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While the integer quantum Hall effect of composite fermions manifests as the prominent fractional
quantum Hall effect (FQHE) of electrons, the FQHE of composite fermions produces further, more
delicate states, arising from a weak residual interaction between composite fermions. We study the
spin phase diagram of these states, motivated by the recent experimental observation by Liu et
al. [Phys. Rev. Lett. 113, 246803 (2014) and private communication] of several spin-polarization
transitions at 4/5, 5/7, 6/5, 9/7, 7/9, 8/11 and 10/13 in GaAs systems. We show that the FQHE of
composite fermions is much more prevalent in multicomponent systems, and consider the feasibility
of such states for systems with N components for an SU(N ) symmetric interaction. Our results
apply to GaAs quantum wells, wherein electrons have two components, to AlAs quantum wells
and graphene, wherein electrons have four components (two spins and two valleys), and to an H-
terminated Si(111) surface, which can have six components. The aim of this article is to provide
a fairly comprehensive list of possible incompressible fractional quantum Hall states of composite
fermions, their SU(N ) spin content, their energies, and their phase diagram as a function of the
generalized “Zeeman” energy. We obtain results at three levels of approximation: from ground
state wave functions of the composite fermion theory, from composite fermion diagonalization, and,
whenever possible, from exact diagonalization. Effects of finite quantum well thickness and Landau
level mixing are neglected in this study. We compare our theoretical results with the experiments
of Liu et al. [Phys. Rev. Lett. 113, 246803 (2014) and private communication] as well as of Yeh et
al. [Phys. Rev. Lett. 82, 592 (1999)] for a two component system.

PACS numbers: 73.43.Cd, 71.10.Pm

I. INTRODUCTION

The fractional quantum Hall effect1 (FQHE) is one
of the most remarkable phenomena in condensed matter
physics arising from interelectron interactions. It refers
to the observation, in two dimensional electron systems
exposed to a strong magnetic field, of precisely quantized
plateaus in the Hall resistance at RH = h/fe2, and asso-
ciated minima in the longitudinal resistance at filling fac-
tors ν = f . A large number of fractions have so far been
observed: ∼70 in the lowest Landau level (LL) and ∼15
in the second LL. The number of FQHE states is even
larger, because FQHE states with different spin polariza-
tions have been seen at many of these fractions2–9. In re-
cent years, FQHE has been observed in systems with val-
ley degeneracies, such as graphene10–15, AlAs quantum
wells16,17, and an H-terminated Si(111) surface18, further
adding to the richness of the phenomenon. These systems
allow, in principle, the possibility of FQHE states that
involve more than two components. [We note that four
component physics can also be accessed in wide quantum
wells of GaAs with high electron densities, where LLs be-
longing to different subbands can cross one another. This
allows formation of four-component (two subbands and
two spins) FQHE states, as reported in Ref. 19 However,
these systems do not satisfy the SU(N ) symmetry be-

cause the interaction is not subband index independent.
Therefore, our results below, which assume SU(N ) sym-
metry, are not directly applicable to these experiments.]

The prominent features of the FQHE are understood
in terms of weakly interacting composite fermions20–34.
Composite fermions (CFs) are topological bound states
of electrons and an even number of quantized vortices.
They experience a reduced effective magnetic field, and
form Landau-like levels called Λ levels (ΛLs). Composite
fermions carrying 2p vortices are denoted 2pCFs. The
integer quantum Hall effect (IQHE) of weakly interact-
ing composite fermions manifests as FQHE at fractions
of the form ν = n/(2pn ± 1) and their hole conjugates,
which are the prominently observed fractions. The CF
theory also provides an account of the spin physics of
the FQHE. Specifically, it predicts the possible spin po-
larizations at each fraction, and also the critical Zeeman
energies where transitions between differently spin po-
larized states are expected to occur35–40. The measured
spin polarizations and the phase transitions as a function
of the Zeeman energy2–8,13,14 or the valley splitting16,17

are in satisfactory agreement with theory. The values
of critical Zeeman energies depend on very small energy
differences between the competing states, and thus serve
as a sensitive test of the quantitative accuracy of the CF
theory. The IQHE states of composite fermions for an
SU(4) system have also also been studied41–45.
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This article deals with the physics beyond the IQHE
of composite fermions, namely the FQHE of composite
fermions, which arises as a result of the weak residual
interaction between composite fermions. The CF FQHE
states are much more delicate, and more readily obscured
by disorder and temperature, than the IQHE states of
composite fermions. This is analogous to the situation for
electrons, where only the IQHE states would be seen for
non-interacting electrons, but interelectron interactions
cause further structure that appears in the form of the
FQHE. Many CF FQHE states in the vicinity of ν = 1/3,
e.g. at 4/11, 5/13, were observed by Pan et al.46. These
motivated theoretical studies of FQHE of fully spin po-
larized composite fermions47,48 as well as partially spin
polarized FQHE of composite fermions49–51. The spin
polarization of these states has not been measured ex-
perimentally so far, however.

The primary motivation for our theoretical study pre-
sented in this paper comes from the recent experiment
of Liu et al.,9 who have observed spin-polarization tran-
sitions for several CF FQHE states in the filling factor
region 2/3 < ν < 4/3, specifically for the FQHE states
at 4/5, 5/7, 6/5, 9/7, 7/9, 8/11 and 10/13, as a function
of the Zeeman energy. (It is worth clarifying a point here
taking the example of ν = 4/5. The fully spin polarized
FQHE state at this fraction can be understood either as
the ν∗ = 4/3 FQHE state of 2CFs or as the ν∗ = 1 IQHE
state of 4CFs made of holes in the lowest LL (LLL) –
these interpretations are equivalent, in the sense that the
states occur at the same quantum numbers and the actual
wave functions obtained from the two interpretations are
practically identical. However, the non-fully spin polar-
ized states at ν = 4/5 can only be understood in term of
ν∗ = 4/3 FQHE of 2CFs. This is discussed in more detail
in Ref. 9 and below.) With this understanding, certain
spin polarization transitions observed previously by Yeh
et al.8, whose origin was not understood at the time,
can also be explained in terms of FQHE of composite
fermions. Given ongoing improvements in experimental
conditions as well as availability of new two-dimensional
electron systems that exhibit FQHE, we have undertaken
an exhaustive study of FQHE of composite fermions in
multi-component systems.

Specifically, this article reports on:

1. A fairly exhaustive enumeration of FQHE states of
composite fermions for multicomponent systems;

2. Thermodynamic energies of many prominent
states; and

3. Critical values of the “Zeeman” energies where
transitions between different states are predicted
to take place (i.e. the phase diagram of the CF
FQHE states).

(The term Zeeman energy is used in a general sense here
as an energy that introduces a preference for one of the
components.) We have also included, for completeness,
some previously known results.

Interestingly, the FQHE of composite fermions is more
prevalent for multicomponent systems, for reasons that
can be understood as follows. For a single component
system, the FQHE of composite fermions occurs, typi-
cally, in the second or higher Λ levels, where very few
states can be stabilized. (The FQHE of 2CFs in the low-
est Λ level can generally be understood as IQHE of 4CFs.)
With multiple components, it becomes possible to con-
sider states in which 2CFs form an IQHE state in one or
more components, but a FQHE state in the lowest ΛL in
one of the components; such a state does not lend itself
to an interpretation as an IQHE of composite fermions.
Many FQHE states of composite fermions thus become
available in multicomponent systems.

The spin physics of FQHE state can be studied most
conveniently through variations in the Zeeman energy,
which causes transitions between these states. Such spin
transitions between the CF-FQHE states provide an ex-
tremely rigorous test of our theoretical understanding of
the FQHE, and in particular, of the residual interaction
between composite fermions. At a qualitative level, such
experiments can confirm if the number of available states
is consistent with that expected from the CF theory. Fur-
ther, the actual values of the critical Zeeman energies
where spin transitions occur depend sensitively on the
very small energy differences between the two competing
states with different spin polarizations, and thus consti-
tute a quantitative test of the theory. In many cases only
a small fraction of composite fermions flip their spins at
the transition, which requires multiplying the energy dif-
ference by a large integer (e.g. 4 for the transition from
partially polarized to a fully polarized state at ν = 4/11)
to obtain the critical Zeeman energy, which further en-
hances the impact of any error in the theoretical energy
difference.

We make many simplifying assumptions in our study.
We assume an SU(N ) symmetric interaction. A Zeeman-
type term can be added straightforwardly. Our consid-
erations allow for a spontaneous breaking of the SU(N )
symmetry, but we do not consider an interaction that
explicitly breaks the SU(N ) symmetry. We have not in-
cluded finite width, LL mixing or disorder, mainly be-
cause of the large parameter space. It has been shown
elsewhere that these make significant corrections to the
critical Zeeman energies52, because the critical Zeeman
energies depend sensitively on the rather small energy
differences between various incompressible states. These
corrections should be considered for specific experimen-
tal parameters whenever a detailed comparison is sought,
but our results at least enumerate the various possible
states and an estimate for where transitions between
them are expected.

We obtain results from the CF theory at two levels
of approximation. In the zeroth order approximation,
we construct a single wave function for the ground state,
which we refer to as the “CF wave function,” and evaluate
its average Coulomb energy. In a more accurate approx-
imation, we perform diagonalization within a small basis
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of CF basis functions to obtain the ground state energy;
this is referred to as “CF diagonalization.” These meth-
ods are described in somewhat greater detail below. We
have also given results from exact diagonalization studies
wherever possible. A comparison between the CF and the
exact results also gives an idea of the reliability of the pre-
dictions of the CF theory. For many fractions, the wave
function from the CF theory is very difficult to evaluate
for technical reasons, because of the need for reverse flux
attachment (for which we do not have an equally accu-
rate method). In such cases, we draw our quantitative
conclusions primarily from exact diagonalization studies
(these studies do confirm the spin and the angular mo-
mentum quantum numbers of the incompressible FQHE
states predicted by the CF theory).

For single component FQHE, particle-hole symmetry
relates ν to 1−ν. For an N component system, particle-
hole symmetry relates ν to N −ν. We therefore only give
results for fractions up to N/2. It was predicted that no
spin transitions occur38 (and none have been seen) at
fractions of the form n/(4n+ 1) =1/5, 2/9, etc., but we
see below that spin transitions are possible (and some
have been seen) for fractions of the form 4/5, 5/9 etc.
There is no contradiction, because the states at n/(4n±
1) and 1 − n/(4n ± 1) are not related by particle-hole
symmetry unless they are both fully spin polarized.

We compare our results to available experiments. Spin
transitions for CF FQHE states at ν = 4/11, 5/1346

have not yet been observed directly, but indirect informa-
tion on that issue is available from Raman experiments53

which show a change in the character of the excitations
that can be associated with a change in the spin polar-
ization of the ground state. We compare our theoretical
results with the spin polarization transitions observed at
4/5, 5/7, 6/5, 9/7, 7/9, 8/11 and 10/138,9,54 in Section
VIII, and find that the measured critical Zeeman energies
are in reasonable agreement with those predicted theo-
retically in most cases. A remaining puzzle is the experi-
mental evidence9 for two transitions at 5/7 and 9/7, even
though only a single transition is expected in the simplest
theoretical model in which one allows for FQHE only in a
single component of composite fermions. (States in which
FQHE occurs in two or more components of composite
fermions are expected to be weaker and are not consid-
ered in this paper; the only “double” CF FQHE states
considered are 5/13 and 5/7, discussed in the Appendix.)

We have not considered excitations in this work. As
seen in previous studies, an enormously rich structure is
obtained when excitations of composite fermions across
different components is considered53,55–60. We will only
be interested in the nature of the ground state and the
phase diagram as a function of parameters.

The plan of our paper is as follows. In Section II, we
list the large number of incompressible states predicted
by the CF theory. We carefully define a unique nota-
tion of possible FQHE states of composite fermions, and
give the corresponding wave function. All of the states
constructed here satisfy the Fock conditions61. Section

III lists all of the states that have been studied previ-
ously, along with the original references. Sections IV and
V give an outline of the methods of exact and CF di-
agonalization, respectively, which have been used exten-
sively in the our calculations, followed by Sec. VI that
lists some technical details. Section VII discusses many
specific states, listing all possible “spin” polarizations at
numerous fractions. Section VIII mentions the experi-
mental status of many of these states, and we conclude
in Section IX.

