.Rt, 71.10.Fd

I. INTRODUCTION

Topological insulating states, such as the topological
band insulator (TBI), the topological Mott insulator, and
other interacting varieties of topological states have at-
tracted much interest in condensed matter physics1–14.
These topological insulating states are characterized by
topological numbers, such as the Chern number, mirror
Chern number, and the Z2 number15–25. The TBI have
been experimentally found in many materials, such as
Bi2Se3, and HgTe/CdTe quantum wells26–33. Besides
the experimental progress in the detection of topologi-
cal insulating states, much theoretical research has been
devoted to the role of lattice geometry on the topolog-
ical insulating states, including the honeycomb, square,
kagome, and more unusual lattices34–40. In addition to
geometric factors, topological phase transitions can also
be induced by a staggered on-site energy1, Rashba spin-
orbit coupling1–3,26,41, and a third-neighbor hopping in
non-interacting models42,43.

Recently, the influence of electronic correlations on
topological states has been the focus of many studies. In
the strong coupling limit, interactions could induce mag-
netic ordering which either breaks the time reversal sym-
metry, which then spoils the TBI state35,44–53, or coexists
with the topological phases to form an anti-ferromagnetic
topological insulator54–57. It is also interesting to investi-
gate the topological phase transitions42,43,58–60 at strong
interactions and how finite temperatures influence topo-
logical states61,62. In particular, interactions and thermal
fluctuations have been proposed to drive a nontrivial TBI
or otherwise change topological properties22,38,51,62,63.
Thus, it is highly desirable to investigate the effect of
interactions on topological systems, particularly at finite
temperature, which is important and relevant to real ma-

terials. Recent work has shown that a finite-temperature
topological invariant can be defined64,65, which effec-
tively extends the notation of topological phases to finite
temperatures.

Many analytical and numerical methods have been de-
veloped to investigate interacting systems in the past
few years66–68, among them dynamical mean-field the-
ory (DMFT) is an especially powerful method capable of
capturing the Mott transition69. While single-site DMFT
has been shown to work well in three dimensional systems
(it is exact in the limit of infinite spatial dimensions), in
two-dimensional systems non-local correlations and spa-
tial fluctuations can have an important influence on the
physics. To improve the predictions of DMFT, partic-
ularly in two-dimensions, cellular dynamical mean-field
theory (CDMFT)35,70–74,77,78 has been developed to in-
corporate spatially extended correlations. In CDMFT,
the original lattice is mapped to an effective cluster im-
purity model coupled to an effective medium. An im-
portant impurity solver in CDMFT uses the continu-
ous time quantum Monte Carlo method (CTQMC)79,80,
which is more accurate than the “traditional” discrete-
time QMC method. The momentum-dependent spectral
function can be used to detect the different characters of
the edge states appearing in the topologically trivial and
non-trivial states if a strip geometry is used. In addi-
tion, topological phase transitions can also be studied by
computing the spin Chern number directly in the model
we consider because it conserves the z-component of the
spin.43

In this work, we investigate topological phase tran-
sitions in an interacting honeycomb lattice model (a
generalized Kane-Mele-Hubbard model–see below) with
a third-neighbor hopping, t3n, using CDMFT with the
CTQMC solver. At weak interactions, we find a gapped
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FIG. 1. (Color online) (a) The lattice structure of honeycomb lattice with various hopping parameters described in Eq. (1).
(b) The bulk density of states for various values of third-neighbor hopping, t3n, for λ = 0.4, U = 0.0. (c)-(e) The noninteracting
energy bands of Eq. (1) with the zigzag strip geometry for (c) t3n = 0.0, (d) t3n = 1/3, and (e) t3n = 0.6. The width is
Ns = 120 and spin-orbit coupling is λ = 0.4. A single Dirac cone is present in (c), indicating a topological state, while two are
present in (e), a trivial state. The bulk band gap is closed in (d), as in (b) for t3n = 1/3.

topological band insulator with spin Chern number |C| =
1 when t3n = 0 that persists until t3n = tc3n = t/3,
where a gapless metallic state appears. The bulk gap is
reopened and spin Chern number |C| = 2 when t3n is
increased, indicating the system becomes a topologically
trivial state (TTI)43. Combined with the recent proposal
to detect a (spin) Chern number variation in a two-level
system via a superconducting qubit81, it appears that
topological phase transitions may be directly observed
experimentally. In addition to a change in the topolog-
ical invariants, topological phase transitions can also be
signaled by a gap closing.

