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Abstract 
In this work, we demonstrate both theoretically and experimentally that non-periodic 

metallic gratings can become transparent for broadband terahertz waves. It is shown that 

broadband high transmission appears in aperiodic metallic gratings (including quasi-periodic 

and disordered ones), which originates from the non-resonant excitations in the grating 

system. Quasi-periodic and disordered metallic gratings effectively weaken and even 

eliminate Wood’s anomalies, which are the diffraction-related characters of periodic gratings.  

Consequently, both the transparence bandwidth and transmission efficiency are significantly 

increased due to the structural aperiodicity. And an optimal condition is also achieved for 

broadband high transparency in aperiodic metallic gratings. Experimental measurements at 

terahertz regime reasonably agree with both analytical analysis and numerical simulations.  

Furthermore, we show that for a specific light source, for example, a line source, a 

corresponding non-periodic transparent grating can be also designed. We expect that our 

findings can be applied for transparent conducting panels, perfect white-beam polarizers, 

antireflective conducting solar cells, and beyond. 
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I. Introduction 

The interaction between light and matter, which leads to various interesting phenomena, 

is usually strongly dependent on the structural symmetry and the ordering degree in the 

natural or artificial materials. Based on the existence or lack of long-range and short-rang 

order, materials (or structures) may possess periodic, quasi-periodic and random ordering, 

respectively. Specifically, periodic structures have both long-range and short-range order; 

quasiperiodic structures bear long-range order but short-range disorder; random structures  

own neither long-range nor short-range order. It is well known that periodicity in structures 

brings about various important effects, such as what Bloch theorem illustrates, in solid state 

physics.1 However, lack of periodicity may also create fascinating features on some occasions. 

For example, the extraordinary optical transmission (EOT) was initially discovered by 

Ebbesen and his coauthors2 in periodic subwavelength hole array perforated on silver film, 

but later on, Matsui et al.3 significantly presented enhanced transmission resonances of light 

through quasiperiodic arrays of subwavelength apertures and opened new avenues for 

optoelectronic devices.4-10 Actually in the past decades, quite a few quasi-periodic 

structures,11-13 such as structures with Cantor,13 Fibonacci,14-16 Thue-Morse,17-19 and 

double-period sequences,20,21 have received considerable attention. 

It is known that broadband EOT is usually difficult to be achieved in the 

metallic/dielectric nanostructures. Fortunately by introducing self-similarity in the structures, 

people have successfully realized broadband EOT in quasiperiodic (such as Penrose-tiling) 

subwavelength metal/dielectric systems3 and also in plasmonic fractals.22 Physically, 

broadband EOT in these systems originates from resonant excitations of surface plasmons 

(SPs)23 at multiple but discrete frequencies, which restrict the transparency bandwidth and 

transmission efficiency to some extents. Very recently, we have utilized periodic designing to 

successfully make structured metals transparent for broadband infrared and terahertz waves 

by relying on non-resonant excitation of spoof surface plasmons (SSPs) or SPs.24-26 Similar 

phenomenon are further found in optical frequencies, which is explained by the anomalous 

impedance-matching mechanism.27-30 However, the broadband transparence in periodic 

systems occurs for wavelengths larger than the first-order Wood’s anomaly.24,25 Around the 

Wood’s anomalies,31,32 the transmission of electromagnetic waves drops to zero because of 

the interference between the wavelets scattered by the periodic structures, which is 

essentially a diffraction effect of the periodic structures. To further broaden the transparency 

bandwidth and improve transmission efficiency of structured metals, we now try to exploit 
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aperiodic structures to break the transitional symmetry and decrease the degree of ordering in 

the system, then weaken or even eliminate Wood’s anomalies, thus achieving broadband high 

transparency based on non-resonant excitations in aperiodic metallic gratings. 

In this paper, we have theoretically and experimentally demonstrated that broadband 

high transmission appears in aperiodic metallic gratings (including quasi-periodic and 

disordered ones), which originates from the non-resonant excitations in the grating system. 

Quasi-periodic and disordered metallic gratings are capable to weaken and even eliminate 

Wood’s anomalies, which consequently increase the transparence bandwidth and improve 

transmission efficiency in the terahertz (THz) region. Furthermore, with specially designed 

non-periodic metallic structure (a metallic grating with a gradually varying air void filling 

ratio, for example), the system can become transparent for transverse-magnetic (TM) 

polarized line sources. The broadband transparence for structured metals may have numerous 

important applications such as conducting panels,7,33-35 white-beam polarizers,36 

anti-reflective solar cells,27,37 etc. 