For convenience of the readers who are not interested
in the details of the calculations but only in the final re-
sults, we note that the theoretical phase diagrams for the
FQHE of two-component composite fermions are shown
below in Fig. 4. Figure 5 contains a summary of the ex-
perimentally observed transitions for various CF FQHE
states, along with the theoretical predictions at zero
width. These figures summarize some of the most im-
portant results obtained in our article for two component
systems. We note that some of these results are slightly
different from those reported in the earlier literature us-
ing the same calculations; the difference arises because
we extrapolate the energies in this article after perform-
ing the so-called density correction to the finite system
energies (see Sec. VI), which we believe provides more
accurate numbers.

II. FRACTIONAL QUANTUM HALL EFFECT
OF COMPOSITE FERMIONS

We illustrate the construction of various possible
FQHE states of composite fermions in this section. We
find it convenient to use two notations to denote a FQHE
state. The notation

(ν1, ν2, · · · νN ) (1)

with

ν =

N∑
α=1

να (2)

displays the occupation of each spin component, where
the word “spin” is used in a general sense; only the
non-zero occupations will be shown, and the convention
ν1 ≥ ν2 ≥ · · · νN will be assumed. While this is a con-
venient notation for reading off the “spin” polarization
(denoted by γ), it is important to remember that this
notation does not specify the actual state. In particular,
one must take care to remember that this is in general
not a product state of the type Ψν1 ⊗ Ψν2 ⊗ · · · ⊗ ΨνN ;
such a state is, in general, not a valid state for a sys-
tem with SU(N ) symmetry because it does not satisfy
the so-called Fock conditions. The actual state is much
more complex, and, in some cases, more than one possi-
ble state can produce the same spin content at a given
filling factor. For that reason, we introduce another nota-
tion, defined below, which will precisely specify the CF st
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ructure of the state. We will see below how to combine
IQHE and FQHE states of composite fermions in such
a manner that the resulting wave function has proper
SU(N ) symmetry and consequently conforms to the Fock
conditions.

A. IQHE of composite fermions: Λ levels inside
Landau levels

The simplest states are IQHE states of composite
fermions of the form

[n1, n2, n3, · · · ]±2p ↔
(n1
n
ν,
n2
n
ν, · · ·

)
(3)

at the Jain fractions

ν =
n

2pn± 1
, n ≡

∑
α

nα (4)

which are obtained by attaching 2p vortices to each elec-
tron in the IQHE states [n1, n2, n3, · · · ]. The + (−) sign
denotes vortex attachment in the same (opposite) direc-
tion as that of the external magnetic field and this pro-
cess is termed “parallel flux attachment” (“reverse flux
attachment”). We assume n1 ≥ n2 ≥ · · · , which can
always be arranged by a relabeling of the component in-
dex. The Jain wave function for this N -component state
of N electrons is given by

Ψ[n1,n2,n3,··· ]2p = J2p−2PLLL

N∏
α=1

ΦαnαJ
2 (5)

and

Ψ[n1,n2,n3,··· ]2p = J2p−2PLLL

N∏
α=1

[
Φαnα

]∗
J2, (6)

where

J =
∏

1≤j<k≤N

(zj − zk), (7)

Φαnα is the Slater determinant of nα filled LLs for elec-

trons in the αth sector, and zj is the coordinate of the
jth electron. These are straightforward generalizations of
the Jain wave functions for the single component FQHE
states20. We use the Jain-Kamilla method62,63 for per-
forming the LLL projection.

The validity of these wave functions has been ascer-
tained by comparison to exact diagonalization studies
which can produce reliable numbers for certain simple
FQHE states. For parallel flux-attached Jain states, the
above wave functions produce critical Zeeman energies
that are accurate at the level of 10-15%. For the reversed-
flux-attached states, on the other hand, the above wave
functions correctly predict the energy ordering of the
states with different spin polarization, but produce crit-
ical Zeeman energies that can be off by approximately a

factor of two from the exact value. In the treatment be-
low of the states that involve reverse flux attachment at
any stage of their construction, we use either exact diag-
onalization (which can be performed for only very small
systems) or the Jain-Kamilla projection; one should keep
in mind that our conclusions for these states are quantita-
tively less reliable than for the states that do not involve
reverse-flux attachment.

[It is noted that the above-mentioned deviation for
reverse-flux-attached states is not a deficiency of the CF
theory, but of the projection method. One can define a
“hard-core projection”35 as

Ψ[n1,n2,n3,··· ]2p = J2p−1PLLL

N∏
α=1

[
Φαnα

]∗
J (8)

Here the external factor J2p−1 guarantees that the wave
function vanishes when any two electrons coincide in-
dependent of their spin even for 2p = 2, unlike the
corresponding wave function in Eq. 6. The hard-core
projection can be explicitly evaluated for small systems
and has been found to produce extremely accurate wave
functions35. Unfortunately, no methods currently exist
for dealing with it for large systems.]

The above wave functions reduce to certain previous
wave functions for the special cases when they involve
only nj = 1 and do not require any lowest LL projection.

The single component wave function [1]2p ↔
(

1
2p+1

)
re-

produces the Laughlin wave function64. The multicom-
ponent wave functions [1, 1, · · · ]2p were earlier proposed
by Halperin65 for multicomponent systems.

As an example, at 4/9, we can construct the states

[1, 1, 1, 1]2 ↔
(

1

9
,

1

9
,

1

9
,

1

9

)

[2, 1, 1]2 ↔
(

2

9
,

1

9
,

1

9

)

[3, 1]2 ↔
(

3

9
,

1

9

)

[2, 2]2 ↔
(

2

9
,

2

9

)

[4]2 ↔
(

4

9

)
which involve, respectively, 4, 3, 2, 2, and 1 components.
In GaAs only two spin components are available, and
hence only the last three states are relevant. In graphene
and AlAs quantum wells four components (two spins and
two valleys) are available and thus all five states may be
relevant (depending on parameters).
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A straightforward generalization of the above states is
given by

[{nα}, [{mβ}]±2q] (9)

where some filled LLs have been added in certain com-
ponents. In other words, only the partially filled LLs in
some of the components split into Λ levels. These are
essentially the same as the IQHE of composite fermions.

Another straightforward generalization is particle-hole
conjugation. We denote the hole conjugate of a state [· · · ]
by [· · · ]. For example, a two-component state with filling
factor (ν↑, ν↓) transforms into its particle-hole conjugate

state (ν↑, ν↓) ≡ (1 − ν↑, 1 − ν↓). This allows us to write
down wave functions at filling factors (1−ν↑, 1−ν↓) from
the corresponding state at (ν↑, ν↓). The generalization
to states involving an arbitrary number of components is
straightforward.

B. FQHE of composite fermions: Λ levels within Λ
levels

We next consider the FQHE states of composite
fermions, which have the form

[{nα}, [{mβ}]±2q]±2p (10)

Here, Λ levels split into further Λ levels in some compo-
nents. These CF-FQHE states are expected to be much
less robust, as measured by the excitation gaps, than the
IQHE states of composite fermions considered in the pre-
vious subsection. The filling factor of the resulting state
is given by

ν =
n+ m

2qm±1

2p(n+ m
2qm±1 )± 1

(11)

where n =
∑
α nα and m =

∑
βmβ . The wave functions

for N electrons is given by

Ψ[{nα},[{mβ}]±2q ]2p = PLLL

∏
α

Φαnαψ[{mβ}]±2q
J2p (12)

Ψ[{nα},[{mβ}]±2q ]−2p
= PLLL

[∏
α

Φαnαψ[{mβ}]±2q

]∗
J2p

(13)
(The Jastrow factor in the wave function ψ[{mβ}]±2q

only
involves electrons in the components labeled by β.) In
addition to n1 ≥ n2 · · · we also assume m1 ≥ m2 · · ·
without any loss of generality. We do not consider states
of the form [[{mβ}]±2q]±2p because these are same as
the states [{mβ}]±2q±2p. For an SU(4) system, no more
than four integers may be used. To illustrate the states
corresponding to the notation used here we show some
examples in Figure 1.

FIG. 1: (color online) Some examples to illustrate the nota-
tion used in Eq. 10. The green solid dots represent electrons
while the red solid dots with 2p arrows are composite fermion
particles carrying 2p vortices. The overline notation is used to
indicate a particle-hole transformation while [ ]2p and [ ]−2p

denote composite fermionization with parallel and reverse flux
attachment, respectively. Note that even though the two fully
polarized ν = 4/5 states shown above, namely [1, [1]2]−2 and

[1]4, look different, they represent the same state, as explained
in the text.

C. Moore-Read Pfaffian and Wójs-Yi-Quinn
unconventional states

So far we have constructed states that ultimately arise
from IQHE-like states of composite fermions. Moore and
Read66 have proposed that composite fermions can also
form a paired Pfaffian (Pf) state at ν = 1/2, which will
be referred to as 1/2Pf below. Its hole partner, namely
the anti-Pfaffian (APf)67,68 wave function will be referred
to as

1/2Pf ≡ 1/2APf .

Wójs, Yi and Quinn (WYQ) proposed47 a state at 1/3
which is topologically distinct from [1]2; this will be re-
ferred to as 1/3WYQ and its hole partner as

1/3WYQ ≡ 2/3WYQ.
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These allow construction of many additional FQHE
states of composite fermions, which have the form:

[{nα}, 1/2Pf ]±2p, [{nα}, 1/2APf ]±2p, (14)

[n1 + 1/2Pf , n2, · · · ]±2p, [n1 + 1/2APf , n2, · · · ]±2p, (15)

[{nα}, 1/3WYQ]±2p, [{nα}, 2/3WYQ]±2p, (16)

and

[n1 + 1/3WYQ, n2, · · · ]±2p, [n1 + 2/3WYQ, n2, · · · ]±2p,
(17)

with the integers chosen so that the final wave functions
satisfies Fock conditions (next subsection).

D. Fock conditions

The energy spectrum for a given system consists of de-
generate SU(N ) multiplets. It is convenient to work with
a maximal weight state of a given multiplet, from which
all other states of the multiplet can be constructed by re-
peated applications of appropriate ladder operators. For
a two component system, the maximal weight state has
Sz = S, the ladder operator is the spin lowering opera-
tor, and the degeneracy is 2S + 1. (Because we are only
interested in the energy, we do not need to explicitly con-
struct other states of a multiplet; it suffices to know that
they are all degenerate due to the SU(N ) symmetry.)
The maximal weight states satisfy the generalized Fock
condition,61 i.e., they vanish when we further attempt to
antisymmetrize an electron in the αth component with
respect to those in the β < α component. All wave func-
tions constructed above satisfy the generalized Fock con-
dition. This can be seen as follows. For the states given
in Eq. 3, the Fock condition is obviously satisfied because
every single particle orbital occupied in α is also occu-
pied in β (with β < α). This property is preserved under
composite fermionization, because the Jastrow factor is
symmetric under the exchange of all coordinates. For
the more complicated states given in Eq. 9, every single
particle orbital occupied in the m-sector is necessarily oc-
cupied in the n sectors. Again, composite fermionization
of the wave function to produce states in Eq. 10 preserves
this property. We do not consider states of the type

[[m1,m2]±2p, [m3,m4]±2q]

as these do not satisfy the Fock condition, and do not
possess proper SU(4) quantum numbers. Such states may
become relevant when the SU(4) symmetry is broken, but
we will not consider that case here. For further details,
the reader is referred to the discussions in Refs. 23,41.

E. Further generalization: “Double” FQHE of
composite fermions

One may also construct states which involve at least
two fractional fillings of composite fermions. In general,
a state of the form

[{nα}2q, [{mβ}]±2q′ ]2p (18)

does not satisfy Fock conditions, because an occupied
state in a given component index is not necessarily oc-
cupied in all previous component indices. However, one
may construct states of the type[

1 +
n

2qn± 1
, 1, [m1,m2]2q′

]
2p

(19)

where in the first component the lowest LL is full and
a FQHE state is created in the second LL. Such states
satisfy Fock conditions, and some examples will be con-
sidered below.

III. CONNECTION TO PREVIOUS STATES

The IQHE states of composite fermions for single and
multi-component systems have been considered previ-
ously. For a single component, the state [1]2p at ν =
1/(2p + 1) is the Laughlin state64 and the state [n]±2p
at ν = n/(2pn ± 1) are the Jain states20. The two
component CF-IQHE states of the type [n1, n2]2p and
[n1, n2]−2p have been considered by Wu et al.35, Park and
Jain36,38,39, Wójs et al.51 and Davenport and Simon40.
Multicomponent states of the type [n1, n2, n3, n4]2 were
studied by Tőke and Jain41,42,69 in the context of
graphene. These are all IQHE states of composite
fermions, in that the CF filling in each sector is an inte-
ger. We will not consider these states in this article.