In contrast to the zero temperature case42, we use
CDMFT to show the gapless Dirac cone structures at the
topological phase boundary give rise to a finite-width (in
terms of third-neighbor hopping) metallic state at finite
temperatures and finite interactions. This intermediate
metallic phase exhibits a spin Hall effect, and is one of the
main findings of this work. Under strong interactions,
an xy-easy plane anti-ferromagnetic insulating state is
observed for all values of t3n when the interaction U is
beyond a critical value. Thus, there is no topological
phase transition in the strong coupling limit. These re-
sults are summarized in the finite temperature phase di-
agram Fig.4, given in the space of interaction strength
and the third neighbor hopping. While at finite tem-
peratures our system strictly speaking does not possess
long-range order by the Mermin-Wagner theorem, it still
possess significant quasi-long range magnetic correlations
in the thermodynamic limit at the low-temperatures we
study. The interesting phases shown in Fig.4 could be

experimentally probed by transport, angle-resolved pho-
toemission spectroscopy (ARPES)82, neutron scattering,
nuclear magnetic resonance (NMR)83, and other experi-
mental methods. For interaction values below the critical
strength required to induce a magnetic transition, our
results are in good quantitative agreement with recent
fermion-sign free quantum Monte Carlo calculations on
the same model43. (The QMC study did not explore the
strong coupling regime.)

Our paper is organized as follows. In Sec. II, we intro-
duce the interacting honeycomb lattice model we study,
and the cellular dynamical mean field theory. In Sec. III,
we present the main results of our CDMFT study, includ-
ing the spectral function, explicit computations of the
edge-state spectrum, and the dependence of various ex-
citation gaps on the parameters of the Hamiltonian. Fi-
nally, in Sec. IV we present a finite-temperature phase di-
agram of our model, which includes an anti-ferromagnetic
phase, a topological insulating phase, and a trivial insu-
lating phase. We summarize our results in Sec. V.

II. MODEL AND METHOD

We study the standard Kane-Mele-Hubbard model at
half-filling (one electron per site) on the honeycomb lat-
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tice:

H = −t
∑

〈ij〉σ
c+iσcjσ + iλ

∑

〈〈ij〉〉
c+iσvij(σ)cjσ

−t3n
∑

〈〈〈ij〉〉〉σ
c+iσcjσ + h.c.

+U
∑

i

ni↑ni↓ + µ
∑

iσ

niσ, (1)

where t is the nearest-neighbor (NN) hopping energy,
λ is the spin-orbit coupling strength, vij(σ) takes op-
posite signs for different spin projections and depends
on the second-neighbor bond 〈〈ij〉〉1,2, t3n is the next-
next-nearest-neighbor (NNNN) hopping energy, U is the
on-site repulsive interaction, µ is the chemical potential
which keeps the system at half filling, c+iσ and ciσ de-
note the creation and annihilation operators respectively,
niσ = c+iσciσ cis the density operator for spin σ, and σ
runs over spin up (↑) and spin down (↓). Here, we set
t = 1.0, which is also used as the energy unit in our pa-
per. The spin-orbit coupling strength λ is taken to be
λ = 0.4 throughout. The phase transition that occurs
for U = 0 as a function of t3n is independent of λ, so
long as it has a finite value.
The lattice structure is shown in Fig. 1 (a). The hon-