The paper is organized as follows. After the introduction, in Sec. II, we theoretically 

investigate the broadband transparence in non-periodic metallic gratings based on detailed 

analytical solutions of Maxwell’s equations. The optimal incident angle for broadband 

transparency of metallic gratings is achieved. In Sec. III, by using the finite-difference 

time-domain (FDTD) method, we present the numerical calculations on the optical 

transmission through periodic, Fibonacci and disordered metallic gratings, respectively. And 

electrical field distributions prove that broadband transparency in the metallic gratings 

originate from non-resonant effect. In Sec. IV, we show experimental results for the 

broadband transparence of non-periodic metallic gratings. Furthermore, in Sec. V, a metallic 

grating with a gradually varying air void filling ratio is demonstrated to be transparent for 

line sources. Finally, we summarize our results in Sec. VI. 

 

II. Analytical analysis on broadband transparence in non-periodic metallic 

gratings 
We consider electromagnetic waves traveling through a non-periodic metallic grating 

based on Maxwell’s equations. Without loss of generality, we suppose that the non-periodic 

metallic grating is constructed by arranging units A and B according to a non-periodic 

sequence, such as the Fibonacci sequence or a disordered sequence, etc. As shown in Fig.1(a), 

Unit A has the overall unit size pA, metal strip width bA, and thickness h; the corresponding 
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parameters for Unit B are pB, bB, and thickness h, respectively.  When transverse-magnetic 

(TM) polarized waves are incident on the sample, we can divide the space adjacent to the 

sample into three regions: the incident region (I) above the sample, the sample region (II), 

and the emitting region (III) below the sample. To simplify the analysis, we defined the 

vertical positions of the top and bottom grating surfaces as z = 0 and z = h, respectively. We 

consider the regions I (z < 0) and III (z > h) as free space of air, and the metal is treated as an 

ideal metal. It follows that the y- component of magnetic field in regions I and III can be 

expressed as: 
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kx0 = k0 sinθ, k0 = 2π / λ, rm and tm are the mth reflection coefficient and transmission 

coefficient, respectively. When the wavelength is much larger than the sizes of the constituent 

units, high-order diffractive modes are evanescent and are neglected for simplicity. Thus, 

Equation (1) is simplified as: 
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with kz0 = (k0
2 –kx0

2)1/2 = k0 cosθ, kx0 = k0 sinθ, k0 = 2π / λ. 

In region II, since the metal can be taken as ideal metal in present THz regime, the 

magnetic field is zero except in the slits (pn < x < pn + an), where pn represents the 

corresponding starting coordinate of the nth slit, and an represents its width. The magnetic 

field in the nth slit (pn < x < pn + an) can be simply expressed as the zeroth-order rectangular 

waveguide mode: 

             cos[ ( )][ exp( ) exp( )],II
ny n n s n sH q x p M i z N i zβ β= − + −               (3) 

where βs is the wave number in the slits, q is eigen wave vector of waveguide, Mn and Nn are 

component coefficients, respectively. The relation between the x-component of the electric 

vector and the y-component of the magnetic vector is given as: 
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The boundary conditions of the electric fields at the two grating surfaces should be satisfied, 

i.e., 
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Meanwhile, the boundary conditions of the magnetic fields follow the relation 
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where W = ∑ aj represents the sum of the width of all slits, and D is the total width of the 

sample, respectively. 

By solving Eqs. (5) and (6), we can derive the reflection coefficient as: 
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Equation (7) indicates that if 
2 2 2 2
0 / 0,z sk D W β− =                            (8) 

the reflection coefficient reaches its minimum value r0 = 0. When the slit is vacuum, we have 

βs = k0. Therefore, once Eq. (8) is satisfied, zero reflection and high transmission are achieved. 

Furthermore, the optimal incident angle for high transmission follows 

( )arcos / .f W Dθ =                   (9) 

Note that Equation (9) for non-periodic gratings looks like the expression for periodic 

gratings24,25, but here in Eq. (9), air void filling ratio W / D is an average quantity 

representing the proportion of the empty space with respect to the volume of the entire 

non-periodic grating.  