Many FQHE states of composite fermions have also
been considered previously. The states of the form
[1, 1, · · · , [1, 1, · · · ]2p]2q are the Halperin states65 that sat-
isfy the Fock condition; these were introduced as multi-
component generalizations of the Laughlin wave func-
tions. Two component states of the form [1, [n]2]2 were
considered by Park and Jain49 and Chang et al.50. The
state 1/3WYQ was proposed by Wójs, Yi and Quinn47

and the state 1/2Pf by Moore and Read66; 1/2APf is its
particle-hole conjugate. The states [1 + 1/3WYQ]2 and
[1 + 2/3WYQ]2 were considered by Mukherjee et al.48 as
candidates of fully spin polarized (i.e. one component)
FQHE at 4/11 and 5/13. The states [1 + 1/2Pf ]2 and
[1 + 1/2APf ]2 were considered by Mukherjee et al.70 for
fully spin polarized FQHE at 3/8. Two component states
[1, 1/2Pf ] and [1, 1/2APf ] at ν = 3/8 have been studied by
Mukherjee, Jain and Mandal71. Ref. 44 considered the
ν = 5/3 state (1, 1/3, 1/3) which is [1, [1, 1]−2], where
[1, 1]−2 is the 2/3 “spin-singlet” state in the two rele-
vant components. (Note that the wave function Ψ2/3 =

PLLL[Φ1Φ1]∗J2, studied in Ref. 40 is less accurate than
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the “hard-core projected” Ψ2/3 = JPLLL[Φ1Φ1]∗J stud-

ied previously by Wu et al.35. This is not an intrinsic
deficiency of the CF theory, but is related to the techni-
cal issue of using the Jain-Kamilla projection method62,63

for dealing with unpolarized states requiring reverse flux
attachment). For completeness, we will reproduce results
of the aforementioned states in this work.

IV. CF DIAGONALIZATION

In many cases, we will produce results obtained from
CF diagonalization, outlined below. This approach has
several advantages. First, the CF basis has a much
smaller dimension than the full basis, and thus allows
a study of much larger systems than would be possible
from exact diagonalization. Second, it gives very accu-
rate results for the lowest LL FQHE. This is particularly
useful for Jain states involving reverse flux attachment,
for which no good method currently exists to evaluate
the “hard-core projected” wave function given in Eq. 6.
Finally, this method also provides an independent test
of whether the actual ground state indeed occurs at the
(L, S) quantum numbers predicted by the CF theory.

The Coulomb interaction is taken as the Hamiltonian
and the energies of the states are evaluated using the
Monte-Carlo method as follows: First, L2 eigenstates are
created in the corresponding IQHE system. Composite
fermionisation, i.e multiplying by J2p and projection into
the lowest LL, of this state gives the required L2 eigen-
state, since J2 has zero angular momentum and therefore
L2 operator commutes with it. The set of basis states
{Ψi}’s are constructed by taking all possible L2 eigen-
states. The Hamiltonian matrix is given by:

H(Ψ1,Ψ2) =

∫
Ψ∗1

(∑
i<j

1

|zi − zj |

)
Ψ2 dz (20)

where dz stands for the collective set of coordinates i.e,
dz ≡ dz1dz2...dzN . Note that the CF wave functions are
in general not orthogonal to each other. To implement
the Gram-Schmidt orthogonalization procedure one cal-
culates the overlap matrix defined as:

O(Ψ1,Ψ2) =

∫
Ψ∗1Ψ2 d

2~Ω (21)

To evaluate the above quantities, we need to do multi-
dimensional integrals. We use the Metropolis Monte
Carlo algorithm to evaluate such integrals. The algo-
rithm works by approximating the integral as a sum and
then sampling different configurations of the set of coor-
dinates {Ωi} drawn from a probability distribution which
is weighted by the absolute square of the wave function.
Both O and H are evaluated in a single Monte Carlo run.
The energies of the states are given by the eigenvalues of
O−1H (see Appendix C). To make the computation more
efficient we do the calculation within the subspace of L2

eigenstates. The lowest LL projection, as stated above,
is carried out by the Jain-Kamilla method63, details of
which can be found in23. This procedure of evaluation
of energies of CF wave functions is termed composite
fermion diagonalization (CFD)72.

As noted above, Jain’s CF wave functions can be con-
structed for states involving parallel flux attachment (2p
positive); for such cases it is possible to go to very large
systems to obtain accurate thermodynamic limits. For
states involving reverse flux attachment (2p negative),
no good method exists for implementing Jain’s CF wave
functions. Here, we obtain the ground state energies by
performing CF diagonalization, which often allows us to
go to larger systems than exact diagonalization.

V. EXACT DIAGONALIZATION

For one-component states we carry out standard ex-
act diagonalization (in the full space spanned by all N -
electron configurations), i.e. apply Lanczos algorithm to
diagonalize the Hamiltonian matrix H in the subspace
of minimum total orbital angular momentum projection
Lz = 0 in search of the absolute ground state, for which
we then compute the expectation value of L2 to verify
that it indeed has L = 0.

For two-component states with arbitrary polarization
corresponding to a total spin S we perform diagonaliza-
tion in the subspace of Sz = S and Lz = 0 and then
compute the expectation values of S2 and L2 to verify
that the ground state indeed has L = 0 and the assumed
spin S (by taking Sz = S we disregard the possibility
that the absolute ground state may have spin lower than
S, but by checking average S2 we confirm that no state
with spin larger than the assumed value S has a lower
energy).

The critical part of the Lanczos procedure is efficient
on-the-fly computation of the H matrix elements. Con-
figuration basis is generated once and stored in the form
of binary numbers B with consecutive bits represent-
ing consecutive orbitals (0-empty, 1-occupied), which is
equivalent to the tabulation and storage of the index-
to-configuration mapping B(i). For each row i, the ini-
tial configuration I = B(i) is immediately assigned, then
all possible final configurations F = HI and the cor-
responding scattering amplitudes 〈F |H|I〉 are generated
by explicit action on I of the second-quantized two-body
Hamiltonian H. The column indexes f = B−1(F ) must
then be obtained from configuration search, as storing
the inverse (configuration-to-index) mapping B−1 is gen-
erally unfeasible. The ordering of configurations, i.e.,
the monotonicity of B(i), allows for efficient bisection
search, further accelerated by the partial storage of B−1

(all configurations classified by a certain number of lead-
ing bits, allowing bisection only within the relevant class,
i.e. range of configurations).

Our optimized OpenMP-parallel code (the two most
critical parts being the generation of F = HI and the
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column search f = B−1(F )) permits us diagonalization
of Hamiltonians with dimensions up to a few billion, at
the speed of at least a few Lanczos iterations per day (on
a single cluster node) for the largest systems.

We note that all exact diagonalization studies are per-
formed for the N and 2Q values guided by the CF theory.
The spin and angular momentum quantum numbers are
consistent with that predicted by the CF theory, and the
energies and wave functions are also in excellent agree-
ment wherever a comparison can be made.

VI. SOME TECHNICAL DETAILS

In all calculations that follow, we use the spherical
geometry73, where in N electrons reside on the sur-
face of a sphere, with a Dirac monopole at the center
which generates a radial magnetic field that produces
a total magnetic flux of 2Qφ0 through the surface of
the sphere, where φ0 = hc/e is referred to as a flux
quantum. Using the mapping postulated by CF theory,
the effective flux seen by composite fermions is given
by 2Q∗ = 2Q − 2p(N − 1). States are characterized
by the orbital angular momentum quantum number L
(appropriate in this geometry) and the spin-angular mo-
mentum quantum number S. Ground state are seen to
be incompressible i.e., have L = 0. The total energies
include contributions from the electron-background and
the background-background interactions. These are de-
termined by assuming that the neutralizing background
positive charge of strength Ne is distributed uniformly
on the surface of the sphere. The total energy E for

N particles is given by: EN = Eel−el − N2

2
√
Q
e2

ε` , where

the first term on the right hand side is the electron-
electron interaction energy, which is evaluated by exact
and/or CF diagonalization, and the second term incor-
porates interaction with a positively charged neutraliz-
ing background. Comparison with experiments requires
the thermodynamic values of the energies of the ground
states. We obtain these from the intercept of a linear
fit of the ground state energies per particle as a func-
tion of the inverse electron number 1/N . To account for
the slight density dependences on the number of parti-
cles in the spherical geometry, we make a “density correc-
tion” to the finite system energies before extrapolation to
the thermodynamic limits. The density corrected energy

is defined as74 E
′

N =
√

ρ∞
ρN
EN =

√
2Qν
N EN . We find

that extrapolation with and without density correction
produces slightly different critical Zeeman energies. All
of the thermodynamic limits quoted below are obtained
with density correction.

In some cases it has been possible to obtain only
two finite system energies, because the dimension of the
Hilbert space for the next system is too large for our cal-
culations. In these cases, we obtain the thermodynamic
energy from an extrapolation using only two points of
data. We believe that it is better to give these results

than no numbers at all, especially because a considera-
tion of systems where we have many points shows that
taking the two smallest available systems already gives a
reasonable extrapolation. Nonetheless, the energies ob-
tained from only two points ought to be taken as crude
estimates, and are highlighted with an underline in the
tables below.

We note that some small systems admit two different
interpretations. For example, the fully polarized system
of 9 particles at a flux of 12 can be thought of either as
5/7 or as 7/9 FQHE state. However, because the den-
sity correction depends on the filling factor ν, the density
corrected energies are different for this system in Tables
XVIII and XIX. Of course, such aliasing does not occur
for larger systems, which are needed for the determina-
tion of the thermodynamically extrapolated energies.

VII. PROMINENT CF-FQHE STATES FOR
MULTI-COMPONENT SYSTEMS

The IQHE states of two component composite fermions
have been investigated in great detail before35,36,38,40.
The earlier experiments in GaAs2–6,8 fully confirm this
physics. In particular, the measured spin polarizations4

agree with the theoretical predictions, and the observed
critical Zeeman energies are roughly consistent with the-
ory, although a very precise agreement is not expected as
the theory does not include corrections due to LL mix-
ing, finite thickness and the ubiquitous disorder. The
two-component systems in AlAs quantum wells, where
the two components are valleys, are also in good agree-
ment with the CF theory16,17. The fractions seen in
graphene10–15 and in an H-terminated Si(111) surface18

are also consistent with one or two component IQHE of
composite fermions.

Our focus below is on fractional QHE of composite
fermions, which we define as those states in which com-
posite fermions in at least one component show FQHE.
(The states where all components are integers are defined
as IQHE of composite fermions, not considered here.)
Many such states have already been observed, and many
more are predicted to occur. We mention the experi-
mental status of each fraction below, while also listing
the number of possible states and their generalized spin
contents.

A. ν = 4/11 (parent state ν∗ = 4/3)

1. One component fully polarized 4/11

The fully polarized one component 4/11 state

[1 + 1/3WYQ]2 ↔ (4/11)

corresponds to ν∗ = 4/3, which is obtained by filling
the lowest ΛL completely and forming a 1/3 state in the
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second ΛL; explicit calculation shows that the residual
interaction between composite fermions in the second ΛL
is of the form as to favor the WYQ 1/3 state47,48.

2. Two component partially polarized 4/11

The partially polarized two-component 4/11 state

[1, [1]2]2 ↔ (3/11, 1/11)

is obtained by composite-fermionizing the partially po-
larized 4/3 state

[1, [1]2]↔ (1, 1/3).

It corresponds to filling the lowest spin-up ΛL completely
and forming a 1/3 state in the lowest spin-down ΛL50.

3. Two component singlet 4/11

The state

[[1, 1]−2]2 ↔ (2/11, 2/11)

was first proposed in Ref.49. It is obtained from the 2/3
spin singlet state

[1, 1]−2 ↔ (1/3, 1/3)

by taking its particle hole conjugate to produce a
singlet state at 4/3 of the form (2/3, 2/3)35, and then
composite-fermionizing it. We stress that the (2/3, 2/3)
is not a direct product of two one-component 2/3 states
in two spin sectors; that state with a wave function
Ψ2/3Ψ2/3 = [[1]2, [1]2] does not satisfy the Fock condi-
tion and thus does not have proper symmetry properties.

In Table I we show the thermodynamic energies of
these states and in Table XIV we show the critical Zee-
man energies for the transitions among these states.
(Slight difference from the value in Ref. 48 arises because
that article did not make density correction while obtain-
ing the thermodynamic limits of the various energies.)