eycomb lattice can be divided to two sublattices, desig-
nated by A sites and B sites. In Fig. 1 (a), the A sites
are denoted by white circles, and the black circles shows
the B sites. The NN hopping t is shown by the black
solid lines, while the blue dash lines describe the spin-
orbit coupling strength. The NNNN hopping is demon-
strated by the red solid lines. The bulk density of states
for various t3n when λ = 0.4 are shown in Fig. 1 (b).
A visible bulk gap opened by the spin-orbit coupling is
found when t3n is absent. This bulk gap is closed for
t3n = 1/3, independent of the value of λ. The gapless
behavior means that the system becomes a metal. In con-
trast to graphene, in the generalized Kane-Mele model,
the Dirac cones are located at three time-reversal invari-
ant momenta M1,2 = (± π√

3
, π
3 ) and M3 = (0, 2π

3 )42,43.

The bulk gap is reopened when t3n > 1/3, such as for
t3n = 0.6. This gapped-gapless-gapped behavior indi-
cates that a topological phase transition may be found
when t3n is tuned, and the topological phase boundary is
tc3n = 1/3. A direct evaluation of the topological invari-
ant, and band structure computations in a strip geometry
confirm this is indeed the case.
Fig. 1 (c)-(d) shows the energy bands in a strip geome-

try for different t3n when λ = 0.4, which is obtained with
an open boundary condition with zigzag edges. The pres-
ence of an odd number of helical edge states (with time-
reversed spins) is characteristic of the nontrivial TBI84.
Clear edge states crossing the bulk gap with one Dirac
point are found for λ = 0.4, t3n = 0.0 in Fig. 1 (c), im-
plying that the system is a topological band insulator,
and the spin Chern number Cσ = ±1. Upon increasing
t3n to tc3n = 1/3, both the edge and bulk states become
gapless (see Fig. 1 (d)), indicating that the system is a

metal (M). When t3n = 0.6, the bulk gap reopens and
edge states with two Dirac points appear (see Fig. 1
(e)), showing that the state is a topological trivial insu-
lator (TTI). In the trivial case, the spin Chern number
Cσ = ±2. As long as Sz is conserved, the spin Chern
number is a good quantity to describe the topological
properties.
In order to address the Hubbard interaction term in

the model given in Eq.(1), we use CDMFT with the
CTQMC solver to investigate the topological and mag-
netic phase transitions on the honeycomb lattice with
NNNN (third neighbor, t3n) hopping. In CDMFT, one
maps the original lattice model onto an effective clus-
ter model coupled to an effective medium via a standard
dynamical mean-field theory (DMFT) procedure.71 The
single-particle Green’s function of the cluster, ĝ, in the
effective medium is obtained from

[ĝ(iω)]−1 =
1

1
Nk

∑

~k
1

iω+µ−t̂(~k)−Σ̂(iω)

+ Σ̂(iω), (2)

where t̂(~k) is the hopping matrix of the original model

Hamiltonian, ~k is the wave vector within the reduced
Brillouin zone based on the cluster size and geometry,
Σ̂(iω) is the self-energy, and ω is the Matsubara fre-
quency. The matrix ĝ can be used as an input to an
impurity solver, such as CTQMC, to obtain the cluster
Green’s function Ĝc(iω) of the physical problem of inter-

est. The new self-energy Σ̂(iω) is obtained via the Dyson

equation Σ̂(iω) = ĝ−1(iω) − Ĝ−1
c (iω), and then plugged

into Eq. (2) to form a closed self-consistent loop. This

loop is iteratively repeated until the self-energy Σ̂(iω)
converges to the desired accuracy. In this paper, we
mainly use Nc = 8 (Nc is the cluster size) in the bulk
CDMFT calculation. The interacting edge spectra are
obtained by the momentum-dependent spectral function
for the zigzag strip geometry with the width of Ns = 80
by using a real-space calculation75,76. The details of our
choice of the cluster geometry can be found in the ap-
pendix of this paper.
The spin Chern number can be obtained by the Green’s

function at zero frequency and projection operator for-
malism, the details of which can be found in Ref. [43].
With the Matsubara frequency Green’s functions, one
can perform an analytical continuation to obtain real fre-
quency Green’s functions using the so-called Maximum
Entropy Method (MEM)85. The density of states ρ(ω) as
well as the single-particle gap ∆E can be obtained from
the spectral function A(ω) = − 1