 The above analysis indicates that broadband extraordinary transmission is an universal 

property of 1D metallic gratings under oblique incidence. The broadband transparence in 

aperiodic metal grating is not sensitive to the structural details of the grating when the 

incident wavelength is much larger than the sizes of the constituent units. Instead, it is 

primarily dominated by the averaged structural geometry, such as air void filling ratio. 

 

III. Numerical simulations on broadband transparence in metallic gratings 
Based on the finite-difference time-domain (FDTD) method,38 we have carried out the 

numerical calculations on the optical transmission through several metallic gratings with 
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periodic, Fibonacci and disordered sequence, respectively.  All these metallic gratings are 

constructed by units A and B.  In the calculations, Unit A has unit size pA = 300 μm, metal 

strip width bA = 210 μm and thickness h = 200 μm; while the corresponding parameters for 

Unit B are pB = 500 μm, bB = 350 μm, and h = 200 μm, respectively. The numerical 

calculations are implemented based on FDTD method with commercial software package 

Lumerical FDTD Solution 8.0.1. Metals in the THz region can be considered to be perfect 

electric conductors (PEC), and we set the relative permittivity of the metal to -1 and the 

conductivity to 1.6×107 (Ωm)-1 in the subsequent calculations, where  σ / ( ε0 ε ω ) >> 1 is 

satisfied for a good electric conductor (here σ and ε stand for the conductivity and the relative 

dielectric permittivity of the metal, respectively.). 

For the periodic metallic grating (S1) constructed by repeating Unit A, when the incident 

angle is θ = 0°, the high transmission peak (Fig. 1(b)) is caused by Fabry-Perot (FP) 

resonance occurring at λ = 2h / N + ΔN, where N > 0 is an integer and ΔN is the redshift of the 

peak.39-41 And, broadband high transmission caused by non-resonance effect occurs around 

the optimal incident angle of θf = 68° when the wavelength λ is larger than the first-order 

Wood’s anomaly of λWD1 = pA (1 + sinθ), as shown in Fig. 1(c). Meanwhile for the periodic 

grating (S2) constructed by repeating Unit B, similar FP resonance can be found at normal 

incidence (Fig. 1(d)), but FP resonance peak is partially truncated by the Wood’s anomalies. 

At oblique incidence, as shown in Figs. 1(c) and 1(e), both periodic gratings (S1 and S2) 

have the same optimal incident angle of θf = 68° because they have the same ratio (pi − bi) / pi 

= 30% (i = A, B).24,28 Note that in the short wavelength range, Wood’s anomalies appear due 

to the diffraction effects, which sharply interrupt the continuous high transmission spectra. 

Therefore, broadband transparence in the periodic metallic grating occurs only for 

wavelengths larger than the first-order Wood’s anomaly. However, this situation will be 

significantly changed for non-periodic metallic gratings as following. 

The Fibonacci metallic grating (S3) constructed by units A and B is produced by 

repeating the substitution rules11-13 A → AB and B → A. We keep the air void filling ratio at 

(pA(B) − bA(B)) / pA(B) = 30% for each unit. Here our Fibonacci structure (S3) contains 89 units. 

When the TM-polarized waves go through the Fibonacci grating at normal incidence, as 

shown in Fig. 1(f), the wavelength of high transmission caused by FP resonance occurs 

around the similar one as the periodic gratings (Figs. 1(b) and 1(d)) because these gratings 

here have the same thickness, and the FP resonance peaks are mainly determined by the 

sample thickness. However, at oblique incidence, it is shown that the broadband high 
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transmission caused by non-resonant excitations, which we will demonstrate later, still occurs 

around the optimal incident angle of θf = 68° as shown in Fig. 1(g). We can see that the 

Wood’s anomalies in Fig. 1(g) are significantly weakened by the structure changing from 

periodic to Fibonacci sequence. Note that the first-order Wood’s anomalies move to the 

wavelength λFib = pF (1 + sinθ ), where pF = (τ pA + pB ) / (1+ τ) with the golden ratio τ = 

( 5  + 1) / 2. Obviously λFib is between the first-order Wood’s anomalies λWD1 = pA (1+sinθ ) 

and λWD2 = pB (1+sinθ ) of the periodic gratings in Fig. 1(g). For the incident waves with λ > 

λFib, we can achieve broadband high transmission at an optimal incident angle θf. Therefore, 

quasiperiodicity in the Fibonacci structure has significantly suppressed Wood’s anomalies yet 

effectively kept non-resonant excitations that we will discuss later, which eventually lead to 

broadband high transmission in the Fibonacci metallic grating.   