4. Three and more component 4/11

It is not possible to construct a wave function of the
type considered here with three or more components that
satisfies Fock conditions. For example, a naive wave func-
tion

[[1]2, [1]2, [1]2, [1]2]2 ↔ (1/3, 1/3, 1/3, 1/3)

is not a valid wave function for an SU(4)-symmetric inter-
action. Thus, a 4/11 FQHE state is likely to be a one or
two component state; the stabilization of a 4/11 FQHE

with three or more components will require physics that
is beyond what is considered in this work.

The one component [1 + 1/3WYQ]2 was considered by
Wójs, Yi and Quinn47 and by Mukherjee et al.48, and
the two component [1, [1]2]2 was considered in Refs.50,51.
These studies did not identify the spin singlet 4/11 state

[[1, 1]−2]2.
Since the 4/11 FQHE has been observed46 (the spin

polarization of the state has not yet been measured), and
this is the first time that the spin singlet 4/11 has been
investigated in detail, we give more analysis of its spec-
trum in Appendix E. We see there that the CF theory
is in good agreement with the spectrum obtained from
exact diagonalization. The spectrum also indicates the
presence of an unconventional spin wave with a spin roton
minimum, as found previously for the fully spin polarized
2/5 and 3/7 states55. Furthermore, a charged collective
mode is also identified.

B. ν = 4/5 (parent state ν∗ = 4/3)

1. One component fully polarized 4/5

The fully polarized one component 4/5 state

[1 + [1]2]−2 ↔ (4/5)

corresponds to ν∗ = 4/3, which is obtained by filling
the lowest ΛL completely and forming a 1/3 state in the
second ΛL. One might think that another candidate for
a fully polarized FQHE at 4/5 is

[1]4 ↔ (4/5)

which is the hole conjugate of the 1/5 state. However, in
spite of the superficial difference, the two wave functions
are equivalent, i.e. represent the same state, as can be
seen by noting that they occur at the same flux and have
the same excitation spectrum. The situation is analo-
gous to 2/3 for which two wave functions can be written,

namely [1]2 and [2]−2, but these two were shown to be es-
sentially identical by explicit calculation35. However, one
of those two points of view is more useful in consideration
of the spin phase transitions. For example, for 2/3, its
understanding as two filled Λ levels of composite fermions
immediately reveals the possibility of a spin singlet state,
and gives an intuitive understanding of the spin phase
transition as a level crossing transition as the Zeeman
energy is varied. For similar reasons, the mapping of 4/5
into a state at ν∗ = 4/3 is more useful in bringing out
the physics of spin transitions. (We also note that for the

single component 4/5 state, the interpretation [1]4 views
it as an IQHE of composite fermions, whereas [1+[1]2]−2
as a FQHE state of composite fermions. This is only a
difference of nomenclature, however. Both states involve
4CFs.)
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ν [1 + 1/3WYQ]2 ↔ (4/11) [1, [1]2]2 ↔ (3/11, 1/11) [[1, 1]−2]2 ↔ (2/11, 2/11)

exact CFD exact CFD CF w. f. exact CFD

4/11 -0.4166(0) -0.4160(1) -0.4218(0) -0.4203(0) -0.42054(0) -0.4224(0) -0.4220(0)

TABLE I: The Coulomb energies of the states obtained from ν∗ = 4/3 with p = 1 and parallel flux attachment. We quote
both the exact and CF energies (both obtained from CFD and from just the CF wave function) for fully polarized, partially
polarized and spin-singlet states. The numbers are obtained by extrapolating finite size results to the thermodynamic limit
and the errors in the linear fit are shown. Cases where only two data points are used to extrapolate to the thermodynamic
limit are underlined. All energies are quoted in units of e2/ε`.

2. Two component partially polarized 4/5

The partially polarized two-component 4/5 state

[1, [1]2]−2 ↔ (3/5, 1/5)

is obtained from the partially polarized 4/3 state

[1, [1]2]↔ (1, 1/3)

which corresponds to filling the lowest ΛL of spin-up com-
pletely and forming a 1/3 state in the spin-down lowest
ΛL.

3. Two component singlet 4/5

The state

[[1, 1]−2]−2 ↔ (2/5, 2/5)

is obtained from the 2/3 spin singlet state35

[1, 1]−2 ↔ (1/3, 1/3)

by taking its particle hole conjugate to produce a singlet
state at 4/3 and then composite-fermionizing it.

4. Three and more component 4/5

It is not possible to construct a wave function of the
type considered here with three or more components that
satisfies Fock conditions for the same reasons as men-
tioned above for 4/11.

In Table II we show the thermodynamic energies of
these states and in Table XIV we show the critical Zee-
man energies for the transitions among these states.

C. ν = 5/13 (parent state ν∗ = 5/3)

1. One component fully polarized 5/13

The fully polarized one component 5/13 state

[1 + 2/3WYQ]2 ↔ (5/13)

corresponds to ν∗ = 5/3, which is obtained by filling the
lowest ΛL completely and forming a 2/3 WYQ state in
the second ΛL.

2. Two component partially polarized 5/13

The partially polarized two-component 5/13 state

[1, [2]−2]2 ↔ (3/13, 2/13)

is obtained from the partially polarized 5/3 state

[1, [1]−2]↔ (1, 2/3)

which in turn is obtained by filling the lowest ΛL of spin-
up completely and forming a 2/3 state in the spin-down
lowest ΛL.

3. Three and more component 5/13

A three component state of the following kind can be
constructed:

[1, [1, 1]−2]2 ↔ (3/13, 1/13, 1/13)

where in the lowest ΛL of one of the components is fully
filled and a spin-singlet 2/3 state is formed in any of the
two other components.

In Table III we show the Coulomb energies for these
states extrapolated to the thermodynamic limit and in
Table XIV we give the critical Zeeman energies for the
transitions among these states.

D. ν = 5/7 (parent state ν∗ = 5/3)

1. One component fully polarized 5/7

The fully polarized one component 5/7 state

[1 + [2]−2]−2 ↔ (5/7)

corresponds to ν∗ = 5/3, which is obtained by filling
the lowest ΛL completely and forming a 1/3 state in the
second ΛL. This state is equivalent to

[2]−4

i.e., the state obtained from the 2/7 state by particle-hole
transformation.
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ν [1 + [1]2]−2 ≡ [1]4 ↔ (4/5) [1, [1]2]−2 ↔ (3/5, 1/5) [[1, 1]−2]−2 ↔ (2/5, 2/5)

exact CF exact CF exact CF

4/5 -0.5504(7) -0.551736(9) -0.5601(0) - -0.5637(5) -

TABLE II: The Coulomb energies of the states obtained from ν∗ = 4/3 with p = 1 and reverse flux attachment.

ν [1 + 2/3WYQ]2 ↔ (5/13) [1, [2]−2]2 ↔ (3/13, 2/13)

exact CFD exact CFD

5/13 -0.4243(7) -0.4243(1) -0.4317(0) -0.4303(0)

TABLE III: The Coulomb energies of the states obtained from
ν∗ = 5/3 with p = 1 and parallel flux attachment.

ν [1 + [2]−2]−2 ≡ [2]−4 ↔ (5/7) [1, [2]−2]−2 ↔ (3/7, 2/7)

exact CF exact CF

5/7 -0.5294(0) - 0.52852(3) -0.5389(0) -

TABLE IV: The Coulomb energies of the states obtained from
ν∗ = 5/3 with p = 1 and reverse flux attachment.

2. Two component partially polarized 5/7

The partially polarized two-component 5/7 state

[1, [2]−2]−2 ↔ (3/7, 2/7)

is obtained from the partially polarized 5/3 state

[1, [2]−2]↔ (1, 2/3)

which in turn is obtained by filling the lowest ΛL of spin-
up completely and forming a 2/3 state in the spin-down
lowest ΛL.

3. Three and more component 5/7

A three component state of the following kind can be
constructed:

[1, [1, 1]−2]−2 ↔ (3/7, 1/7, 1/7)

where in the lowest ΛL of one of the components is fully
filled and a spin-singlet 2/3 state is formed in any of the
two other components.

In Table IV we show the Coulomb energies for these
states extrapolated to the thermodynamic limit and in
Table XIV we give the critical Zeeman energies for the
transitions among these states.

E. ν = 7/19 (parent state ν∗ = 7/5)

1. One component fully polarized 7/19

The fully polarized one component 7/19 state

[1 + [2]2]2 ↔ (7/19)

corresponds to ν∗ = 7/5, which is obtained by filling
the lowest ΛL completely and forming a 2/5 state in the
second ΛL.

2. Two component partially polarized 7/19

a. Obtained from fully polarized 3/5 of holes This
partially polarized two-component 7/19 state is obtained
from fully polarized νh = 3/5 state:

[1, [2]2]2 ≡ [[3]−2]2 ↔ (5/19, 2/19)

b. Obtained from partially polarized 3/5 of holes
This partially polarized two-component 7/19 state is ob-
tained from partially polarized νh = 3/5 state:

[[1, 2]−2]2 ↔ (4/19, 3/19)

Table V shows the Coulomb energies for these states
extrapolated to the thermodynamic limit and in Table
XIV we give the critical Zeeman energies for the transi-
tions among these states.

3. Three component partially polarized 7/19

A three-component state43,65 can be written as

[1, [1, 1]2]2 ↔ (5/19, 1/19, 1/19).

Its parent state is the spin-singlet CF ground state wave
function at ν∗ = 2/5,

[1, 1]2 ↔ (1/5, 1/5).

F. ν = 7/9 (parent state ν∗ = 7/5)

1. One component fully polarized 7/9

The fully polarized one component 7/9 state

[1 + [2]2]−2 ↔ (7/9)
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ν [1 + [2]2]2 ↔ (7/19) [1, [2]2]2 ≡ [[3]−2]2 ↔ (5/19, 2/19) [[1, 2]−2]2 ↔ (4/19, 3/19)

exact CFD exact CFD CF w. f. exact CFD

7/19 - -0.4169(0) - -0.4227(2) -0.42258(4) - -0.4242(3)

TABLE V: The Coulomb energies of the states obtained from ν∗ = 7/5 with p = 1 and parallel flux attachment.

ν [1, [1, 1]2]2 ↔ (5/19, 1/19, 1/19)

exact CFD CF w. f.

7/19 - - -0.422640(7)

TABLE VI: The Coulomb energies of the states obtained from
ν∗ = 7/5 with p = 1 and parallel flux attachment.

corresponds to ν∗ = 7/5, which is obtained by filling
the lowest ΛL completely and forming a 2/5 state in the
second ΛL. An equivalent state

[2]4

is obtained by first constructing a νh = 2/9 and taking
its particle-hole conjugate state.

2. Two component partially polarized 7/9

a. Obtained from fully polarized 3/5 of holes: This
partially polarized two-component 7/9 state is obtained
from fully polarized νh = 3/5 state:

[1, [2]2]−2 ≡ [[3]−2]−2 ↔ (5/9, 2/9)

b. Obtained from partially polarized 3/5 of holes:
This partially polarized two-component 7/9 state is ob-
tained from partially polarized νh = 3/5 state:

[[1, 2]−2]−2 ↔ (4/9, 3/9)

Table VII shows the Coulomb energies for these states
extrapolated to the thermodynamic limit and in Table
XIV we give the critical Zeeman energies for the transi-
tions among these states.

3. Three component partially polarized 7/9

A three-component state can be obtained as

[1, [1, 1]2]−2 ↔ (5/9, 1/9, 1/9).

The parent state is the spin-singlet CF ground state wave
function at ν∗ = 2/5,

[1, 1]2 ↔ (1/5, 1/5).

G. ν = 8/21 (parent state ν∗ = 8/5)

1. One component fully polarized 8/21

The fully polarized one component 8/21 state

[1 + [3]−2]2 ↔ (8/21)

corresponds to ν∗ = 8/5, which is obtained by filling
the lowest ΛL completely and forming a 3/5 state in the
second ΛL.

2. Two component partially polarized 8/21

The partially polarized two-component 8/21 state is
obtained from fully polarized νh = 2/5 state:

[1, [3]−2]2 ≡ [[2]2]2 ↔ (5/21, 3/21)

The energy in the thermodynamic limit obtained from
the unperturbed CF wave function is -0.4278(2).