π
ImG(ω+ iδ), where δ is

a positive infinitesimal.
At strong interactions, an easy-plane anti-

ferromagnetic state develops, and is observed in CDMFT
by introducing a symmetry-breaking perturbation in Eq.
(1). The Neel temperature TN decreases as the cluster
size Nc increases, eventually tending towards zero86.
Therefore, in the two-dimensional systems we consider,
the Mermin-Wagner theorem is recovered as Nc→∞.
Thus, the anti-ferromagnetic state of Eq. (1) disappears
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FIG. 2. (Color online) (a) The bulk density of states for
different t3n when λ = 0.4, T = 0.05, U = 1.0. (b)The
evolution of the single-particle gap ∆E (left vertical axis)
and spin Chern number Cσ (right vertical axis) as a func-
tion of t3n when λ = 0.4, T = 0.05, U = 1.0. (c)-(d) The
momentum-dependent spectral function, A(k, ω), in a strip
geometry with Ns = 80 for (c) t3n = 0.0 and (d) t3n = 0.6
when λ = 0.4, T = 0.05, U = 1.0. By a comparison with Fig.
1, it is clear that (c) is a TBI and (d) is a TTI.

when Nc→∞ at finite temperatures. However, for low
temperatures, the Mermin-Wagner theorem still allows
quasi-long-range order in two dimensional systems with
a continuous spin symmetry, as we have here. In an
experimental systems of finite size, it may be difficult to
distinguish the cases of quasi-long-range order and true
long-range order, so we expect our finite cluster results
to be meaningful for experiments.

III. RESULTS

A. Hopping parameter-driven topological phase

transition

We first focus on the topological phase transition
driven by the NNNN hopping, t3n, at weak interactions.
Fig. 2 (a) shows the evolution of the density of states
(DOS) for different values of t3n when λ = 0.4, U =
1.0, T = 0.05. Similar to the non-interacting situation,
the bulk gap induced by the spin-orbit coupling is present
when t3n = 0.0. This gap is closed when t3n = 0.33,
indicating a metallic behavior. Moreover, the gap is
re-opened when t3n is increased. This gapped-gapless-
gapped behavior indicates that a topological phase tran-

sition can be found when t3n is increased from zero, and
this is confirmed by investigating the spin Chern num-
ber and the edge modes in a strip geometry. In Fig. 2
(b), we show the development of the single-particle gap
∆E and spin Chern number Cσ as a function of t3n for
λ = 0.4, U = 1.0, T = 0.05, where σ denotes the spin.
The single-particle gap ∆E decreases when the t3n is in-
creased towards 1/3, and the |Cσ| = 1 character is main-
tained. When 0.32 < t3n < 0.35, the ∆E is decreased to
zero, indicating the emergence of an intermediate metal-
lic state for finite temperatures. When t3n > 0.36, the
bulk gap is reopened (∆E 6=0) and |Cσ| = 2.0, indicating
that the system becomes a Z2 TTI. Note that, in the
∆E = 0 regime, the spin Chern numbers Fig. 2 (b) are
not quantized, as expected in a metallic state.
The finite parameter extent of the metallic state shown