Meanwhile, the disordered grating (S4) contains two basic units A and B just the same as 

Fibonacci grating but with a disordered sequence, where Unit A and Unit B are arranged 

randomly. Here our disordered structure (S4) contains totally 100 units. Figures 1(h) and 1(i) 

are the calculated transmission spectra of TM waves in disordered metallic grating at 

incidence angles of θ = 0° and θ = 68°, respectively. At normal incidence, the wavelength of 

high transmission caused by FP resonance occurs because the grating have the same 

thickness as those we mentioned above. While at oblique incidence of θf = 68°, it is clearly 

shown that the broadband high transmission caused by non-resonance effect exists as shown 

in Fig. 1(i). Different from the periodic and Fibonacci gratings, the Wood’s anomalies 

disappear in this disordered metallic grating. It indicates that the randomness in the structure 

has completely broken both long-range and short-range ordering, and manifested broadband 

high transmission of the TM-polarized waves in an extremely wide waveband.   

It is interesting to discuss the dependence of the optimal incident angle on air void 

filling ratio W / D.  As shown in Fig. 2, we illustrate the optimal incident angle as a function 

of air void filling ratio W / D in a series of disordered gratings, which are obtained by Eq. (9) 

and FDTD simulations, respectively. In each grating sample, we randomly generate the width 

of all the slits and strips but fix air void filling ratio, totally have for about 4cm-long sample 

with 100 metal strips. These two sets of results match well as shown in Fig. 2, particularly in 

the range with small W / D. As W / D becomes larger, the electromagnetic field in the slits 

cannot be simply expressed as the zeroth-order rectangular waveguide mode, instead, the 

high-order modes should be included in the analytical analysis. The high-order modes may 

reduce the wave number of the THz waves propagating through the slits, and then influence 
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the overall the reflection coefficient, which leads to larger θf predicted by Eq. (9) compared 

to FDTD simulations. 

For further understanding the physical mechanisms of the broadband high transmission, 

we have calculated the electric field distributions in periodic and non-periodic gratings at the 

high transmission wavelengths for both normal incidence and optimal angle incidence (as 

shown in Fig.3). For normal incidence, all the electric field (|E|2) distributions are very 

similar in periodic gratings (Figs. 3(a) and 3(c)), Fibonacci grating (Fig. 3(e)), and disordered 

grating (Fig. 3(g)). And we can find high |E|2 distribution at every corner of the strip, which 

means high transmission comes from resonant excitations, so they belong to narrowband 

effects. However, for optimal incidence at θf = 68°, all the |E|2 distributions in periodic 

gratings (Figs. 3(b) and 3(d)), Fibonacci grating (Fig. 3(f)), and disordered grating (Fig. 3(h)) 

show that no obvious enhancement of electric fields at two neighboring corners, thus the 

resonances do not happen in these systems.  These evidences indicate that the broadband 

high transmission is indeed caused by non-resonance effect in the metallic grating systems. 

 

IV. Experiments of the broadband high transmission in metallic gratings 

The above broadband high transmission in metallic gratings can be further 

experimentally demonstrated. In the experiments, we fabricated four types of gratings 

containing two periodic gratings (S1 and S2) and two non-periodic gratings (S3 and S4) just 

as discussion in Sec. III. During the fabrication process, the grating pattern was first designed 

via software (AutoCAD, 2007) and printed on both sides of a stainless steel plate via 

photochemical reaction. In order to construct the gratings, the uncoated parts of the stainless 

steel surfaces were then etched by chemicals on both sides. To protect the stainless steel 

grating and enhance the conductivity, all surfaces, including the slit walls, were coated with a 

nearly 3-μm-thick gold film by magnetron sputtering. The transmission spectra were 

measured by a THz real-time spectrometer (EKSPLA/THz, Lithuania). By scanning the delay 

line, we obtained the time-domain signal E(t) of the polychromatic THz pulse transmitted 

through the samples. Thereafter, the transmission spectrum was obtained from the Fourier 

transform of E(t) within the 0.3 – 1.5 THz frequency range and normalized with respect to 

the transmission spectrum of air. 