3. Two component spin singlet 8/21

The singlet two-component 8/21 state is obtained from
spin singlet νh = 2/5 state:

[[1, 1]2]2 ↔ (4/21, 4/21)

In Table XIV we give the critical Zeeman energies for
the transitions among these states.

4. Three component partially polarized 8/21

The state

[1, [2, 1]−2]2 ↔ (5/21, 2/21, 1/21)

can be derived by the composite fermionization of the
from the partially polarized state at 3/5,

[2, 1]−2 ↔ (2/5, 1/5)

using parallel flux attachment.
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ν [1 + [2]2]−2 ≡ [2]4 ↔ (7/9) [1, [2]2]−2 ≡ [[3]−2]−2 ↔ (5/9, 2/9) [[1, 2]−2]−2 ↔ (4/9, 3/9)

exact CF exact CF exact CF

7/9 -0.5450(1) -0.545442(5) -0.5541(0) - - -

TABLE VII: The Coulomb energies of the states obtained from ν∗ = 7/5 with p = 1 and reverse flux attachment.

5. Four component partially polarized 8/21

The state

[1, [1, 1, 1]−2]2 ↔ (5/21, 1/21, 1/21, 1/21)

is obtained from a parent state at 3/5,

[1, 1, 1]−2]↔ (1/5, 1/5, 1/5),

which would be SU(3) singlet in a three-component sys-
tem.

H. ν = 8/11 (parent state ν∗ = 8/5)

1. One component fully polarized 8/11

The fully polarized one component 8/11 state

[1 + [3]−2]−2 ↔ (8/11)

corresponds to ν∗ = 8/5, which is obtained by filling
the lowest ΛL completely and forming a 3/5 state in the
second ΛL. An exactly equivalent construction via the
νh = 3/5 state exists and we denote it by:

[3]−4 ↔ (8/11)

2. Two component partially polarized 8/11

The partially polarized two-component 8/11 state is
obtained from fully polarized νh = 2/5 state:

[1, [3]−2]−2 ≡ [[2]2]−2 ↔ (5/11, 3/11)

3. Two component spin singlet 8/11

The singlet two-component 8/11 state is obtained from
spin singlet νh = 2/5 state:

[[1, 1]2]−2 ↔ (4/11, 4/11)

Table VIII shows the Coulomb energies for these states
extrapolated to the thermodynamic limit and in Table
XIV we give the critical Zeeman energies for the transi-
tions among these states.

4. Three component partially polarized 8/11

The state

[1, [2, 1]−2]−2 ↔ (5/11, 2/11, 1/11)

can be derived by the composite fermionization of the
from the partially polarized state at 3/5,

[2, 1]−2 ↔ (2/5, 1/5)

using reverse flux attachment.

5. Four component partially polarized 8/11

The state

[1, [1, 1, 1]−2]−2 ↔ (5/11, 1/11, 1/11, 1/11)

is obtained from a parent state at 3/5,

[1, 1, 1]−2]↔ (1/5, 1/5, 1/5),

which would be SU(3) singlet in a three-component sys-
tem.

I. ν = 10/27 (parent state ν∗ = 10/7)

1. One component fully polarized 10/27

The fully polarized one component 10/27 state

[1 + [3]2]2 ↔ (10/27)

corresponds to ν∗ = 10/7, which is obtained by filling
the lowest ΛL completely and forming a 3/7 state in the
second ΛL.

2. Two component partially polarized 10/27

The partially polarized two-component 10/27 state is
obtained from fully polarized νh = 4/7 state:

[1, [3]2]2 ≡ [[4]−2]2 ↔ (7/27, 3/27)
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ν [1 + [3]−2]−2 ≡ [3]−4 ↔ (8/11) [1, [3]−2]−2 ≡ [[2]2]−2 ↔ (5/11, 3/11) [[1, 1]2]−2 ↔ (4/11, 4/11)

exact CF exact CF exact CF

8/11 -0.5328(0) -0.53184(4) - -0.5429(0) -

TABLE VIII: The Coulomb energies of the states obtained from ν∗ = 8/5 with p = 1 and reverse flux attachment.

3. Two component spin singlet 10/27

The singlet two-component 10/27 state is obtained
from spin singlet νh = 4/7 state:

[[2, 2]−2]2 ↔ (5/27, 5/27)

Table IX shows the Coulomb energies for these states
extrapolated to the thermodynamic limit and in Table
XIV we give the critical Zeeman energies for the transi-
tions among these states.

4. Three component partially polarized 10/27

This 10/27 state is obtained from the partially polar-
ized ν = 3/7 state:

[1, [2, 1]2]2 ↔ (7/27, 2/27, 1/27).

5. Four component partially polarized 10/27

This 10/27 state is obtained from the three-component
ν = 3/7 state:

[1, [1, 1, 1]2]2 ↔ (7/27, 1/27, 1/27, 1/27).

J. ν = 10/13 (parent state ν∗ = 10/7)

1. One component fully polarized 10/13

The fully polarized one component 10/13 state

[1 + [3]2]−2 ↔ (10/13)

corresponds to ν∗ = 10/7, which is obtained by filling
the lowest ΛL completely and forming a 3/7 state in the
second ΛL. An exactly equivalent state is constructed
from νh = 3/13 and is denoted by:

[3]4

2. Two component partially polarized 10/13

The partially polarized two-component 10/13 state is
obtained from fully polarized νh = 4/7 state:

[1, [3]2]−2 ≡ [[4]−2]−2 ↔ (7/13, 3/13)

3. Two component spin singlet 10/13

The singlet two-component 10/13 state is obtained
from spin singlet νh = 4/7 state:

[[2, 2]−2]−2 ↔ (5/13, 5/13)

Table XI shows the Coulomb energies for these states
extrapolated to the thermodynamic limit and in Table
XIV we give the critical Zeeman energies for the transi-
tions among these states.

4. Three component partially polarized 10/13

This 10/13 state is obtained from the partially polar-
ized ν = 3/7 state by reverse flux attachment:

[1, [2, 1]2]−2 ↔ (7/13, 2/13, 1/13).

5. Four component partially polarized 10/27

This 10/13 state is obtained from the three-component
ν = 3/7 state by reverse flux attachment:

[1, [1, 1, 1]2]−2 ↔ (7/13, 1/13, 1/13, 1/13).

K. ν = 11/29 (parent state ν∗ = 11/7)

1. One component fully polarized 11/29

The fully polarized one component 11/29 state

[1 + [4]−2]2 ↔ (11/29)

corresponds to ν∗ = 11/7, which is obtained by filling
the lowest ΛL completely and forming a 4/7 state in the
second ΛL.

2. Two component partially polarized 11/29

a. Obtained from fully polarized 3/7 of holes: This
partially polarized two-component 11/29 state is ob-
tained from fully polarized νh = 3/7 state:

[1, [4]−2]2 ≡ [[3]2]2 ↔ (7/29, 4/29)
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ν [1 + [3]2]2 ↔ (10/27) [1, [3]2]2 ≡ [[4]−2]2 ↔ (7/27, 3/27) [[2, 2]−2]2 ↔ (5/27, 5/27)

exact CFD exact CFD CF w. f. exact CF

10/27 -0.4170(2) -0.4231(1) -0.42346(6)

TABLE IX: The Coulomb energies of the states obtained from ν∗ = 10/7 with p = 1 and parallel flux attachment.

ν [1, [2, 1]2]2 ↔ ( 7
27
, 2
27
, 1
27

) [1, [1, 1, 1]2]2 ↔ ( 7
27
, 1
27
, 1
27
, 1
27

)

exact CF w. f. exact CF w. f.

10/27 - -0.42350(4) -0.42353(4)

TABLE X: The Coulomb energies of the states obtained from
ν∗ = 10/7 with p = 1 and parallel flux attachment.

b. Obtained from partially polarized 3/7 of holes:
This partially polarized two-component 11/29 state is
obtained from partially polarized νh = 3/7 state:

[[1, 2]2]2 ↔ (6/29, 5/29)

Table XII shows the Coulomb energies for these states
extrapolated to the thermodynamic limit and in Table
XIV we give the critical Zeeman energies for the transi-
tions among these states.

3. Three component state partially polarized 11/29

a. Obtained from the partially polarized ν = 4/7
state: This state is

[1, [3, 1]−2]2 ↔ (7/29, 3/29, 1/29).

b. Obtained obtained from the unpolarized ν = 4/7
state: This state is

[1, [2, 2]−2]2 ↔ (7/29, 2/29, 2/29).

4. Four component partially polarized 11/29

This state is obtained from one of the partially polar-
ized ν = 4/7 states:

[1, [2, 1, 1]−2]2 ↔ (7/29, 2/29, 1/29, 1/29).

5. Five component partially polarized 11/29

This state is obtained from the ν = 4/7 state that
would be SU(4) singlet in a four-component system:

[1, [1, 1, 1, 1]−2]2 ↔ (7/29, 1/29, 1/29, 1/29, 1/29).

L. ν = 11/15 (parent state ν∗ = 11/7)

1. One component fully polarized 11/15

The fully polarized one component 11/15 state

[1 + [4]−2]−2 ↔ (11/15)

corresponds to ν∗ = 11/7, which is obtained by filling
the lowest ΛL completely and forming a 4/7 state in the
second ΛL. An exactly identical state is obtained by tak-
ing the particle-hole conjugate of the state at νh = 4/15.
We denote this state by:

[4]−4

2. Two component partially polarized 11/15

a. Obtained from fully polarized 3/7 of holes: This
partially polarized two-component 11/15 state is ob-
tained from fully polarized νh = 3/7 state:

[1, [4]−2]−2 ≡ [[3]2]−2 ↔ (7/15, 4/15)

The energy in the thermodynamic limit obtained from
exact diagonalization is -0.5336(0).
b. Obtained from partially polarized 3/7 of holes:

This partially polarized two-component 11/15 state is
obtained from partially polarized νh = 3/7 state:

[[1, 2]2]−2 ↔ (6/15, 5/15)

In Table XIV we give the critical Zeeman energies for
the transitions among these states.

3. Three component partially polarized 11/15

a. Obtained from the partially polarized ν = 4/7
state: This state is

[1, [3, 1]−2]−2 ↔ (7/15, 3/15, 1/15).

b. Obtained from the unpolarized ν = 4/7 state:
This state is

[1, [2, 2]−2]−2 ↔ (7/15, 2/15, 2/15).
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ν [1 + [3]2]−2 ≡ [3]4 ↔ (10/13) [1, [3]2]−2 ≡ [[4]−2]−2 ↔ (7/13, 3/13) [[2, 2]−2]−2 ↔ (5/13, 5/13)

exact CF exact CF exact CF

10/13 -0.5414(5) -0.54310(1) -0.5519(0) - -

TABLE XI: The Coulomb energies of the states obtained from ν∗ = 10/7 with p = 1 and reverse flux attachment.

ν [1 + [4]−2]2 ↔ (11/29) [1, [4]−2]2 ≡ [[3]2]2 ↔ (7/29, 4/29) [[1, 2]2]2 ↔ (6/29, 5/29)

exact CFD exact CFD CF w. f. exact CF

11/29 -0.4213(0) -0.4279(0) -0.4281(3)

TABLE XII: The Coulomb energies of the states obtained from ν∗ = 11/7 with p = 1 and parallel flux attachment.

4. Four component partially polarized 11/15

This state is obtained from one of the partially polar-
ized ν = 4/7 states:

[1, [2, 1, 1]−2]−2 ↔ (7/15, 2/15, 1/15, 1/15).

5. Five component partially polarized 11/15

This state is obtained from the ν = 4/7 state that
would be SU(4) singlet in a four-component system:

[1, [1, 1, 1, 1]−2]−2 ↔ (7/15, 1/15, 1/15, 1/15, 1/15).

M. ν = 3/8 (parent state ν∗ = 3/2)

1. One component fully polarized 3/8

The fully polarized one component 3/8 state

[1 + 1/2APf ]2 ↔ (3/8)

corresponds to ν∗ = 3/2, which is obtained by filling the
lowest ΛL completely and forming an anti-Pfaffian (APf)
state in the second ΛL. Reference70 has shown that the
APf state is favored over the Moore-Read Pfaffian state
in the second ΛL.

2. Two component partially polarized 3/8

The partially polarized two-component 3/8 state

[1, 1/2APf ]2 ↔ (2/8, 1/8)

is obtained from the partially polarized 3/2 state

[1, 1/2APf ]↔ (1, 1/2)

which in turn is obtained by filling the lowest ΛL of spin-
up completely and forming an APf state in the spin-down
lowest ΛL. Reference71 shows that this state provides an
almost exact realization of the APf state.