in Fig. 2 (b) is a finite temperature effect. At zero
temperature, the sign-free QMC study shows a line-like
topological phase boundary42 when t3n = tc3n. This is
because at half-filling the Fermi surface is point-like at
tc3n, with the Dirac points at M1,2,3. However, at finite
temperatures, thermal fluctuations smear the distribu-
tion of electronic states away the Dirac points. Thus,
the metallic state can be extended to a finite range of
t3n. This behavior has also been observed in graphene35.
The thermal-fluctuation-induced metallic state exhibits a
spin Hall effect. We find that the time-reversal symmetry
is still present in this regime, and the presence of spin-
orbit coupling in Eq. (1) will bring a spin accumulation
on the edges87,88. Recent theoretical work also shows
that there is a precise sense in which finite temperature
topological phases retain a quantized invariant.64,65 With
the caveats mentioned earlier regarding the magnetic or-
der in the strong coupling regime, one may discuss a finite
temperature phase diagram for our model that includes
both topological phases and magnetic phases.
From Fig. 2, is is clear that even with finite inter-

actions and finite temperature, the helical edges states
remain characteristic of the nontrivial topology. In or-
der to check whether the system is truly a topological
insulating state for t3n < 0.31 and t3n > 0.36, we obtain
the momentum-dependent spectral function for a strip
geometry with an zigzag boundary condition (Ns = 80)
in Fig. 2 (c) and (d). Clear edge states with one Dirac
point are found in Fig. 2 (c), indicating |Cσ| = 1.0 when
t3n = 0.1 for λ = 0.4, U = 1.0, T = 0.05. In Fig. 2
(d), we find edge states with two Dirac points, meaning
that |Cσ| = 2.0. These results are consistent with the
evolution of |Cσ| as a function of t3n, as shown in Fig. 2
(b).

B. Interaction-driven topological phase transition

Next, we turn to study the topological phase transi-
tions driven by the Hubbard interaction U . In order to
study a possible magnetic phase transition in the sys-
tem, we measure the staggered diagonal magnetic mo-
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FIG. 3. (Color online) The evolution of (a) bulk single par-
ticle gap ∆E, (b) staggered magnetic moment mz and trans-
verse magnetism mx as a function of interaction U when
λ = 0.4, T = 0.05 for different t3n. The dashed lines show
the critical interaction Uc, which depends on t3n. (c) The
evolution of double occupancy as a function of U , the arrows
show the critical points for different t3n when λ = 0.4, T =
0.05. (d) - (e): The momentum-dependent spectral function,
A(k, ω), obtained from the zigzag boundary condition for (d)
t3n = 0.1, (e) t3n = 0.6 when λ = 0.4, U = 6.0, T = 0.05.
Note that U = 6.0 > Uc and the spectrum is fully gapped.

ment mz and the staggered transverse magnetic mo-
ment mx. The diagonal magnetic moment is defined

as mz ≡ 1
N

∑N
i sgn(i)(ni↑ − ni↓), where N denotes the

number of sites in the lattice, i labels the site index
shown in Fig. 1 (a), sgn(i) = +1 for i corresponding
to A sites, and sgn(i) = −1 for i corresponding to B
sites. The transverse magnetism mx is defined as mx ≡
1
N

∑N
i=1 sgn(i)〈S

x
i 〉 =

1
N

∑N
i=1

1
2sgn(i)〈c

+
i↑ci↓ + h.c.〉.

In Fig. 3 (a), we show the evolution of the bulk single-
particle gap ∆E as a function of interaction U for various
t3n. We find that for λ = 0.4, t3n = 0.1, 0.6, ∆E de-
creases when the interaction U is increased. This means
that the bulk gap induced by the spin-orbital coupling
is suppressed by the interaction. Note, however, that
the single-particle gap does not close across the criti-
cal value of interactions where the system become mag-
netic. This is consistent with QMC results obtained on
the Kane-Mele-Hubbard model44,45. Different from the
cases of t3n = 0.1, 0.6, a gapless behavior is found when
U < Uc = 4.3 for t3n = 0.33, implying that the system
is a metal over a range of interaction strengths. When
U > 4.3 for t3n = 0.33, a bulk gap is opened by the
interaction and the system becomes an insulator.
The development of mz and mx at various values of