Figures 4 and 5 show the sample photographs and measured transmission spectra of four 

different metallic gratings, respectively. In the transmission spectra of four gratings at normal 

incidence, we can find FP resonance peaks occur around the same wavelength because 
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grating samples here have the same thickness. Specially, the FP resonance peak is partially 

truncated by the Wood’s anomaly in periodic gratings (as shown in Figs. 5(a) and 5(c)); but in 

non-periodic gratings (to see Figs. 5(e) and 5(g)), they become much weaker, which means 

that the Wood’s anomalies in non-periodic gratings are not obvious. 

While for optimal incident angle θf  = 68°, the periodic gratings have high transmission 

for long wavelength larger than that for the Wood’s anomalies, which is clear with very deep 

valley. For the grating S1 (as shown in Fig. 5(b)), the Wood’s anomaly is at λ = 575 μm 

where the transmittance is less than 30% and the width of valley band is more than 80 μm. 

For the grating S2 (as shown in Fig. 5(d)), the Wood’s anomaly is at λ = 950 μm where the 

transmittance is 27% and the band width of valley is more than 200 μm. So for further 

broadening the bandwidth of high transmission, we are restricted by the Wood’s anomalies in 

periodic gratings. However, once we break the periodic order, different results are presented 

in Fig. 5(f) (Fibonacci grating) and Fig. 5(h) (disordered grating). Two little valleys in the 

measured transmission spectra for Fibonacci grating (S3) at λ = 530 μm and λ = 735 μm and 

none for disordered grating (S4) when at the optimal incident angle of θf  = 68°. The 

transmittance of the non-periodic gratings remains very high, for wavelength from 875 μm to 

945 μm in Fibonacci case, for wavelength from 965 μm to 1000 μm and wavelength larger 

than 1430 μm in disordered case, their transmittance is more than 90% which is much higher 

than for periodic gratings.  

From above experimental measurements, we have demonstrated that metallic gratings 

can become transparent for extremely broadband THz waves under optical oblique incidence, 

which is found in periodic, quasi-periodic, and disordered gratings. The transparent 

bandwidth is broadened and transmission efficiency are improved in quasi-periodic and 

disordered systems due to the fact that Wood’s anomalies are weakened or eliminated by 

non-periodicity. In order to evaluate the feature of band high transmission in the grating, we 

define a broadband high transmission factor as 1 1 
σ δ

Δ = ⋅ , where 

max

min

2
max min( ) / ( )T T d

λ

λ
σ λ λ λ= − −∫  is the standard deviation which reflects the discrete 

degree of  transmission compared with the mean value T , and the quantity   
max

min

2
max min[(1 ) / ] / ( )T T d

λ

λ
δ λ λ λ= − −∫  describes the transmission deviation compared with 

perfect transmission. Obviously, higher factor Δ indicates a band-broader and higher 

transmission.  Based on experimental data shown in Fig. 5, we find that at the optimal 
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incident angle θf = 68°, ΔFib ≅  34.7 in Fibonacci grating S3, and Δdis ≅  25.5 in disordered 

grating S4, which are much larger than those in periodic gratings as ΔA ≅  18.6 in S1 and ΔB 

≅  2.9 in S2. All these experimental factors reasonable agree with the calculated ones (Note: 

ΔA ≅  10.6, ΔB ≅  4.8, ΔFib ≅  22.9, and Δdis ≅  21.0 from the data in Fig. 1).  Therefore, 

compared with periodic cases, both Fibonacci and disordered gratings achieve much better 

feature on broadband high transmission. 

Actually we can prove the phenomena on broadband high transmission more clearly in 

the angular transmission spectra for a metallic grating with the tenth-generation Fibonacci 

and disordered sequence given in Fig. 6. It is obvious that the Wood’s anomalies are 

weakened but still exist for Fibonacci grating (Figs. 6(a) and 6(b)), but they nearly disappear 

for the disordered metallic grating (Figs. 6(c) and 6(d)) because of long-range disorder. Here, 

we have successfully broadened the high transmission band by making the units of the 

gratings disordered, so as to achieve maximum breaking of the Wood’s anomalies which 

affect the bandwidth. Further studies can be carried on to find a unique aperiodic metallic 

structure with maximum feature of band high transmission by optimizing both the geometry 

of units and the ordering degree of the structure.  