ν [1 + 1/2APf ]2 ↔ (3/8) [1, 1/2APf ]2 ↔ (2/8, 1/8)

exact CFD exact CFD

3/8 -0.4215(0) -0.4195(2) - -0.4256(1)

TABLE XIII: The Coulomb energies of the states obtained
from ν∗ = 3/2 with p = 1 and parallel flux attachment.

3. Three or more component 3/8

It is not possible to construct a wave function of the
type considered here with three or more components that
satisfies Fock conditions.

Table XIII shows the Coulomb energies for these states
extrapolated to the thermodynamic limit and in Table
XIV we give the critical Zeeman energies for the transi-
tions among these states. The numbers for fully polar-
ized and partially polarized states are reproduced from
references70 and71 respectively.

In Table XV we show energies extrapolated to the ther-
modynamic limit of states with atleast three components.

The phase diagram of various states at many fractions
is shown in Fig. 4. We again stress that the results are
obtained for a system with zero thickness, no LL mix-
ing, and no disorder. Also, the critical Zeeman energies
from exact diagonalization are not expected to be very
accurate because in many cases, the extrapolation to the
thermodynamic limit has been performed from only two
points as the Hilbert space grows very rapidly for unpo-
larized systems. The “?” symbol indicates a transition
for which we are not able to estimate the critical Zeeman
energy based on the current calculational methods.

VIII. COMPARISONS WITH EXPERIMENTS

Only a limited amount of experimental information is
currently available for spin transitions involving FQHE
states of composite fermions. A comparison of our cal-
culated critical Zeeman energies with those measured in
experiments is shown in Table XVII. We stress that the
theoretical numbers do not include corrections due to
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ν Transition Ec
Z

exact CFD

4/11 [1, [1]2]2 ↔ [[1, 1]−2]2 0.0026 0.0070

4/11 [1 + 1/3WYQ]2 ↔ [1, [1]2]2 0.0208 0.0171

4/5 [1, [1]2]−2 ↔ [[1, 1]−2]−2 0.0117 -

4/5 [1 + [1]2]−2 ≡ [1]4 ↔ [1, [1]2]−2 0.0388 -

5/13 [1 + 2/3WYQ]2 ↔ [1, [2]−2]2 0.0183 0.0149

5/7 [1 + [2]−2]−2 ≡ [2]−4 ↔ [1, [2]−2]−2 0.0238 -

7/19 [1, [2]2]2 ≡ [[3]−2]2 ↔ [[1, 2]−2]2 - 0.0095

7/19 [1 + [2]2]2 ↔ [1, [2]2]2 ≡ [[3]−2]2 - 0.0194

7/9 [1, [2]2]−2 ≡ [[3]−2]−2 ↔ [[1, 2]−2]−2 - -

7/9 [1 + [2]2]−2 ≡ [2]4 ↔ [1, [2]2]−2 ≡ [[3]−2]−2 0.0320 -

8/21 [1, [3]−2]2 ≡ [[2]2]2 ↔ [[1, 1]2]2 - -

8/21 [1 + [3]−2]2 ↔ [1, [3]−2]2 ≡ [[2]2]2 - -

8/11 [1, [3]−2]−2 ≡ [[2]2]−2 ↔ [[1, 1]2]−2 - -

8/11 [1 + [3]−2]−2 ≡ [3]−4 ↔ [1, [3]−2]−2 ≡ [[2]2]−2 - -

10/27 [1, [3]2]2 ≡ [[4]−2]2 ↔ [[2, 2]−2]2 - -

10/27 [1 + [3]2]2 ↔ [1, [3]2]2 ≡ [[4]−2]2 - 0.0203

10/13 [1, [3]2]−2 ≡ [[4]−2]−2 ↔ [[2, 2]−2]−2 - -

10/13 [1 + [3]2]−2 ≡ [3]4 ↔ [1, [3]2]−2 ≡ [[4]−2]−2 0.0349 -

11/29 [1, [4]−2]2 ≡ [[3]2]2 ↔ [[1, 2]2]2 - -

11/29 [1 + [4]−2]2 ↔ [1, [4]−2]2 ≡ [[3]2]2 - 0.0181

11/15 [1, [4]−2]−2 ≡ [[3]2]−2 ↔ [[1, 2]2]−2 - -

11/15 [1 + [4]−2]−2 ≡ [4]−4 ↔ [1, [4]−2]−2 ≡ [[3]2]−2 - -

3/8 [1 + 1/2APf ]2 ↔ [1, 1/2APf ]2 - 0.0183

TABLE XIV: The critical Zeeman energy Ec
Z in units of e2/ε` for various transitions. For EZ > Ec

Z (EZ < Ec
Z), the state

on the left (right) is favored over the state on the right (left). The first column gives values obtained from extrapolating
exact diagonalization results, the second one gives results obtained from CFD and the last column gives results obtained from
calculating energies of CF wave functions. The critical Zeeman energies are extremely sensitive to the ground state energies as
well as the extrapolation to the thermodynamic limit, so these numbers should only be taken as ball park estimates.

FIG. 2: Extrapolation of the ground state energy to the thermodynamic limit, assuming zero thickness. The density correction
has been applied.

finite width, LL mixing, and disorder, which are all ex-
pected to affect the observed critical Zeeman energies52.
This affects the degree of agreement we expect between
theory and experiment. The best comparison is with het-
erostructure samples, as these systems have the smallest
effective width of the transverse wave function. Indeed

a satisfactory agreement is seen between our predicted
critical Zeeman energies at 4/5, 5/7, 7/9 with those mea-
sured in the heterostructure sample studied by Yeh et
al.8. (We mention that the spin-transitions were not
interpreted as FQHE of CFs in Ref. 8; the correct un-
derstanding in terms of spin transitions involving FQHE
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ν Construction Nmin Nmax Data points energy χ2
red

4
11

[1, [1]2]2 18 62 14 -0.420540(4) 0.60
7
17

[1, 1, [1]2]2 17 108 14 -0.442992(4) 0.77
10
23

[1, 1, 1, [1]2]2 24 154 14 -0.453649(5) 0.24
7
19

[1, [2]2]2 25 67 7 -0.42258(4) 0.09

[1, [1, 1]2]2 19 61 7 -0.42264(7) 0.12
12
29

[1, 1, [2]2]2 42 102 6 -0.44388(5) 0.04

[1, 1, [1, 1]2]2 32 92 6 -0.44388(1) 0.31
17
39

[1, 1, 1, [2]2]2 59 144 6 -0.45417(5) 0.25

[1, 1, 1, [1, 1]2]2 45 130 6 -0.454135(9) 0.74
10
27

[1, [3]2]2 46 96 6 -0.42346(6) 0.09

[1, [2, 1]2]2 34 84 6 -0.42350(4) 0.12

[1, [1, 1, 1]2]2 28 78 6 -0.42353(4) 0.10
17
41

[1, 1, [3]2]2 77 128 4 -0.44427(8) 0.24

[1, 1, [2, 1]2]2 57 108 4 -0.44421(6) 0.12

[1, 1, [1, 1, 1]2]2 47 132 6 -0.44427(5) 0.13
24
55

[1, 1, 1, [3]2]2 108 180 4 -0.45438(8) 0.09

[1, 1, 1, [2, 1]2]2 80 152 4 -0.45427(9) 0.63

[1, 1, 1, [1, 1, 1]2]2 6 186 6 -0.45437(3) 0.69
13
35

[1, [4]2]2 73 125 5 -0.42389(7) 0.44

[1, [3, 1]2]2 55 120 6 -0.42396(5) 0.01

[1, [2, 2]2]2 49 114 6 -0.42400(6) 0.15

[1, [2, 1, 1]2]2 43 121 7 -0.42398(3) 1.21

[1, [1, 1, 1, 1]2]2 37 102 6 -0.42403(4) 0.12
22
53

[1, 1, [4]2]2 122 188 4 -0.44441(7) 0.028

[1, 1, [3, 1]2]2 92 180 5 -0.4444(1) 0.19

[1, 1, [2, 2]2]2 82 170 5 -0.44446(5) 0.12

[1, 1, [2, 1, 1]2]2 72 182 6 -0.44444(5) 0.06

[1, 1, [1, 1, 1, 1]2]2 62 172 6 -0.44448(4) 0.24
31
71

[1, 1, 1, [4]2]2 171 233 3 -0.4545(2) 0.20

[1, 1, 1, [3, 1]2]2 129 253 5 -0.45446(6) 0.58

[1, 1, 1, [2, 2]2]2 115 239 5 -0.45445(8) 0.89

[1, 1, 1, [2, 1, 1]2]2 101 256 6 -0.45445(7) 0.23

[1, 1, 1, [1, 1, 1, 1]2]2 87 242 6 -0.45448(2) 0.98

TABLE XV: Energy per particle for various CF FQHE states involving only parallel flux attachment.

ν Construction Nmin Nmax Data points energy χ2
red

5
13

[1, [2]−2]2 16 41 6 -0.43059(9) 0.04

[1, [1, 1]−2]2 10 50 8 -0.43062(3) 0.37
8
21

[1, [3]−2]2 34 74 6 -0.4287(2) 0.36

[1, [2, 1]−2]2 22 70 7 -0.4286(2) 0.11

[1, [1, 1, 1]−2]2 16 80 9 -0.42868(8) 0.48
11
29

[1, [4]−2]2 47 91 5 -0.4281(3) 0.27

[1, [3, 1]−2]2 40 95 6 -0.4279(2) 0.04

[1, [2, 2]−2]2 34 78 5 -0.4278(1) 0.44

[1, [2, 1, 1]−2]2 28 72 5 -0.4280(2) 0.44

[1, [1, 1, 1, 1]−2]2 22 99 8 -0.42786(6) 0.65

TABLE XVI: Energy per particle for the states with parallel flux attachment in the outer state and reverse flux attachment in
the inner state.
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FIG. 3: Extrapolation of the ground state energy to the thermodynamic limit, assuming zero thickness. The density correction
has been applied. Among the fractions that allow several multicomponent states, the data is convincing only at ν = 7/19 and
ν = 10/27; even here it is difficult to conclude anything beyond error bars (see Table XV).
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FIG. 4: (color online) Phase diagram of the CF FQHE states in the filling factor regions 1/3 < ν < 2/5 (upper panel) and
2/3 > ν > 1 (lower panel). The various possible states are shown for several fractions, along with the theoretical critical Zeeman
energies where transitions between them are expected. (The “?” symbol is used to represent transitions that are expected to
occur but for which the critical Zeeman energies have not been estimated.) The spin contents and polarizations of the states
can be found in the main text, but lowest state at even-numerator fractions is spin singlet and the highest state is fully spin
polarized. The states in the top (bottom) panel are obtained from states of CF in the filling factor range 1 < ν∗ < 2 by parallel
(reverse) flux attachment. The dots in the upper panel are obtained with the help of CF diagonalization, whereas those in
the lower panel are estimated from exact diagonalization studies. In both cases the thermodynamic energies are obtained by
extrapolation of finite system results to obtain the critical Zeeman energies.
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FIG. 5: (color online) Critical Zeeman energies for transitions
at 4/5, 9/7, 5/7, 7/9 and 10/13 as a function of the effective
transverse width λ (see text for definition) in units of the
magnetic length `. The results are taken from Liu et al.9

and Yeh et al.8, as indicated on the figure. The experiment
of Yeh et al. employed heterostructures, which correspond to
very small transverse widths. Theoretical values at zero width
are encircled in black. They are in good agreement with zero
width limits of the experiments.

of CFs was given in Ref.9.) Finite transverse width in
general softens the interaction, which suggests that the
critical Zeeman energies decrease with increasing width
(as has been confirmed by explicit calculation; see for ex-
ample Ref. 52). This is consistent with the fact that the
observed critical Zeeman energies are smaller than the
theoretically predicted ones. Overall, these comparisons
confirm CF-FQHE nature of the observed states.

Fig. 5 shows the width dependence of the experimen-
tally measured critical Zeeman energies. The effective
width λ is defined as the expectation value of λ =

√
〈w2〉,

where w is the coordinate in the transverse direction and
the expectation value is obtained with respect to a trans-
verse wave function determined from local density ap-
proximation. For heterojunctions this is typically of or-
der 0.1 in units of the magnetic length. For the quantum
well samples, we have only included results from phase
transitions seen as a function of the variation of the den-
sity; the phase transitions in which the Zeeman energy
is varied by application of an additional magnetic field
parallel to the layer also require a consideration of mix-
ing of electric subbands, which can be a significant effect
for wide quantum wells. We thank Mansour Shayegan
and Yang Liu for these data54. As expected, the criti-
cal Zeeman energies decrease with increasing width. The
reason is that finite width softens the interaction and
thus reduces the interaction energy difference between
differently spin polarized states, which therefore requires
a smaller Zeeman energy to cause the transition. The
zero thickness limits of the critical Zeeman energies are
in surprisingly good agreement with our theoretical esti-
mates.