U is shown in Fig. 3 (b), in which the dashed lines show
the critical points Uc for different t3n. When U > Uc,
the mx is increased to a finite value while the mz re-
mains zero. This indicates a phase transition from a
paramagnetic state to an anti-ferromagnetic insulating
state, which was also found in Kane-Mele-Hubbard model
studies35,44,45,47. The finite mx means that this magnetic
order is formed in the easy-plane. Fig. 3 (c) shows the
evolution of double occupancy docc, which is defined as

docc = ∂F
∂U

= 1
N

∑N
i=1〈ni↑ni↓〉, where F denotes the free

energy. The docc can be used to check the phase tran-
sition order because it is directly connected to the free
energy. In Fig. 3 (c), we find that docc decreases when
the interaction U is increased, indicating that the itin-
erancy of the particles is suppressed by the interaction.
The arrows in Fig 3 (c) shows the critical points for
different t3n. At the same corresponding Us, the mag-
netic moments develop in Fig. 3 (b). The high docc
in weak interaction indicates that when U < Uc the ob-
served bulk gap is not induced by the interaction. The
smooth decreasing of docc indicates that this magnetic
phase transition is likely a second order phase transition.
The presence of a spontaneous easy-plane anti-

ferromagnetic order above a critical interaction strength
mixes the spin components. Thus, Sz is no longer con-
served, spin Chern numbers are not quantized, and there
are gapless Goldstone modes in the spin channel. To
further examine the topological properties of the anti-
ferromagnetic insulating states, we study the edge states
of Eq. (1) at strong coupling. Fig. 3 (d) and (e) show
the momentum-dependent spectral function, A(k, ω), ob-
tained for the strip geometry with an open boundary
condition for zigzag edges, and periodic boundary con-
ditions for states parallel to the edges. In contrast to
the weak interaction situation, no edge state is found for
t3n = 0.1 and 0.6 when U = 6.0, T = 0.05, λ = 0.4.
This means that across all the values of t3n, the topolog-
ical state is destroyed by the strong interaction, and both
the TBI and TTI are driven to the trivial easy-plane anti-
ferromagnetic insulating state. As a consequence, there
is no topological phase transition as a function of t3n in
the strong coupling limit.

IV. PHASE DIAGRAM

Using CDMFT, we investigate the finite temperature
effects in the Kane-Mele-Hubbard model with third-
neighbor hopping t3n. The phase diagram as a func-
tion of t3n and U is summarized in Fig. 4. When
U < Uc, a TBI-M-TTI phase transition occurs when
t3n is increased. The TBI phase can be identified by
∆E 6= 0, |Cσ| = 1, and the TTI state can be found by
∆E 6= 0, |Cσ| = 2, as well as by the different edge states
in the TBI and TTI. A metallic state can be found when
t
CTBI−M

3n < t3n < t
CM−TTI

3n with ∆E = 0. Due to the
presence of spin-orbit coupling and time-reversal sym-
metry, at sufficiently low temperature, the metallic state
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FIG. 4. (Color online) The U − t3n phase diagram for T =
0.05. λ = 0.4 is considered. TBI: topological band insulator;
TTI: topological trivial insulator; AFI: anti-ferromagnetic in-
sulator; M: metal. The inset shows the temperature depen-
dence of the metallic state at U = 1.0, λ = 0.4.

exhibits a spin Hall effect. The inset of Fig. 4 shows
that this metallic state is enlarged when the temperature
is increased, but we expect that beyond a certain tem-
peratures (the scale of which would be set by the spin-
orbit coupling λ) the spin Hall state effect will vanish.
The temperature dependence shown in the inset could be
useful for an experiment in which a material is strained
(which would change the ratio of t3n to t), and might
be used to study the features of the phase diagram we
computed.
Fig. 4 shows that an easy-plane anti-ferromagnetic in-

sulating state can be found when the interaction is in-
creased, such as for U > Uc = 4.3, t3n = 0.33. A clear
gap can be found in the easy-plane anti-ferromagnetic
insulating state, in which mz remains at zero, and mx