 

V. Design a specific structured metallic grating transparent for a line 

source 
It is known that the THz waves, which cover the frequencies from 1011 to 1013 Hz, can 

bridge the gap between the infrared and the microwaves in the electromagnetic spectrum. The 

THz technology42-44 has been applied in information and communications, imaging and 

sensing, biology and medical sciences, homeland security, and so on.  In order to contribute 

to these applications, one of the key points is to manipulate the transmission of THz waves 

efficiently and actively. In recent years many novel electromagnetic phenomena have been 

found in terahertz region45-47, such as extraordinary optical transmission (EOT) through 

structured metallic films and electromagnetically induced transparency (EIT) using 

metamaterial. Most of those studies have focused on the plane waves, however, in practical 

applications we may have different kinds of light sources, such as point sources and line 

sources. Our following simulations show that extraordinary transmission of light from a line 

source is also insensitive to the grating periodicity, which makes it possible to design specific 

structured metallic gratings to achieve broadband transparence for specific light sources. 
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As an example, we design a metallic grating with a gradually variation of air void filling 

ratio to achieve transparency of TM-polarized light from a line source along the Y-axis. As 

illustrated in Fig. 7(a), the structure consists of a large number of units, which have the 

identical width p along the X-axis. If we define the unit exactly below the line source as the 

zeroth order, the air void filling ratio of the nth unit is determined by the local incident angle 

φ according to tn = cosφn = d0 / (d0
2 + n2p2 )1/2, where d0 is the distance between the line 

source and the grating. When the incident angle φ increases, the ratio tn decreases. Therefore, 

this structure, which is specifically designed for a line source, has a gradually varying air 

void filling ratio. Figure 7(b) shows the simulated transmission spectra for several kinds of 

metallic gratings using TM-polarized line sources. In our simulation, the grating has the 

following parameters: p = 0.4 mm, d0 = 2mm, width of 3.2 cm, and thickness of 0.2 mm. The 

transmission here is normalized to the intensity collected by the monitor in air. Obviously, 

our designed metallic grating (black line in Fig. 7(b)) can achieve more than 90% 

transmission for a line source. Interestingly, this high transmission is comparable to the 

results of the periodic grating for plane waves. In comparison, periodic gratings have much 

lower transmission for line sources. For example, the periodic grating with a constant ratio of 

air area of 30% has a transmission value of about 40% (red curve in Fig. 7(b)) under the 

incidence of a line source with d0 = 2mm, and the periodic grating with a 40% air void filling 

ratio has around 60% maximum transmission (blue curve in Fig. 7(b)) even for long 

wavelengths. These results suggest that it is possible to make structured metallic gratings 

transparent for various kinds of light sources following the mechanism discussed in Sec. II. 

 

VI. Summary 
We have theoretically and experimentally demonstrated broadband high transmission of 

THz waves in quasi-periodic and disordered metallic gratings, which originates from the 

non-resonant excitations in the grating system. Quasi-periodic and disordered metallic 

gratings effectively weaken and even eliminate Wood’s anomalies. Consequently, both the 

transparence bandwidth and transmission efficiency are significantly increased due to the 

structural aperiodicity. We also derive an optimal condition is also achieved for broadband 

high transparency in aperiodic metallic gratings. Experimental measurements at terahertz 

regime reasonably agree with both analytical analysis and numerical simulations.  

Furthermore, we show that for a specific light source, for example, a line source, a 

corresponding non-periodic transparent grating can be also designed. We expect that these 
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results would be of potential applications in many fields such as transparent conducting 

panels and stealth objects. In addition, the observed phenomena may also shed new light on 

the development of broadband metamaterials, including sonic artificial materials. 
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FIG. 1. (Color online). (a) Schematic of metallic grating with non-periodic sequence 

(Fibonacci sequence, disordered sequence, etc.) constructed by units A and B. Calculated 

transmission spectra for TM polarization of structures: a periodic metallic grating (S1) 

constructed by unit A when incident angle (b) θ = 0° and (c) θ = 68°; a periodic metallic 

grating (S2) constructed by unit B when incident angle (d) θ = 0° and (e) θ = 68°; a metallic 

grating with the tenth-generation Fibonacci sequence (S3) constructed by units A and B when 

incident angle (f) θ = 0° and (g) θ = 68°; a metallic grating with disordered sequence (S4) 

constructed by units A and B when incident angle (h) θ = 0° and (i) θ = 68°. Unit sizes of 

units A and B are pA = 300 μm and pB = 500 μm, strip widths of units A and B are bA = 210 

μm and bB = 350 μm, the thickness of all gratings are h = 200 μm. 
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FIG. 2. (Color online). Dependence of the optimal incident angle on the average air void 

filling ratio W / D obtained by θf = arcos (W / D) (black line) and FDTD simulation (red dot). 