The critical Zeeman energies quoted in Table XVII for
the spin transitions for ν = 4/11, 5/13 and 3/8 are in-

ferred from the excitations of the respective states. In
Ref.53 it was shown that for a quantum well of width
w = 33 nm and density n = 5.6× 1010 cm−2, certain ex-
citations that appear at θ = 30o tilt are absent at θ = 50o

tilt, which was taken as an evidence of a spin transition
somewhere between these two tilts; i.e., the ground state
is fully polarized state at a tilt of θ = 50o whereas at a
tilt of θ = 30o it is partially polarized. Hence we specify
a range for EcZ in Table XVII for these filling factors.
We should make a note of the fact that the experiment
of Ref.53 does not include transport, and thus does not
show direct evidence for FQHE at these fractions.

One puzzle should be mentioned here. In the ex-
periment of Liu et al.9, they observe two transitions
at 5/7 (and its hole partner at 9/7). This is incon-
sistent with our expectation of a single transition for
a two-component system. We speculate on the possi-
ble causes. While only two states, [1 + [2]−2]−2 and
[1, [2]−2]−2, are possible when we allow FQHE in only
one component, another candidate FQHE states of the
form [1+1/3, 1/3]−2, where one or both of 1/3 states can
be replaced by 1/3WYQ, becomes possible when we allow
FQHE in both spin components. These states satisfy the
Fock conditions, but involve much more delicate physics
than the two states considered above. Further, we have
found that these states are not stabilized by the Coulomb
interaction in a sample with zero width (see Appendix
D). With three components, more states become possi-
ble, such as [1, [1, 1]−2]−2, but the experimentalists have
argued that the subband degree of freedom is suppressed
for their experimental parameters (i.e. the separation
between the symmetric and antisymmetric subbands is
very large compared to the Zeeman energy). We thus do
not at present have an explanation for the experimental
observation of two transitions at 5/7.

In graphene, many spin transitions have been seen for
IQHE states of composite fermions13,14 at fractions of
the form n/(2pn ± 1) but none so far involving FQHE
of composite fermions. The two-component systems in
AlAs quantum wells, where the two components are val-
leys, are also understood in terms of IQHE of composite
fermions16,17.

IX. CONCLUSION

We have carried out an extensive theoretical study
of fractional QHE of composite fermions in multi-
component systems. We have explicitly listed a large
number of prominent fractions, identifying the possi-
ble CF states at each fraction, along with an estimate
of their thermodynamic energies. This has allowed us
to make predictions regarding the critical values of the
Zeeman energy (used in a general sense) where transi-
tions between different states take place. We have com-
pared our predictions to the experimental studies cur-
rently available, and found very good qualitative and
semi-quantitative agreement. We have also mentioned
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ν Transition Theoretical Ec
Z Experimental Ec

Z

exact CFD Reference w (nm) n (× 1011 cm−2) Ec
Z

4/11 [1 + 1/3WYQ]2 ↔ [1, [1]2]2 0.0208 0.0171 53 33 0.55 0.0172-0.0225

4/5 [1 + [1]2]−2 ≡ [1]4 ↔ [1, [1]2]−2 0.0388 - 9 65 1.13 0.0145

0.0388 - 9 65 1.00 0.0157

0.0388 - 9 60 0.44 0.0177

0.0388 - 8 heterostructure 1.13 0.0298

6/5 [1 + [1]4]↔ [1, [1]4] 0.0388 - 9 65 1.13 0.0149

5/13 [1 + 2/3WYQ]2 ↔ [1, [2]−2]2 0.0183 0.0149 53 33 0.55 0.0167-0.0218

5/7 [1 + [2]−2]2 ≡ [2]−4 ↔ [1, [2]−2]−2 0.0238 - 9 60 0.44 0.0150

0.0238 - 8 heterostructure 1.13 0.0205

9/7 [1 + [2]−4]↔ [1, [2]−4] 0.0238 - 9 60 0.44 0.0175

7/9 [1, [2]2]−2 ≡ [[3]−2]−2 ↔ [[1, 2]−2]−2 - 8 heterostructure 1.13 0.0251

7/9 [1 + [2]2]−2 ≡ [2]4 ↔ [1, [2]2]−2 ≡ [[3]−2]−2 0.0320 - 8 heterostructure 1.13 0.0305

8/11 [1, [3]−2]−2 ≡ [[2]2]−2 ↔ [[1, 1]2]−2 - - 8 heterostructure 1.13 0.0204

8/11 [1 + [3]−2]−2 ≡ [3]−4 ↔ [1, [3]−2]−2 ≡ [[2]2]−2 - - 8 heterostructure 1.13 0.0260

10/13 [1, [3]2]−2 ≡ [[4]−2]−2 ↔ [[2, 2]−2]−2 - - 8 heterostructure 1.13 0.0276

10/13 [1 + [3]2]−2 ≡ [3]4 ↔ [1, [3]2]−2 ≡ [[4]−2]−2 0.0349 - 8 heterostructure 1.13 0.0307

3/8 [1 + 1/2APf ]2 ↔ [1, 1/2APf ]2 - 0.0183 53 33 0.55 0.0169-0.0223

TABLE XVII: Comparison of theoretical (zero width w = 0, no LL mixing, zero disorder) critical Zeeman energies with
experimental results.

experimental features that are not understood.

Appendix A POLARIZATION

The polarization γ of a state is defined as:

γ =
ν↑ − ν↓
ν↑ + ν↓

(22)

In this section we state how the polarization of a state
changes under the CF transformation and particle hole
conjugation. We restrict ourselves to two-component
states (this for example describes the spin-polarization
of states in GaAs or valley polarization in the case of
graphene) and denote the states by (ν↑, ν↓).

Under the CF transformation [ν∗↑ , ν
∗
↓ ]±2p → (ν↑, ν↓)

the polarization of the state does not change. This is
proved by noting the fact that under the CF transforma-
tion:

[ν∗↑ , ν
∗
↓ ]±2p →

(
ν∗↑

2p(ν∗↑ + ν∗↓)± 1
,

ν∗↓
2p(ν∗↑ + ν∗↓)± 1

)
= (ν↑, ν↓) (23)

Using the definition of polarization from Eq. 22, we see
that the polarization of the state (ν↑, ν↓) is identical to
that of (ν∗↑ , ν

∗
↓).

Under particle-hole conjugation [ν↑, ν↓]→ [1− ν↑, 1−
ν↓] the polarization of the state changes from γ to
−γν/(2−ν) where ν = ν↑+ν↓. This can be seen from the

definition of Eq. 22. Let us denote by γ the polarization
of the state obtained from the particle-hole conjugation.

γ =
ν − 2ν↓

ν
=⇒ ν↓ =

ν

2
(1− γ) (24)

γ = −ν − 2ν↓
2− ν

=⇒ γ = − γν

2− ν
(25)

Appendix B RESULTS

In Tables XVIII, XIX and XX we show results for the
ground state energies per particle for individual systems
obtained from exact and CF diagonalization. In some
cases we also include results for the unperturbed CF wave
function. The energies listed in these tables include back-
ground subtraction and density correction.

Appendix C CALCULATING ENERGY
EIGENSTATES FROM NON-ORTHOGONAL

BASIS

The set of CF states that are constructed by compos-
ite fermionization of simple IQHE states do not form an
orthogonal set. In this situation, one can define the ma-
trix representation H of the Hamiltonian operator H in
the usual way. However the eigenvalues and eigenvectors
of this matrix are not the eigenvalues of the Hamiltonian
operator. In this section we show how the correct quan-
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ν state N 2Q S Energy (e2/ε`)

exact CFD CF w. f.

4/11 [1 + 1/3WYQ]2 8 17 4 * *

12 28 6 -0.41135 -0.41101(1)

16 39 8 -0.41266 -0.41246(3)

20 50 10 - -0.41299(0)

24 61 12 - -0.41350(2)

28 72 14 - -0.41395(1)

4/5 [1 + [1]2]−2 ≡ [1]4 8 10 4 -0.56493 - -0.564933(4)

12 15 6 -0.56072 - -0.560534(8)

4/11 [1, [1]2]2 6 13 1 -0.42170 -0.42070(0) -0.42069(1)

10 24 2 -0.42174 -0.42056(0) -0.42057(1)

14 35 3 - -0.42059(0) -0.42056(2)

18 46 4 - -0.42053(4) -0.42055(8)

4/5 [1, [1]2]−2 6 7 1 -0.58100 -

10 12 2 -0.57264 -

4/11 [[1, 1]−2]2 8 19 0 -0.42356 -0.42305(1)

12 30 0 - -0.42272(2)

16 41 0 - -0.42257(2)

4/5 [[1, 1]−2]−2 8 9 0 -0.57579 -

12 14 0 -0.57221 -

5/13 [1 + 2/3]2 (WYQ) 6 13 3 -0.42386 -0.42375(0)

11 26 5.5 -0.42362 -0.42339(2)

16 39 8 -0.42440 -0.42418(3)

21 52 10.5 - -0.42422(2)

26 65 13 - -0.42416(3)

31 78 15.5 - -0.42428(2)

5/7 [1 + [2]−2]−2 ≡ [2]−4 9 12 4.5 -0.53788 - -0.53788(2)

5/13 [1, [2]−2]2 6 13 1 -0.43369 -0.43266(0) †
11 26 1.5 -0.43277 -0.43156(0) -0.43157(4)

16 39 2 - -0.43118(0) -0.43132(5)

21 52 2.5 - -0.43096(1) -0.43113(3)

5/7 [1, [2]−2]−2 6 7 1 -0.54899 -

11 14 1.5 -0.54442 -

TABLE XVIII: The ground state Coulomb energies of N particles with spin S at flux 2Q at various filling factors. The energies
include background subtraction and density correction. The number shown in the parentheses indicates the error from Monte-
Carlo calculation. The symbol ∗ marks systems for which the ground state does not occur at L = 0; the symbol - indicates
systems for which results are not available; and ‡ indicates systems for which calculations were carried out in only the L = 0
sector. The symbol † indicates that the CF variational wave function cannot be constructed with the given N .

tities can be obtained by diagonalizing the matrix O−1H
where O is the overlap matrix.

Let H be an operator which we intend to diagonalize
within the space V spanned by the non-orthonormal set
of vectors {|1〉 , |2〉 , |3〉 , . . . , |n〉}. The quantities H and
O defined as

Hij = 〈i|H |j〉
Oij = 〈i| I |j〉 (26)

are the quantities numerically computed through Monte
Carlo integrations. I is the identity operator. Let |φ〉 and

ε be an eigenvector and corresponding eigenvalue of H in
the Hilbert space V. By using the completeness relation,
this eigenstate can be expanded in the non-orthogonal
basis.

|φ〉 =

 n∑
i,j=1

|i〉 [O−1]ij 〈j|

 |φ〉
=

n∑
i=1

ci |i〉 where ci =

n∑
j=1

[O−1]ij 〈j|φ〉 (27)
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ν state N 2Q S Energy (e2/ε`)

exact CFD CF w. f.