is increased to a finite value. The topological property
of the magnetic state is further reexamined by studying
the edge states using CDMFT and the maximum entropy
method. We do not find any coexisting region of a topo-
logical state and an anti-ferromagnetic insulating state.
We have also considered other cluster sizes and we do
not find a strong dependence of the predictions noted
above. In the extremed case of Nc = 2 (compared to
Nc = 8 shown in the paper), we find a 10-15% reduc-
tion in the single-particle gaps, and a similar shift in the
phase boundaries. We therefore conclude that the clus-
ter size does not have an important qualitative effect on
our results, aside from the fact that the magnetic transi-
tion temperature indeed tends to zero as Nc → ∞, as it
should by the Mermin-Wagner theorem.
In earlier QMC work it was noted that for U < Uc, the

phase boundary between the TBI and TTI phases shifted
as a function of interactions in such a way that the TBI

phase was “stabilized” by the interactions.42,43 This fea-
ture can also be seen in the CDMFT results shown in
Fig. 4: The “center of mass” of the metallic region is
shifted to the right compared to the U = 0 result. In the
earlier QMC work, the origin of the “stabilization” of the
topological phase was not understood in detail, though
it was remarked that quantum fluctuation effects must
be responsible since a straight-forward Hartree-Fock ap-
proximation cannot capture the transition.42,43 However,
it was left unclear whether spatial fluctuations or tem-
poral fluctuations are the dominant factor in shifting
the phase boundary. Since our CMDFT results contain
both short-range spatial fluctuations and temporal fluc-
tuations, we are only able to conclude from our CDMFT
results that long-range spatial fluctuations are clearly not
the origin of the boundary shift. Fortunately, recent
work by some of the authors of this paper have shown
that temporal fluctuations are the most important factor

in shifting the phase boundary to enlarge the topologi-
cal region of the phase diagram.89 By combining second-
order perturbation theory (temporal fluctuations) with a
Hartree-Fock approximation (spatially static), the shift
of the phase boundary can be quantitatively accounted
for.89

The combined results of QMC, CDMFT, and pertur-
bation theory followed by Hartree-Fock theory provide a
compelling picture for the dominant influence of inter-
actions and finite temperature in the generalized Kane-
Mele-Hubbard model we study here. For closely related
models with different spatial symmetries43,89, we believe
the CDMFT trends reported here will apply (such as shift
of the intermediate, finite-temperature metallic phase
into the TBI region for models the break the rotational
symmetry of the honeycomb lattice).

V. SUMMARY

In summary, we have studied the Kane-Mele-Hubbard
model with an additional third neighbor hopping term
at finite temperature using cellular dynamical mean-field
theory with a continuous-time quantum Monte Carlo im-
purity solver. The third-neighbor hopping on the honey-
comb lattice with spin-orbit coupling can induce a topo-
logical phase transition to a trivial state for small inter-
action values. At finite temperatures, a metallic state
with a vanishing single particle gap ∆E = 0 is found in a
small region of third-neighbor hopping for interaction val-
ues below a certain critical strength. We have computed
the temperature dependence of the width of this metallic
region, and it is shown in Fig. 4 along with the finite-
temperature phase diagram of the model. Recent theo-
retical work has shown that a quantized topological in-
variant can be defined for finite temperature systems.64,65

The metallic region also exhibits a spin Hall effect, as
shown in Fig. 2 (b). The finding of this emergent metal-
lic phase at finite temperatures is one of the central re-
sults of this paper. Moreover, we have also confirmed
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features, such as the shifting of the phase boundary
(with interactions), that were earlier reported in QMC
but found to be beyond a straight-forward Hartree-Fock
approximation.42,43 This implies that CDMFT may be a
reliable tool to study Hamiltonians that have a fermion
sign problem in QMC, and thus could be used on a much
wider class of Hamiltonians than the one we studied here.