In the simulation, the width of all slits and strips are generated randomly, but the average air 

void filling ratio W / D is fixed for each simulation sample. Each sample of our simulation is 

about 4 cm in width and contains about 100 metal strips. 
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FIG. 3. (Color online). Calculated electric field (|E|2) distributions of a periodic metallic 

grating constructed by unit A: (a) θ = 0° at λ = 525 μm; (b) θ = 68° at λ = 1200 μm. 

Calculated |E|2 distributions of a periodic metallic grating constructed by unit B: (c) θ = 0° at 

λ = 635 μm; (d) θ = 68° at λ = 1200 μm. Calculated |E|2 distributions of a metallic grating 

with the tenth-generation Fibonacci sequence constructed by units A and B: (e) θ = 0° at λ = 

550 μm; (f) θ = 68° at λ = 1200 μm. Calculated |E|2 distributions of a metallic grating with 

disordered sequence constructed by units A and B: (g) θ = 0° at λ = 550 μm; (h) θ = 68° at λ = 

1200 μm. Unit sizes of units A and B are pA = 300 μm and pB = 500 μm, strip widths of units 

A and B are bA = 210 μm and bB = 350 μm, the thickness of all gratings are h = 200 μm. 
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FIG. 4. (Color online). (a) Photograph of periodic metallic grating (S1) constructed by unit A. 

(b) Photograph of periodic metallic grating (S2) constructed by unit B. (c) Photograph of a 

metallic grating with the tenth-generation Fibonacci sequence (S3) constructed by units A and 

B. (d) Photograph of a metallic grating with disordered sequence (S4) constructed by units A 

and B. The scale bar is 1 mm for all the four photographs. Unit sizes of units A and B are pA = 

300 μm and pB = 500 μm, strip widths of units A and B are bA = 210 μm and bB = 350 μm, the 

thickness of all gratings are h = 200 μm. 
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FIG. 5. (Color online). Experimentally measured transmission spectra of a periodic metallic 

grating (S1) constructed by unit A when incident angle (a) θ = 0° and (b) θ = 68°. 

Experimentally measured transmission spectra of a periodic metallic grating (S2) constructed 

by unit B when incident angle (c) θ = 0° and (d) θ = 68°. Experimentally measured 

transmission spectra of a metallic grating with the tenth-generation Fibonacci sequence (S3) 

constructed by units A and B when incident angle (e) θ = 0° and (f) θ = 68°. Experimentally 

measured transmission spectra of a metallic grating with disordered sequence (S4) 

constructed by units A and B when incident angle (g) θ = 0° and (h) θ = 68°. Experimentally 

measured transmission spectra are carried out at incident angle θ = 0° and θ = 68° for TM 

polarization. Unit sizes of units A and B are pA = 300 μm and pB = 500 μm, strip widths of 

units A and B are bA = 210 μm and bB = 350 μm, the thickness of all gratings are h = 200 μm. 
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FIG. 6. (Color online). (a) Calculated and (b) experimentally measured angular transmission 

spectra for a metallic grating with the tenth-generation Fibonacci sequence constructed by 

units A and B for TM polarization. (c) Calculated and (d) experimentally measured angular 

transmission spectra for a metallic grating with disordered sequence constructed by units A 

and B for TM polarization. The color bars show the transmission intensity. The white dashed 

lines represent the incident angle with maximum transmission. Unit sizes of units A and B are 

pA = 300 μm and pB = 500 μm, strip widths of units A and B are bA = 210 μm and bB = 350 

μm, the thickness of all gratings are h = 200 μm. 
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FIG. 7. (Color online). (a) Schematic of the specially designed grating for the TM polarized 

line source. The structure consists of units along the X-axis, which have a length of p = 0.4 

mm and a thickness of h = 200 μm. The distance between the line source and sample is d0 = 2 

mm. The air void filling ratio of each unit is decided according to the incident angle φ. (b) 

Calculated transmission spectra for different metallic gratings for the TM polarized line 

source. The black line is the transmission spectra of the specially designed grating for the TM 

polarized line source. The red line and blue line show the periodic grating with 30% and 40% 

air void filling ratio, respectively. 