7/19 [1 + [2]2]2 9 20 4.5 * *

16 39 8 -0.41537 -0.41516(3)

23 58 11.5 - -0.41570(4)‡

7/9 [1 + [2]2]−2 ≡ [2]4 9 12 4.5 -0.56128 - -0.56128(2)

16 21 8 -0.55402 - -0.55396(1)

23 30 11.5 -0.55126 - -0.551215(8)

30 39 15 -0.54995 - -0.549861(8)

7/19 [1, [2]2]2 ≡ [[3]−2]2 11 26 1.5 -0.42356 -0.42238(0) -0.42238(5)

18 45 3 - -0.42241(0)‡ -0.42243(4)

25 64 4.5 - -0.42262(4) -0.42244(4)

7/9 [1, [2]2]−2 ≡ [[3]−2]−2 11 14 1.5 -0.56810 -

7/19 [[1, 2]−2]2 6 13 1 -0.42446 -0.42346(0)

13 32 1.5 - -0.42365(0)

20 51 2 - -0.42411(8)

7/9 [[1, 2]−2]−2 6 7 1 -0.57287 -

8/21 [1 + [3]−2]2 8 18 4 * *

16 39 8 -0.42237 -0.42216(3)

24 60 12 - -0.42188(2)‡

8/11 [1 + [3]−2]−2 ≡ [3]−4 8 10 4 -0.53864 - †
16 21 8 -0.53573 - †

8/21 [1, [3]−2]2 ≡ [[2]2]2 10 24 2 -0.43166 -0.43046(0) †
18 45 3 - -0.42952(0)‡ †
26 66 4 - -0.42924(2)‡ -0.4292(1)

8/11 [1, [3]−2]−2 ≡ [[2]2]−2 10 12 2 -0.54600 -

18 23 3 - -

8/21 [[1, 1]2]2 12 29 0 - -0.43075(0)‡

20 50 0 - -0.43003(2)‡

8/11 [[1, 1]2]−2 12 15 0 -0.54897 -

20 26 0 - -

TABLE XIX: The ground state Coulomb energies of N particles with spin S at flux 2Q at various filling factors. The energies
include background subtraction and density correction. The number shown in the parentheses indicates the error from Monte-
Carlo calculation. The symbol ∗ marks systems for which the ground state does not occur at L = 0; the symbol - indicates
systems for which results are not available; and ‡ indicates systems for which calculations were carried out in only the L = 0
and the relevant S sector. The symbol † indicates that the CF variational wave function cannot be constructed with the given
N .

We prove below that the column vector containing the
expansion coefficients ci is a right eigenvector of the non-
Hermitian matrix O−1H with an eigenvalue ε.

Since |φ〉 is an eigenstate, H |φ〉 = ε |φ〉. Inserting the
completeness relations we get n∑

k,l=1

|k〉 [O−1]kl 〈l|

H
 n∑
i,j=1

|i〉 [O−1]ij 〈j|

 |φ〉
= ε

 n∑
a,b=1

|a〉 [O−1]ab 〈b|

 |φ〉
After rearranging the summations and using the defini-

tion of H and ci, the above equality can be re-written
as

n∑
k=1

|k〉 [O−1Hc]k = ε

n∑
k=1

ck |k〉

Since the basis vectors are linearly independent, this can
be true only if the coefficients of the vectors are equal on
both sides, which implies

O−1Hc = εc (28)

Every eigenvalue of the operator H in V is therefore an
eigenvalue of matrix O−1H. The corresponding eigen-
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ν state N 2Q S Energy (e2/ε`)

exact CFD CF w. f.

10/27 [1 + [3]2]2 14 33 7 -0.41500 -0.41487(0)

24 60 12 - -0.41599(3)‡

10/13 [1 + [3]2]−2 ≡ [3]4 14 19 7 -0.55480 - †
24 32 12 -0.54972 - -0.549679(7)

34 45 17 -0.54774 - -0.54766(1)

10/27 [1, [3]2]2 ≡ [[4]−2]2 6 12 0 -0.42391 -0.42336(0) †
16 39 2 - -0.42311(0) †
26 66 4 - -0.42323(3) -0.42317(4)

10/13 [1, [3]2]−2 ≡ [[4]−2]−2 6 8 0 -0.58170 -

16 21 2 -0.56307 -

10/27 [[2, 2]−2]2 12 29 0 - -0.42472

22 56 0 - -

10/13 [[2, 2]−2]−2 12 15 0 -0.56459 -

11/29 [1 + [4]−2]2 12 29 6 -0.42243 -0.42219(0)

23 58 11.5 - -0.42176(9)‡

11/15 [1 + [4]−2]−2 ≡ [4]−4 12 15 6 -0.53684 - †
23 30 11.5 -0.53527 - †

11/29 [1, [4]−2]2 ≡ [[3]2]2 14 35 3 - -0.42956(0) †
25 64 4.5 - -0.42882(2)‡ †

11/15 [1, [4]−2]−2 ≡ [[3]2]−2 14 17 3 -0.54520 -

25 32 4.5 - -

11/29 [[1, 2]2]2 13 32 1.5 - -0.42987(0)

24 61 2 - -

11/15 [[1, 2]2]−2 13 16 1.5 -0.54850 -

24 31 2 - -

3/8 [1 + 1/2APf ]2 6 13 3 -0.41852 -0.41844(0)

12 29 6 -0.42002 -0.41978(5)

18 45 9 - -0.41953(1)

24 61 12 - -0.41991(2)

3/8 [1, 1/2APf ]2 8 19 2 -0.42914 -0.42833(0)

14 35 3 - -0.42711(0)

20 51 4 - -0.42669(2)

26 67 5 - -0.42640(0)

TABLE XX: The ground state Coulomb energies of N particles with spin S at flux 2Q at various filling factors. The energies
include background subtraction and density correction. The number shown in the parenthisis indicates the error from Monte-
Carlo calculation. The symbol ∗ marks systems for which the ground state does not occur at L = 0; the symbol - indicates
systems for which results are not available; and ‡ indicates systems for which calculations were carried out in only the L = 0
sector. The symbol † indicates that the CF variational wave function cannot be constructed with the given N .

vector of the matrix provides the coefficients for expand-
ing the state in terms of the non-orthogonal basis. These
eigenvalues exhaust all the possible eigenvalues of O−1H.

Appendix D DOUBLE FQHE OF COMPOSITE
FERMIONS

In this article we have considered only the states in
which FQHE occurs in no more than one component

of composite fermions. These are expected to be the
most prominent FQHE states of composite fermions. In
this section we discuss the simplest state which involves
FQHE in two components of composite fermions and also
satisfies the Fock condition, namely the two-component
5/3 state formed as (1 + 1/3, 1/3). (Note that a state of
the type (1/3, 1/3) does not satisfy the Fock condition.)

The simplest possibility is [1 + [1]2, [1]2]2, in which we
fill the spin-up lowest ΛL (LΛL) completely and construct
[1]2 states in the spin-up second ΛL and spin-down lowest
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ΛL. This gives us the following relations between the flux
and the number of particles in each ΛL.

2Q∗ + 1 = N0↑ (29)

2Q∗ + 1 = 3N0↓ − 2 (30)

2Q∗ + 3 = 3N1↑ − 2 (31)

From the last two equations we obtain (N1↑ − N0↓) =
2
3 /∈ Z. Therefore this state cannot be constructed. A
similar argument shows that the corresponding 5/3 state
formed by 1/3 WYQ states in both spin-up second ΛL
and spin-down LΛL with spin-up LΛL full cannot be
constructed.

Next, we consider [1 + 1/3WYQ, [1]2]2, in which fill the
spin-up LΛL completely and construct 1/3WYQ and [1]2
states in the spin-up second ΛL and spin-down lowest ΛL
respectively. This gives us the following set of relations:

2Q∗ + 1 = N0↑

2Q∗ + 1 = 3N0↓ − 2

2Q∗ + 3 = 3N1↑ − 6

N = N0↑ +N0↓ +N1↑,

N0↑ = 3k − 2, N0↓ = k, N1↑ = k + 2, (k ∈ N)

N = 5k, 2Q∗ = 3k − 3, S =
3k

2

From this state at ν∗ = 5/3, we can construct states
at ν = 5/13 and ν = 5/7 (by reverse flux attachment).
Doing exact diagonalization at the corresponding flux,
we find that the lowest energy state does not have L = 0
for all allowed values of N and hence is unlikely to be
incompressible.

The third possibility is [1 + [1]2, 1/3
WYQ]2, in which

one constructs the 1/3WYQ state in the spin-down low-
est ΛL and [1]2 in second ΛL. This implies the following
relations:

2Q∗ + 1 = N0↑ (32)

2Q∗ + 1 = 3N0↓ − 6 (33)

2Q∗ + 3 = 3N1↑ − 2 (34)

From the last two equations we find that (N1↑ −N0↓) =
− 2

3 /∈ Z. Hence this state cannot be constructed.

Appendix E SPIN-SINGLET FQHE AT 4/11

In this section we provide details of the excitation
spectrum of the 4/11 spin-singlet state. The spectra of
partially polarized and fully polarized 4/11 states have
been discussed previously in Refs.47,48,50,51,75. The 4/11
FQHE has been observed but no spin phase transition
has yet been observed. This also serves as an illustration
of how we have obtained various energies by the method
of CFD.

As stated above, the ν = 4/11 spin-singlet state is
obtained from the ν∗ = 4/3 spin-singlet state which is
the particle-hole conjugate state to the 2/3 spin-singlet.
The 2/3 spin-singlet state is obtained by filling the lowest
ΛL of spin-up and spin-down completely and composite-
fermionizing this state by reverse flux attachment. A
straightforward calculation shows that the spin singlet
4/11 state occurs at flux

2Q =
11

4
N − 3 (35)

Therefore we must choose the particle number N to be a
multiple of 4.
Fig. 6 shows the Coulomb spectra obtained from CF di-
agonalization in the spherical geometry for three systems,
namely N = 4, 8 and 12. The spectrum is obtained by
constructing all Sz = 0 and Lz = 0 states at 4/3 at the
effective flux 2Q∗ = 2Q− 2(N − 1), composite fermioniz-
ing them by the standard method to obtain the CF basis
at the desired 2Q given by Eq. 35, and then diagonalizing
the Coulomb interaction in that subspace by the method
of CF diagonalization. (Here Sz and Lz are the z compo-
nents of the total spin and orbital angular momentum.)
For 4 and 8 particles, we also display the exact spectrum
(obtained by a diagonalization of the Coulom interaction
in the full LLL Hilbert space), and a comparison shows
the accuracy with which the CF theory captures the low
energy physics. In particular, the ground state is seen to
have S = 0 and L = 0, consistent with a a spin-singlet
FQHE state of composite fermions here. The thermo-
dynamic limit of the ground state energy per particle is
obtained by an extrapolation of the three energies. We
find that even with two points (with 4 and 8 particles) we
get a reasonably good approximation for the ground state
energy, which is why we have used for some states that
involve reverse flux attachment the exact energies only
from two systems to obtain the thermodynamic energy.

It is interesting to ask if we can make quantitative pre-
dictions about the nature of the charge and spin collective
modes at 4/11. As known from previous studies76,77, the
collective modes are excitons of composite fermions that
involve either a spin flip or no spin flip, called spin-flip
excitons or charge excitons, respectively. They can be
constructed up to a maximum L in the spherical geom-
etry. The CF theory predicts this value as follows. The
12 particle 4/11 state maps into 12 particle 4/3 state at
flux 2Q∗ = 8, which, by particle hole symmetry, is equiv-
alent to 6 particle spin-singlet 2/3 state at 2Q∗ = 8. This
state, in turn, maps into 6 particle spin singlet state at
filling factor 2. The lowest energy CF exciton of the
spin singlet 4/11 state are thus derived from the lowest
energy exciton of the 6 particle ν∗∗ = 2 state at flux
2|Q∗∗| = 2. The latter exciton corresponds to a particle
with angular momentum 2 and a hole with angular mo-
mentum 1, giving a spin-polarized exciton at L = 2, 3
(L = 1 exciton is annihilated76,78) and a spin-flip exciton
at L = 1, 2, 3. This shows that larger systems would
be required for bringing out the full nature of the exci-
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tonic collective mode dispersion. Nonetheless, from the
spectra, it is clear that both the charge and the spin-flip
exciton modes are gapped, as expected for a spin singlet
FQHE state, and that both of them have at least one ro-
ton minimum. Rotons in the charge mode were first pre-
dicted by Girvin, MacDonald and Platzman79 and spin-
flip rotons have also been predicted55 and observed58 for
fully spin polarized 2/5 and 3/7. We note that the roton
gaps for the spin singlet 4/11 are on the order of 0.01
e2/ε` for both charge and spin-flip exciton modes.
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FIG. 6: (color online) Energy spectrum of the 4/11 spin sin-
glet FQHE state, where composite fermions form a spin sin-
glet 4/3 FQHE state. The spectra shown by dots (different
colors representing different spin quantum numbers S) ob-
tained by CF diagonalization. The dashes in the top two
panels show the exact spectrum obtained by exact diagonal-
ization in the full Hilbert space. The spherical geometry is
used for the calculation. L is the total orbital angular mo-
mentum, 2Q is the flux through the sphere in units of the
flux quantum, and N is the total number of electrons. The
bottom panel shows the two lowest energy collective modes,
namely the charge exciton and the spin-flip exciton.
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