When the interaction is stronger than the critical inter-
action, an easy-plane anti-ferromagnetic insulating state
with transverse magnetic order is formed at zero temper-
ature. For finite temperatures, quasi-long-range order is
expected and our finite-size clusters show a magnetic or-
der at finite temperature that vanishes as the number
of sites in the cluster tends towards infinity. We find
the same magnetic state “above” the topological trivial
state and the topological non-trivial state. In addition,
we have presented the spectral function of the system
for various Hamiltonian parameters through a parameter
space representative of the full phase diagram, notably
for finite temperatures.

In our study, we did not find any coexisting state of the
magnetic order and the Z2 topological order. Recently,
a novel correlated material, Na2IrO3, has emerged as a
good candidate to investigate the phase transition in-
duced by the interaction and spin-orbit coupling. The
relative strength of the NNNN hopping can in principle
be adjusted by physical and chemical pressure. It would
be interesting to identify experimental systems where our
phase diagram could be studied in a real material.
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Appendix A: APPENDIX

In the CDMFT71–74, the original lattice model is
mapped onto an effective cluster coupled to environment
via a standard DMFT69 procedure. The Greens function
ĝ of the effective medium can be obtained by the Dyson
equation:

ĝ−1(iω) =
1

(

1
Nk

∑

~k
1

iω+µ−t̂(~k)−Σ̂(iω)

) + Σ̂(iω), (A1)

where t̂(~k) is the hopping matrix element in the clus-

ter, ~k the wave vector within the reduced Brioullion

A sites

B sites

(a)

edge

edge

(b)

FIG. 5. (Color online) The cluster geometry for (a) bulk
CDMFT, (b) realspace CDMFT.

zone based on cluster geometry, ω the Matsubara fre-
quency, and Σ̂(iω) the self-energy matrix, which must be
determine self-consistently. First, one uses an impurity
solver, such as the CTQMC79, to numerically calculate
the cluster Green’s function Ĝc(iω). The updated self-

energy Σ̂(iω) can be calculated by the Dyson equation

Σ̂(iω) = ĝ−1(iω)−Ĝ−1
c (iω) and is plugged into Eq. (A1).

The self-consistent procedure is iteratively repeated un-
til Σ̂(iω) converges to a desired accuracy (difference after
updating is sufficiently small). The size of the self-energy
matrix depends on the cluster size and geometry. In the
bulk calculations, we used Nc = 8, whose geometry is
shown in Fig. 5 (a). In this case, the self-energy is a
16×16 matrix (with two spins). The spin Chern number
can be obtained by the bulk Green’s function at zero fre-
quency Ĝc(iω = 0) and projection operator formalism,
the details of which can be found in Ref. [43].
On the other hand, the edge spectra are obtained by

the momentum-dependent spectral function in a zigzag
strip geometry [see Fig. 5 (b)]. In the real-space
CDMFT75,76, the original lattice is mapped to Ns clus-
ters embedded in effective mediums, where Ns is de-
fined as the width of the strip. Due to the presence
of the zigzag open edges, the self-energy matrix is a
position-dependent function. In our calculations, we
choseNs = 80 to have a wide enough strip. The 160×160
self-energy matrix is used in the the self-consistent loop
of the real-space CDMFT until self-energy Σ̂(iω) is con-
verged.
In real space CDMFT, at self-consistency, the

momentum-dependent spectral functions are obtained by
evaluating the k-dependent Green’s function Gk as

Gk =
1

iωn + µ− eig
(

t̂k + ˆΣ(iω)
)
, (A2)

in which the t̂k denotes the hopping matrix of the strip
used in real space CDMFT, Σ̂(iω) the self-energy, the

eig(Â) the eigenvalue of the matrix Â, ωn the Matsubara
frequency, and µ the chemical potential. Then, we use
the Maximum Entropy Method85 to obtain the spectral
function for each eigenvalue of ε̃ = t̂k + Σ̂ for each k.
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